fashxp's picture
initial commit
2fb700d
raw
history blame
1.12 kB
from typing import Dict, List, Any
from PIL import Image
from io import BytesIO
from transformers import pipeline
import base64
class EndpointHandler():
def __init__(self, path=""):
self.pipeline=pipeline("zero-shot-image-classification",model="openai/clip-vit-large-patch14-336")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj:`string`)
parameters (:obj:)
Return:
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
"""
image_data = data.pop("inputs", data)
# decode base64 image to PIL
image = Image.open(BytesIO(base64.b64decode(image_data)))
parameters = data.pop("parameters", data)
candidate_labels = parameters['candidate_labels']
candidate_labels_array = list(map(str.strip, candidate_labels.split(',')))
# run prediction one image wit provided candiates
prediction = self.pipeline(images=[image], candidate_labels=candidate_labels_array)
return prediction[0]