update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- tweet_eval
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: TweetEval_ELECTRA_5E
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: tweet_eval
|
17 |
+
type: tweet_eval
|
18 |
+
config: sentiment
|
19 |
+
split: train
|
20 |
+
args: sentiment
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9066666666666666
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# TweetEval_ELECTRA_5E
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the tweet_eval dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2935
|
35 |
+
- Accuracy: 0.9067
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 1e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
66 |
+
| 0.6466 | 0.04 | 50 | 0.6006 | 0.7333 |
|
67 |
+
| 0.5974 | 0.08 | 100 | 0.5769 | 0.7333 |
|
68 |
+
| 0.5884 | 0.12 | 150 | 0.5486 | 0.7333 |
|
69 |
+
| 0.5601 | 0.16 | 200 | 0.4799 | 0.76 |
|
70 |
+
| 0.5125 | 0.2 | 250 | 0.4380 | 0.8533 |
|
71 |
+
| 0.4603 | 0.24 | 300 | 0.4169 | 0.84 |
|
72 |
+
| 0.4353 | 0.28 | 350 | 0.3775 | 0.86 |
|
73 |
+
| 0.4498 | 0.32 | 400 | 0.3460 | 0.9 |
|
74 |
+
| 0.4014 | 0.37 | 450 | 0.3812 | 0.8467 |
|
75 |
+
| 0.4072 | 0.41 | 500 | 0.3383 | 0.88 |
|
76 |
+
| 0.3891 | 0.45 | 550 | 0.3377 | 0.88 |
|
77 |
+
| 0.3482 | 0.49 | 600 | 0.3289 | 0.8933 |
|
78 |
+
| 0.3705 | 0.53 | 650 | 0.3162 | 0.8933 |
|
79 |
+
| 0.3249 | 0.57 | 700 | 0.2967 | 0.9 |
|
80 |
+
| 0.332 | 0.61 | 750 | 0.2925 | 0.8867 |
|
81 |
+
| 0.3166 | 0.65 | 800 | 0.2916 | 0.9067 |
|
82 |
+
| 0.334 | 0.69 | 850 | 0.3083 | 0.8667 |
|
83 |
+
| 0.3039 | 0.73 | 900 | 0.2966 | 0.8867 |
|
84 |
+
| 0.3066 | 0.77 | 950 | 0.3054 | 0.88 |
|
85 |
+
| 0.3238 | 0.81 | 1000 | 0.3060 | 0.88 |
|
86 |
+
| 0.308 | 0.85 | 1050 | 0.3103 | 0.88 |
|
87 |
+
| 0.2889 | 0.89 | 1100 | 0.2922 | 0.88 |
|
88 |
+
| 0.2773 | 0.93 | 1150 | 0.2986 | 0.8933 |
|
89 |
+
| 0.3078 | 0.97 | 1200 | 0.2852 | 0.8933 |
|
90 |
+
| 0.2529 | 1.01 | 1250 | 0.2957 | 0.8933 |
|
91 |
+
| 0.2968 | 1.06 | 1300 | 0.2893 | 0.8867 |
|
92 |
+
| 0.2536 | 1.1 | 1350 | 0.2902 | 0.88 |
|
93 |
+
| 0.2836 | 1.14 | 1400 | 0.3085 | 0.88 |
|
94 |
+
| 0.3066 | 1.18 | 1450 | 0.2909 | 0.88 |
|
95 |
+
| 0.28 | 1.22 | 1500 | 0.2953 | 0.8867 |
|
96 |
+
| 0.2549 | 1.26 | 1550 | 0.3019 | 0.8867 |
|
97 |
+
| 0.2974 | 1.3 | 1600 | 0.2796 | 0.88 |
|
98 |
+
| 0.2808 | 1.34 | 1650 | 0.2762 | 0.9 |
|
99 |
+
| 0.2548 | 1.38 | 1700 | 0.2808 | 0.9 |
|
100 |
+
| 0.2879 | 1.42 | 1750 | 0.2819 | 0.8933 |
|
101 |
+
| 0.2583 | 1.46 | 1800 | 0.2904 | 0.88 |
|
102 |
+
| 0.2387 | 1.5 | 1850 | 0.3016 | 0.8733 |
|
103 |
+
| 0.2574 | 1.54 | 1900 | 0.2981 | 0.8933 |
|
104 |
+
| 0.2589 | 1.58 | 1950 | 0.2907 | 0.8933 |
|
105 |
+
| 0.2436 | 1.62 | 2000 | 0.2926 | 0.8867 |
|
106 |
+
| 0.2606 | 1.66 | 2050 | 0.2807 | 0.8933 |
|
107 |
+
| 0.2841 | 1.7 | 2100 | 0.2805 | 0.9 |
|
108 |
+
| 0.2497 | 1.75 | 2150 | 0.2765 | 0.8867 |
|
109 |
+
| 0.2866 | 1.79 | 2200 | 0.2821 | 0.9 |
|
110 |
+
| 0.2614 | 1.83 | 2250 | 0.2759 | 0.8867 |
|
111 |
+
| 0.2605 | 1.87 | 2300 | 0.2704 | 0.8933 |
|
112 |
+
| 0.2365 | 1.91 | 2350 | 0.2623 | 0.9 |
|
113 |
+
| 0.2274 | 1.95 | 2400 | 0.2651 | 0.8933 |
|
114 |
+
| 0.2564 | 1.99 | 2450 | 0.2664 | 0.9 |
|
115 |
+
| 0.2481 | 2.03 | 2500 | 0.2706 | 0.9 |
|
116 |
+
| 0.2382 | 2.07 | 2550 | 0.2819 | 0.8933 |
|
117 |
+
| 0.2351 | 2.11 | 2600 | 0.2848 | 0.9 |
|
118 |
+
| 0.18 | 2.15 | 2650 | 0.2881 | 0.8933 |
|
119 |
+
| 0.2343 | 2.19 | 2700 | 0.2983 | 0.9 |
|
120 |
+
| 0.2043 | 2.23 | 2750 | 0.2908 | 0.8933 |
|
121 |
+
| 0.2272 | 2.27 | 2800 | 0.3000 | 0.8867 |
|
122 |
+
| 0.246 | 2.31 | 2850 | 0.3136 | 0.8867 |
|
123 |
+
| 0.2577 | 2.35 | 2900 | 0.3126 | 0.88 |
|
124 |
+
| 0.2316 | 2.39 | 2950 | 0.2803 | 0.8933 |
|
125 |
+
| 0.2156 | 2.44 | 3000 | 0.2737 | 0.9067 |
|
126 |
+
| 0.223 | 2.48 | 3050 | 0.2883 | 0.8933 |
|
127 |
+
| 0.2215 | 2.52 | 3100 | 0.2660 | 0.8867 |
|
128 |
+
| 0.2488 | 2.56 | 3150 | 0.2551 | 0.9 |
|
129 |
+
| 0.2095 | 2.6 | 3200 | 0.2645 | 0.9 |
|
130 |
+
| 0.2247 | 2.64 | 3250 | 0.2751 | 0.8933 |
|
131 |
+
| 0.2292 | 2.68 | 3300 | 0.2851 | 0.8867 |
|
132 |
+
| 0.237 | 2.72 | 3350 | 0.2824 | 0.8867 |
|
133 |
+
| 0.2086 | 2.76 | 3400 | 0.2805 | 0.8867 |
|
134 |
+
| 0.2063 | 2.8 | 3450 | 0.2771 | 0.9 |
|
135 |
+
| 0.2015 | 2.84 | 3500 | 0.2981 | 0.8933 |
|
136 |
+
| 0.2036 | 2.88 | 3550 | 0.2937 | 0.8933 |
|
137 |
+
| 0.247 | 2.92 | 3600 | 0.2985 | 0.8933 |
|
138 |
+
| 0.23 | 2.96 | 3650 | 0.2866 | 0.9067 |
|
139 |
+
| 0.2625 | 3.0 | 3700 | 0.2836 | 0.9 |
|
140 |
+
| 0.2064 | 3.04 | 3750 | 0.2911 | 0.8933 |
|
141 |
+
| 0.1867 | 3.08 | 3800 | 0.2868 | 0.8933 |
|
142 |
+
| 0.2143 | 3.12 | 3850 | 0.2903 | 0.9 |
|
143 |
+
| 0.1993 | 3.17 | 3900 | 0.2987 | 0.8933 |
|
144 |
+
| 0.1762 | 3.21 | 3950 | 0.3066 | 0.9067 |
|
145 |
+
| 0.1935 | 3.25 | 4000 | 0.3185 | 0.8867 |
|
146 |
+
| 0.234 | 3.29 | 4050 | 0.3043 | 0.9067 |
|
147 |
+
| 0.195 | 3.33 | 4100 | 0.2905 | 0.9067 |
|
148 |
+
| 0.2434 | 3.37 | 4150 | 0.3081 | 0.9 |
|
149 |
+
| 0.2168 | 3.41 | 4200 | 0.2919 | 0.9067 |
|
150 |
+
| 0.2044 | 3.45 | 4250 | 0.2903 | 0.9 |
|
151 |
+
| 0.2419 | 3.49 | 4300 | 0.2955 | 0.8933 |
|
152 |
+
| 0.191 | 3.53 | 4350 | 0.2957 | 0.9067 |
|
153 |
+
| 0.1927 | 3.57 | 4400 | 0.3075 | 0.8933 |
|
154 |
+
| 0.2267 | 3.61 | 4450 | 0.2823 | 0.9067 |
|
155 |
+
| 0.1971 | 3.65 | 4500 | 0.2933 | 0.9067 |
|
156 |
+
| 0.2164 | 3.69 | 4550 | 0.2910 | 0.9067 |
|
157 |
+
| 0.1939 | 3.73 | 4600 | 0.2813 | 0.9067 |
|
158 |
+
| 0.1834 | 3.77 | 4650 | 0.2913 | 0.9067 |
|
159 |
+
| 0.234 | 3.81 | 4700 | 0.2841 | 0.9067 |
|
160 |
+
| 0.2226 | 3.86 | 4750 | 0.2888 | 0.9067 |
|
161 |
+
| 0.2176 | 3.9 | 4800 | 0.2902 | 0.9067 |
|
162 |
+
| 0.2279 | 3.94 | 4850 | 0.2842 | 0.9067 |
|
163 |
+
| 0.1948 | 3.98 | 4900 | 0.2856 | 0.9067 |
|
164 |
+
| 0.2044 | 4.02 | 4950 | 0.2845 | 0.9067 |
|
165 |
+
| 0.2075 | 4.06 | 5000 | 0.2825 | 0.9067 |
|
166 |
+
| 0.1721 | 4.1 | 5050 | 0.2796 | 0.9067 |
|
167 |
+
| 0.2206 | 4.14 | 5100 | 0.2752 | 0.9067 |
|
168 |
+
| 0.2012 | 4.18 | 5150 | 0.2738 | 0.9067 |
|
169 |
+
| 0.1868 | 4.22 | 5200 | 0.2932 | 0.9 |
|
170 |
+
| 0.2117 | 4.26 | 5250 | 0.2881 | 0.9 |
|
171 |
+
| 0.1946 | 4.3 | 5300 | 0.2985 | 0.9 |
|
172 |
+
| 0.2138 | 4.34 | 5350 | 0.3025 | 0.8933 |
|
173 |
+
| 0.1841 | 4.38 | 5400 | 0.2906 | 0.9067 |
|
174 |
+
| 0.2171 | 4.42 | 5450 | 0.2919 | 0.9067 |
|
175 |
+
| 0.2116 | 4.46 | 5500 | 0.2889 | 0.9067 |
|
176 |
+
| 0.162 | 4.5 | 5550 | 0.2994 | 0.8933 |
|
177 |
+
| 0.1821 | 4.55 | 5600 | 0.2975 | 0.9 |
|
178 |
+
| 0.1802 | 4.59 | 5650 | 0.2994 | 0.9 |
|
179 |
+
| 0.1619 | 4.63 | 5700 | 0.2978 | 0.9 |
|
180 |
+
| 0.1955 | 4.67 | 5750 | 0.2984 | 0.9 |
|
181 |
+
| 0.2031 | 4.71 | 5800 | 0.2925 | 0.9067 |
|
182 |
+
| 0.1937 | 4.75 | 5850 | 0.2939 | 0.9067 |
|
183 |
+
| 0.1799 | 4.79 | 5900 | 0.2955 | 0.9067 |
|
184 |
+
| 0.2106 | 4.83 | 5950 | 0.2965 | 0.9067 |
|
185 |
+
| 0.196 | 4.87 | 6000 | 0.2954 | 0.9067 |
|
186 |
+
| 0.2336 | 4.91 | 6050 | 0.2932 | 0.9067 |
|
187 |
+
| 0.1805 | 4.95 | 6100 | 0.2931 | 0.9067 |
|
188 |
+
| 0.1877 | 4.99 | 6150 | 0.2935 | 0.9067 |
|
189 |
+
|
190 |
+
|
191 |
+
### Framework versions
|
192 |
+
|
193 |
+
- Transformers 4.24.0
|
194 |
+
- Pytorch 1.13.0
|
195 |
+
- Datasets 2.7.1
|
196 |
+
- Tokenizers 0.13.2
|