pig4431 commited on
Commit
f8f7e94
1 Parent(s): c1c0a07

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - sentiment140
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: Sentiment140_DistilBERT_5E
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: sentiment140
17
+ type: sentiment140
18
+ config: sentiment140
19
+ split: train
20
+ args: sentiment140
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8333333333333334
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # Sentiment140_DistilBERT_5E
31
+
32
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the sentiment140 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.4897
35
+ - Accuracy: 0.8333
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 5
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.6784 | 0.08 | 50 | 0.6516 | 0.6933 |
67
+ | 0.6301 | 0.16 | 100 | 0.5384 | 0.7533 |
68
+ | 0.5438 | 0.24 | 150 | 0.4559 | 0.8 |
69
+ | 0.4625 | 0.32 | 200 | 0.4287 | 0.8133 |
70
+ | 0.4528 | 0.4 | 250 | 0.4056 | 0.8267 |
71
+ | 0.4609 | 0.48 | 300 | 0.3883 | 0.8333 |
72
+ | 0.4705 | 0.56 | 350 | 0.3886 | 0.8067 |
73
+ | 0.4539 | 0.64 | 400 | 0.3967 | 0.82 |
74
+ | 0.4483 | 0.72 | 450 | 0.3758 | 0.82 |
75
+ | 0.4699 | 0.8 | 500 | 0.4003 | 0.8133 |
76
+ | 0.467 | 0.88 | 550 | 0.4021 | 0.8267 |
77
+ | 0.454 | 0.96 | 600 | 0.3735 | 0.8333 |
78
+ | 0.4227 | 1.04 | 650 | 0.3840 | 0.8267 |
79
+ | 0.3584 | 1.12 | 700 | 0.3775 | 0.8333 |
80
+ | 0.3618 | 1.2 | 750 | 0.4026 | 0.8267 |
81
+ | 0.3634 | 1.28 | 800 | 0.3891 | 0.8133 |
82
+ | 0.3751 | 1.36 | 850 | 0.3895 | 0.8267 |
83
+ | 0.3484 | 1.44 | 900 | 0.3919 | 0.8267 |
84
+ | 0.3764 | 1.52 | 950 | 0.3770 | 0.84 |
85
+ | 0.3488 | 1.6 | 1000 | 0.4028 | 0.82 |
86
+ | 0.3665 | 1.68 | 1050 | 0.3779 | 0.8333 |
87
+ | 0.3925 | 1.76 | 1100 | 0.3726 | 0.84 |
88
+ | 0.3624 | 1.84 | 1150 | 0.3655 | 0.84 |
89
+ | 0.3876 | 1.92 | 1200 | 0.3648 | 0.8133 |
90
+ | 0.3935 | 2.0 | 1250 | 0.3633 | 0.8467 |
91
+ | 0.2944 | 2.08 | 1300 | 0.3808 | 0.8333 |
92
+ | 0.2957 | 2.16 | 1350 | 0.3836 | 0.8333 |
93
+ | 0.266 | 2.24 | 1400 | 0.3940 | 0.8267 |
94
+ | 0.2747 | 2.32 | 1450 | 0.3952 | 0.84 |
95
+ | 0.314 | 2.4 | 1500 | 0.4060 | 0.8133 |
96
+ | 0.3419 | 2.48 | 1550 | 0.4025 | 0.8133 |
97
+ | 0.2782 | 2.56 | 1600 | 0.4218 | 0.82 |
98
+ | 0.3218 | 2.64 | 1650 | 0.4039 | 0.8333 |
99
+ | 0.2863 | 2.72 | 1700 | 0.4130 | 0.8267 |
100
+ | 0.3336 | 2.8 | 1750 | 0.4026 | 0.8133 |
101
+ | 0.3224 | 2.88 | 1800 | 0.3910 | 0.8267 |
102
+ | 0.2709 | 2.96 | 1850 | 0.3979 | 0.84 |
103
+ | 0.2701 | 3.04 | 1900 | 0.4127 | 0.8333 |
104
+ | 0.2782 | 3.12 | 1950 | 0.4335 | 0.82 |
105
+ | 0.2425 | 3.2 | 2000 | 0.4229 | 0.8333 |
106
+ | 0.2457 | 3.28 | 2050 | 0.4168 | 0.8333 |
107
+ | 0.217 | 3.36 | 2100 | 0.4264 | 0.8267 |
108
+ | 0.2522 | 3.44 | 2150 | 0.4250 | 0.8333 |
109
+ | 0.2402 | 3.52 | 2200 | 0.4371 | 0.8333 |
110
+ | 0.2465 | 3.6 | 2250 | 0.4429 | 0.8333 |
111
+ | 0.2427 | 3.68 | 2300 | 0.4435 | 0.8333 |
112
+ | 0.2408 | 3.76 | 2350 | 0.4500 | 0.84 |
113
+ | 0.1976 | 3.84 | 2400 | 0.4536 | 0.8333 |
114
+ | 0.23 | 3.92 | 2450 | 0.4645 | 0.8333 |
115
+ | 0.2449 | 4.0 | 2500 | 0.4557 | 0.8467 |
116
+ | 0.1933 | 4.08 | 2550 | 0.4672 | 0.84 |
117
+ | 0.213 | 4.16 | 2600 | 0.4717 | 0.84 |
118
+ | 0.1772 | 4.24 | 2650 | 0.4843 | 0.8267 |
119
+ | 0.1917 | 4.32 | 2700 | 0.4690 | 0.8467 |
120
+ | 0.2094 | 4.4 | 2750 | 0.4728 | 0.8467 |
121
+ | 0.1903 | 4.48 | 2800 | 0.4755 | 0.8467 |
122
+ | 0.2541 | 4.56 | 2850 | 0.4791 | 0.84 |
123
+ | 0.1805 | 4.64 | 2900 | 0.4877 | 0.84 |
124
+ | 0.2183 | 4.72 | 2950 | 0.4940 | 0.8267 |
125
+ | 0.2257 | 4.8 | 3000 | 0.4905 | 0.8333 |
126
+ | 0.2496 | 4.88 | 3050 | 0.4883 | 0.84 |
127
+ | 0.1846 | 4.96 | 3100 | 0.4897 | 0.8333 |
128
+
129
+
130
+ ### Framework versions
131
+
132
+ - Transformers 4.24.0
133
+ - Pytorch 1.12.1+cu113
134
+ - Datasets 2.6.1
135
+ - Tokenizers 0.13.1