pierromagien commited on
Commit
79b6de0
1 Parent(s): cd8bd96

Upload PPO LunarLander-v2 trained agent v0

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -754.84 +/- 269.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc2804794d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc280479560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc2804795f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc280479680>", "_build": "<function ActorCriticPolicy._build at 0x7fc280479710>", "forward": "<function ActorCriticPolicy.forward at 0x7fc2804797a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc280479830>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc2804798c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc280479950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc2804799e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc280479a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc2804c67e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653402427.180315, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAc98dvn7gsD/j4hm/Sqstvn1Wfz6YjFc+AAAAAAAAAAAYXSO/7CyeP7wOgb9J6li/CyQrP7UfZD4AAAAAAAAAAE2sPL1Ndn4+xm+iPa9Crr9xZ2S+S09zvQAAAAAAAAAAjcXQvfFekj+Kme++PvMzvxABuT2VO9I8AAAAAAAAAADm4Wk+kLbGPlVgnD7e44G/I5wxvlO8Fr4AAAAAAAAAAMrboT6o3pc9dk4MP+HsoL8RmBS+40bnPAAAAAAAAAAARRAAPz57hT9jJ04/9+xGvxiNQT0swJq8AAAAAAAAAABAUL496XmVPm5uUD5EBqS//1ZsvpSJKb4AAAAAAAAAABjYi752KbI/mRsYv6WGEL+quBo/6GixPgAAAAAAAAAA2tyivSL5uz/WUSm/hxUBPg3xiD1zg6k9AAAAAAAAAABm5Ky8tgmtP8V6A76x0FG+sh4FPaqknD0AAAAAAAAAAM0MnzsCAXc+gvvYPbIqq7+Cvp++d18LPgAAAAAAAAAA+jq7PlPbcj92SAQ/LKFgv3VNWL10Vsc9AAAAAAAAAADWxYO+V2sXP9ZfQr8NXo2/hnIWP8PQmz4AAAAAAAAAAJoxgTuktJ4/W+PaPIup676GwY09nvsTPgAAAAAAAAAAMySEPSaSZz864FY+e+86vyi8373jZfu9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILBGo/kF/ZMCUhpRSlIwBbJRLQowBdJRHQBhXP7el9Bt1fZQoaAZoCWgPQwj5npEIjf5ZwJSGlFKUaBVLQGgWR0AYYbsF+uvEdX2UKGgGaAloD0MIuD1BYrugWMCUhpRSlGgVS0poFkdAGNY5ksjFAHV9lChoBmgJaA9DCN/cXz1ue2DAlIaUUpRoFUtUaBZHQBjf2bobGWF1fZQoaAZoCWgPQwiqKck6HPhbwJSGlFKUaBVLWmgWR0AY5rxiG34LdX2UKGgGaAloD0MI2GSNegheYcCUhpRSlGgVS1FoFkdAGRbtZ3cHnnV9lChoBmgJaA9DCM1XyceuhnTAlIaUUpRoFUtdaBZHQBkmECeVcD91fZQoaAZoCWgPQwj4Nv3ZD/BgwJSGlFKUaBVLaGgWR0AZYq9XcQAddX2UKGgGaAloD0MIhe6SOKvYacCUhpRSlGgVS2ZoFkdAGhUypJf6XXV9lChoBmgJaA9DCK+UZYjjkXfAlIaUUpRoFUtPaBZHQBo+L3sXzlN1fZQoaAZoCWgPQwhLAz+qYSFZwJSGlFKUaBVLR2gWR0AbJFw1ivxIdX2UKGgGaAloD0MI1O5XAT4MYcCUhpRSlGgVS1VoFkdAG5MnZ00WM3V9lChoBmgJaA9DCHbCS3DqJ1PAlIaUUpRoFUtGaBZHQBuh3u/k/8l1fZQoaAZoCWgPQwivPh767t1dwJSGlFKUaBVLXmgWR0AbrB2wFC9idX2UKGgGaAloD0MIhL2JITnlYMCUhpRSlGgVS1JoFkdAHBHP/rB0p3V9lChoBmgJaA9DCJvicVEtfGjAlIaUUpRoFUtsaBZHQBwguZkTYd11fZQoaAZoCWgPQwiOIJVix8RiwJSGlFKUaBVLUGgWR0AcP4tYjjaPdX2UKGgGaAloD0MItLCnHf7mY8CUhpRSlGgVS4JoFkdAHEvicXm/33V9lChoBmgJaA9DCBKfO8F+m3nAlIaUUpRoFUtnaBZHQBxK9kBjnV51fZQoaAZoCWgPQwhN9zqpL0hxwJSGlFKUaBVLamgWR0Acmkj5bhWHdX2UKGgGaAloD0MIu0ihLPzRdsCUhpRSlGgVS3xoFkdAHMdC3PRiPXV9lChoBmgJaA9DCF2LFqBtkmzAlIaUUpRoFUteaBZHQB0F6eGwiaB1fZQoaAZoCWgPQwjni70XX9VxwJSGlFKUaBVLYGgWR0AdSx3V09yMdX2UKGgGaAloD0MIVYZxN8gFc8CUhpRSlGgVS1FoFkdAHYOSW7e2u3V9lChoBmgJaA9DCM2Pv7QozGDAlIaUUpRoFUtZaBZHQB2/eUILPUt1fZQoaAZoCWgPQwhwfO2ZJUtswJSGlFKUaBVLSWgWR0AesPUaya/idX2UKGgGaAloD0MIQIS4cnbVZcCUhpRSlGgVS49oFkdAHrAmiQDFInV9lChoBmgJaA9DCNlg4SSNhXvAlIaUUpRoFUtXaBZHQB7JJsfq5b11fZQoaAZoCWgPQwgwSWWKOSpewJSGlFKUaBVLTWgWR0Ae1VaOgg5jdX2UKGgGaAloD0MIlu1D3nLSVMCUhpRSlGgVS0ZoFkdAHyFyq+8Gs3V9lChoBmgJaA9DCO85sBwhBFXAlIaUUpRoFUtLaBZHQB9HOKO1fE51fZQoaAZoCWgPQwiHTzqR4E1gwJSGlFKUaBVLSGgWR0AfVc8kleF+dX2UKGgGaAloD0MI+13Ymi3Jc8CUhpRSlGgVS2JoFkdAH6A4XGff43V9lChoBmgJaA9DCMbgYdo3XVfAlIaUUpRoFUtGaBZHQCAFDKHO8kF1fZQoaAZoCWgPQwi86ZYdom16wJSGlFKUaBVLXWgWR0AgHhQWN3nqdX2UKGgGaAloD0MI2AsFbAfcV8CUhpRSlGgVS1poFkdAICm8M/hVEXV9lChoBmgJaA9DCF5MM92ra3DAlIaUUpRoFUtdaBZHQCBGUliSaE11fZQoaAZoCWgPQwhnYyXmmcdwwJSGlFKUaBVLdWgWR0AgaBlMAWBSdX2UKGgGaAloD0MI7KAS17EiYcCUhpRSlGgVS1RoFkdAIHDin5zo2XV9lChoBmgJaA9DCNhIEoSrRGzAlIaUUpRoFUt0aBZHQCCHnEETxoZ1fZQoaAZoCWgPQwgEV3kCYXJkwJSGlFKUaBVLW2gWR0AgrogV45cUdX2UKGgGaAloD0MIrMYS1gYbcMCUhpRSlGgVS0xoFkdAIN3EZR8+inV9lChoBmgJaA9DCAmlL4ScGVDAlIaUUpRoFUtGaBZHQCD0/wAlv611fZQoaAZoCWgPQwgZqmIqfW9twJSGlFKUaBVLVGgWR0AhCXIEKVpsdX2UKGgGaAloD0MIDK1OzlDXU8CUhpRSlGgVS0VoFkdAIRpIczZYgnV9lChoBmgJaA9DCIUKDi+IRWTAlIaUUpRoFUtlaBZHQCF4tL+PzWh1fZQoaAZoCWgPQwjij6LO3MRcwJSGlFKUaBVLWmgWR0AhlW7voePrdX2UKGgGaAloD0MIDXBBtmzfd8CUhpRSlGgVS15oFkdAIbbJOnEVFnV9lChoBmgJaA9DCDAqqROQKHTAlIaUUpRoFUtOaBZHQCHMiY9gWrR1fZQoaAZoCWgPQwjj4qjchFFzwJSGlFKUaBVLSWgWR0Ah2V9nbqQjdX2UKGgGaAloD0MIjL6CNONHYcCUhpRSlGgVS3NoFkdAIdnX/YJ3PnV9lChoBmgJaA9DCO7uAbqv82LAlIaUUpRoFUtDaBZHQCHwT0xubZx1fZQoaAZoCWgPQwgXghyUMHhdwJSGlFKUaBVLSGgWR0Ah+6kIomXxdX2UKGgGaAloD0MIaJdvfVg1acCUhpRSlGgVS0FoFkdAIh87ZFocrHV9lChoBmgJaA9DCPJ9calKdVDAlIaUUpRoFUtUaBZHQCI5d+ocaOx1fZQoaAZoCWgPQwgBFvn1Q65SwJSGlFKUaBVLQGgWR0Aic7kn1FpgdX2UKGgGaAloD0MIvokhORn1YcCUhpRSlGgVS0doFkdAInuSfUWl/HV9lChoBmgJaA9DCHo57L5jdWPAlIaUUpRoFUt9aBZHQCK6Ce2/i5x1fZQoaAZoCWgPQwhpb/CFyX1mwJSGlFKUaBVLcWgWR0Ai09SuQp4KdX2UKGgGaAloD0MIlSwnofTYZcCUhpRSlGgVS1RoFkdAIyn5BTn7pHV9lChoBmgJaA9DCNc07zjFPm/AlIaUUpRoFUtjaBZHQCM3Lq2SdOJ1fZQoaAZoCWgPQwhYrrfN1O9lwJSGlFKUaBVLUGgWR0AjakP+XJHRdX2UKGgGaAloD0MIsMbZdMSOcsCUhpRSlGgVS3poFkdAI3Jiy6cy33V9lChoBmgJaA9DCCnrNxPTUVjAlIaUUpRoFUthaBZHQCNyDsdDIBB1fZQoaAZoCWgPQwjg1t08VUJ5wJSGlFKUaBVLUmgWR0AjnbY9Pk7wdX2UKGgGaAloD0MIHvmDgad9eMCUhpRSlGgVS2doFkdAI8/r0J4SpXV9lChoBmgJaA9DCFpnfF+cN3TAlIaUUpRoFUtoaBZHQCPhBNVR1ox1fZQoaAZoCWgPQwj9MEJ4tDBiwJSGlFKUaBVLc2gWR0Aj8VNYbKigdX2UKGgGaAloD0MIoImw4WkOfcCUhpRSlGgVS1JoFkdAJBZkbxVhkXV9lChoBmgJaA9DCL1yvW2m42DAlIaUUpRoFUtvaBZHQCQZZdOZb6h1fZQoaAZoCWgPQwhHH/MBgeVhwJSGlFKUaBVLYWgWR0AkH7WuoxYadX2UKGgGaAloD0MIFygpsACoYcCUhpRSlGgVS2doFkdAJB79If8uSXV9lChoBmgJaA9DCB2vQPSkZ2jAlIaUUpRoFUtiaBZHQCRgWcjJMg51fZQoaAZoCWgPQwhKKej2UvN0wJSGlFKUaBVLXWgWR0AkirAgxJumdX2UKGgGaAloD0MI6gd1kUJYa8CUhpRSlGgVS0hoFkdAJJaHbh3qzXV9lChoBmgJaA9DCLfUQV4PhnDAlIaUUpRoFUthaBZHQCTP7BO58Sh1fZQoaAZoCWgPQwgUBmUaDUV6wJSGlFKUaBVLSWgWR0Ak2j3VTaTPdX2UKGgGaAloD0MIPPVIg9viWMCUhpRSlGgVS0RoFkdAJN9SuQp4KXV9lChoBmgJaA9DCNP4hVcSkGPAlIaUUpRoFUtMaBZHQCTjY/Vy3kR1fZQoaAZoCWgPQwgOT6+UZdhbwJSGlFKUaBVLQWgWR0AlIfukUKzBdX2UKGgGaAloD0MIBac+kLxYXsCUhpRSlGgVS2hoFkdAJT4Qrc0tRXV9lChoBmgJaA9DCM2v5gDBlVnAlIaUUpRoFUtFaBZHQCV96NVBD5V1fZQoaAZoCWgPQwjY8V8giCVswJSGlFKUaBVLV2gWR0AlfZamoBJadX2UKGgGaAloD0MIeCefHts7V8CUhpRSlGgVS3doFkdAJbY4Ia99MXV9lChoBmgJaA9DCLQ7pBig/mjAlIaUUpRoFUtAaBZHQCZKvFFUhmp1fZQoaAZoCWgPQwgQBMjQsfhnwJSGlFKUaBVLaGgWR0AmVhJiAlOXdX2UKGgGaAloD0MI6l4n9eW6bcCUhpRSlGgVS0VoFkdAJlqkl/pdKXV9lChoBmgJaA9DCDIFa5zNi2fAlIaUUpRoFUtraBZHQCaErmQr+YN1fZQoaAZoCWgPQwiIn/8evIR+wJSGlFKUaBVLbGgWR0AmhS9du5z6dX2UKGgGaAloD0MIyhZJu9FLOsCUhpRSlGgVS1xoFkdAJo+2E0zj3nV9lChoBmgJaA9DCK6cvTNaUXzAlIaUUpRoFUt6aBZHQCaWa4MF2V51fZQoaAZoCWgPQwjJc30fjrBkwJSGlFKUaBVLTmgWR0AmtlhgE2YOdX2UKGgGaAloD0MI4BPrVLkJd8CUhpRSlGgVS1NoFkdAJtBOxjawlnV9lChoBmgJaA9DCKAbmrJT/mHAlIaUUpRoFUtfaBZHQCbXDpC8e0Z1fZQoaAZoCWgPQwi3zyozJeFmwJSGlFKUaBVLZ2gWR0Am6pH7P6bfdX2UKGgGaAloD0MI4zeFlQoCdMCUhpRSlGgVS1hoFkdAJ004zabnYHV9lChoBmgJaA9DCMYwJ2gTXnrAlIaUUpRoFUtiaBZHQCdycNH6Mzd1fZQoaAZoCWgPQwgSiNf1C7pVwJSGlFKUaBVLS2gWR0Anhkf9xZMddX2UKGgGaAloD0MIk2+2uTFMbcCUhpRSlGgVS11oFkdAJ5lYEGJN03V9lChoBmgJaA9DCKIKf4Y3FVHAlIaUUpRoFUtDaBZHQCe0rqdH2AZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_model_lunarlander_v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15b9d760302fe023590c6e459729fc2cafabcabf6814cd25d0c5f00ac0a5b3b0
3
+ size 144004
ppo_model_lunarlander_v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo_model_lunarlander_v0/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc2804794d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc280479560>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc2804795f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc280479680>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc280479710>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc2804797a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc280479830>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc2804798c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc280479950>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc2804799e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc280479a70>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc2804c67e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 1000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1653402427.180315,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAc98dvn7gsD/j4hm/Sqstvn1Wfz6YjFc+AAAAAAAAAAAYXSO/7CyeP7wOgb9J6li/CyQrP7UfZD4AAAAAAAAAAE2sPL1Ndn4+xm+iPa9Crr9xZ2S+S09zvQAAAAAAAAAAjcXQvfFekj+Kme++PvMzvxABuT2VO9I8AAAAAAAAAADm4Wk+kLbGPlVgnD7e44G/I5wxvlO8Fr4AAAAAAAAAAMrboT6o3pc9dk4MP+HsoL8RmBS+40bnPAAAAAAAAAAARRAAPz57hT9jJ04/9+xGvxiNQT0swJq8AAAAAAAAAABAUL496XmVPm5uUD5EBqS//1ZsvpSJKb4AAAAAAAAAABjYi752KbI/mRsYv6WGEL+quBo/6GixPgAAAAAAAAAA2tyivSL5uz/WUSm/hxUBPg3xiD1zg6k9AAAAAAAAAABm5Ky8tgmtP8V6A76x0FG+sh4FPaqknD0AAAAAAAAAAM0MnzsCAXc+gvvYPbIqq7+Cvp++d18LPgAAAAAAAAAA+jq7PlPbcj92SAQ/LKFgv3VNWL10Vsc9AAAAAAAAAADWxYO+V2sXP9ZfQr8NXo2/hnIWP8PQmz4AAAAAAAAAAJoxgTuktJ4/W+PaPIup676GwY09nvsTPgAAAAAAAAAAMySEPSaSZz864FY+e+86vyi8373jZfu9AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -15.384,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILBGo/kF/ZMCUhpRSlIwBbJRLQowBdJRHQBhXP7el9Bt1fZQoaAZoCWgPQwj5npEIjf5ZwJSGlFKUaBVLQGgWR0AYYbsF+uvEdX2UKGgGaAloD0MIuD1BYrugWMCUhpRSlGgVS0poFkdAGNY5ksjFAHV9lChoBmgJaA9DCN/cXz1ue2DAlIaUUpRoFUtUaBZHQBjf2bobGWF1fZQoaAZoCWgPQwiqKck6HPhbwJSGlFKUaBVLWmgWR0AY5rxiG34LdX2UKGgGaAloD0MI2GSNegheYcCUhpRSlGgVS1FoFkdAGRbtZ3cHnnV9lChoBmgJaA9DCM1XyceuhnTAlIaUUpRoFUtdaBZHQBkmECeVcD91fZQoaAZoCWgPQwj4Nv3ZD/BgwJSGlFKUaBVLaGgWR0AZYq9XcQAddX2UKGgGaAloD0MIhe6SOKvYacCUhpRSlGgVS2ZoFkdAGhUypJf6XXV9lChoBmgJaA9DCK+UZYjjkXfAlIaUUpRoFUtPaBZHQBo+L3sXzlN1fZQoaAZoCWgPQwhLAz+qYSFZwJSGlFKUaBVLR2gWR0AbJFw1ivxIdX2UKGgGaAloD0MI1O5XAT4MYcCUhpRSlGgVS1VoFkdAG5MnZ00WM3V9lChoBmgJaA9DCHbCS3DqJ1PAlIaUUpRoFUtGaBZHQBuh3u/k/8l1fZQoaAZoCWgPQwivPh767t1dwJSGlFKUaBVLXmgWR0AbrB2wFC9idX2UKGgGaAloD0MIhL2JITnlYMCUhpRSlGgVS1JoFkdAHBHP/rB0p3V9lChoBmgJaA9DCJvicVEtfGjAlIaUUpRoFUtsaBZHQBwguZkTYd11fZQoaAZoCWgPQwiOIJVix8RiwJSGlFKUaBVLUGgWR0AcP4tYjjaPdX2UKGgGaAloD0MItLCnHf7mY8CUhpRSlGgVS4JoFkdAHEvicXm/33V9lChoBmgJaA9DCBKfO8F+m3nAlIaUUpRoFUtnaBZHQBxK9kBjnV51fZQoaAZoCWgPQwhN9zqpL0hxwJSGlFKUaBVLamgWR0Acmkj5bhWHdX2UKGgGaAloD0MIu0ihLPzRdsCUhpRSlGgVS3xoFkdAHMdC3PRiPXV9lChoBmgJaA9DCF2LFqBtkmzAlIaUUpRoFUteaBZHQB0F6eGwiaB1fZQoaAZoCWgPQwjni70XX9VxwJSGlFKUaBVLYGgWR0AdSx3V09yMdX2UKGgGaAloD0MIVYZxN8gFc8CUhpRSlGgVS1FoFkdAHYOSW7e2u3V9lChoBmgJaA9DCM2Pv7QozGDAlIaUUpRoFUtZaBZHQB2/eUILPUt1fZQoaAZoCWgPQwhwfO2ZJUtswJSGlFKUaBVLSWgWR0AesPUaya/idX2UKGgGaAloD0MIQIS4cnbVZcCUhpRSlGgVS49oFkdAHrAmiQDFInV9lChoBmgJaA9DCNlg4SSNhXvAlIaUUpRoFUtXaBZHQB7JJsfq5b11fZQoaAZoCWgPQwgwSWWKOSpewJSGlFKUaBVLTWgWR0Ae1VaOgg5jdX2UKGgGaAloD0MIlu1D3nLSVMCUhpRSlGgVS0ZoFkdAHyFyq+8Gs3V9lChoBmgJaA9DCO85sBwhBFXAlIaUUpRoFUtLaBZHQB9HOKO1fE51fZQoaAZoCWgPQwiHTzqR4E1gwJSGlFKUaBVLSGgWR0AfVc8kleF+dX2UKGgGaAloD0MI+13Ymi3Jc8CUhpRSlGgVS2JoFkdAH6A4XGff43V9lChoBmgJaA9DCMbgYdo3XVfAlIaUUpRoFUtGaBZHQCAFDKHO8kF1fZQoaAZoCWgPQwi86ZYdom16wJSGlFKUaBVLXWgWR0AgHhQWN3nqdX2UKGgGaAloD0MI2AsFbAfcV8CUhpRSlGgVS1poFkdAICm8M/hVEXV9lChoBmgJaA9DCF5MM92ra3DAlIaUUpRoFUtdaBZHQCBGUliSaE11fZQoaAZoCWgPQwhnYyXmmcdwwJSGlFKUaBVLdWgWR0AgaBlMAWBSdX2UKGgGaAloD0MI7KAS17EiYcCUhpRSlGgVS1RoFkdAIHDin5zo2XV9lChoBmgJaA9DCNhIEoSrRGzAlIaUUpRoFUt0aBZHQCCHnEETxoZ1fZQoaAZoCWgPQwgEV3kCYXJkwJSGlFKUaBVLW2gWR0AgrogV45cUdX2UKGgGaAloD0MIrMYS1gYbcMCUhpRSlGgVS0xoFkdAIN3EZR8+inV9lChoBmgJaA9DCAmlL4ScGVDAlIaUUpRoFUtGaBZHQCD0/wAlv611fZQoaAZoCWgPQwgZqmIqfW9twJSGlFKUaBVLVGgWR0AhCXIEKVpsdX2UKGgGaAloD0MIDK1OzlDXU8CUhpRSlGgVS0VoFkdAIRpIczZYgnV9lChoBmgJaA9DCIUKDi+IRWTAlIaUUpRoFUtlaBZHQCF4tL+PzWh1fZQoaAZoCWgPQwjij6LO3MRcwJSGlFKUaBVLWmgWR0AhlW7voePrdX2UKGgGaAloD0MIDXBBtmzfd8CUhpRSlGgVS15oFkdAIbbJOnEVFnV9lChoBmgJaA9DCDAqqROQKHTAlIaUUpRoFUtOaBZHQCHMiY9gWrR1fZQoaAZoCWgPQwjj4qjchFFzwJSGlFKUaBVLSWgWR0Ah2V9nbqQjdX2UKGgGaAloD0MIjL6CNONHYcCUhpRSlGgVS3NoFkdAIdnX/YJ3PnV9lChoBmgJaA9DCO7uAbqv82LAlIaUUpRoFUtDaBZHQCHwT0xubZx1fZQoaAZoCWgPQwgXghyUMHhdwJSGlFKUaBVLSGgWR0Ah+6kIomXxdX2UKGgGaAloD0MIaJdvfVg1acCUhpRSlGgVS0FoFkdAIh87ZFocrHV9lChoBmgJaA9DCPJ9calKdVDAlIaUUpRoFUtUaBZHQCI5d+ocaOx1fZQoaAZoCWgPQwgBFvn1Q65SwJSGlFKUaBVLQGgWR0Aic7kn1FpgdX2UKGgGaAloD0MIvokhORn1YcCUhpRSlGgVS0doFkdAInuSfUWl/HV9lChoBmgJaA9DCHo57L5jdWPAlIaUUpRoFUt9aBZHQCK6Ce2/i5x1fZQoaAZoCWgPQwhpb/CFyX1mwJSGlFKUaBVLcWgWR0Ai09SuQp4KdX2UKGgGaAloD0MIlSwnofTYZcCUhpRSlGgVS1RoFkdAIyn5BTn7pHV9lChoBmgJaA9DCNc07zjFPm/AlIaUUpRoFUtjaBZHQCM3Lq2SdOJ1fZQoaAZoCWgPQwhYrrfN1O9lwJSGlFKUaBVLUGgWR0AjakP+XJHRdX2UKGgGaAloD0MIsMbZdMSOcsCUhpRSlGgVS3poFkdAI3Jiy6cy33V9lChoBmgJaA9DCCnrNxPTUVjAlIaUUpRoFUthaBZHQCNyDsdDIBB1fZQoaAZoCWgPQwjg1t08VUJ5wJSGlFKUaBVLUmgWR0AjnbY9Pk7wdX2UKGgGaAloD0MIHvmDgad9eMCUhpRSlGgVS2doFkdAI8/r0J4SpXV9lChoBmgJaA9DCFpnfF+cN3TAlIaUUpRoFUtoaBZHQCPhBNVR1ox1fZQoaAZoCWgPQwj9MEJ4tDBiwJSGlFKUaBVLc2gWR0Aj8VNYbKigdX2UKGgGaAloD0MIoImw4WkOfcCUhpRSlGgVS1JoFkdAJBZkbxVhkXV9lChoBmgJaA9DCL1yvW2m42DAlIaUUpRoFUtvaBZHQCQZZdOZb6h1fZQoaAZoCWgPQwhHH/MBgeVhwJSGlFKUaBVLYWgWR0AkH7WuoxYadX2UKGgGaAloD0MIFygpsACoYcCUhpRSlGgVS2doFkdAJB79If8uSXV9lChoBmgJaA9DCB2vQPSkZ2jAlIaUUpRoFUtiaBZHQCRgWcjJMg51fZQoaAZoCWgPQwhKKej2UvN0wJSGlFKUaBVLXWgWR0AkirAgxJumdX2UKGgGaAloD0MI6gd1kUJYa8CUhpRSlGgVS0hoFkdAJJaHbh3qzXV9lChoBmgJaA9DCLfUQV4PhnDAlIaUUpRoFUthaBZHQCTP7BO58Sh1fZQoaAZoCWgPQwgUBmUaDUV6wJSGlFKUaBVLSWgWR0Ak2j3VTaTPdX2UKGgGaAloD0MIPPVIg9viWMCUhpRSlGgVS0RoFkdAJN9SuQp4KXV9lChoBmgJaA9DCNP4hVcSkGPAlIaUUpRoFUtMaBZHQCTjY/Vy3kR1fZQoaAZoCWgPQwgOT6+UZdhbwJSGlFKUaBVLQWgWR0AlIfukUKzBdX2UKGgGaAloD0MIBac+kLxYXsCUhpRSlGgVS2hoFkdAJT4Qrc0tRXV9lChoBmgJaA9DCM2v5gDBlVnAlIaUUpRoFUtFaBZHQCV96NVBD5V1fZQoaAZoCWgPQwjY8V8giCVswJSGlFKUaBVLV2gWR0AlfZamoBJadX2UKGgGaAloD0MIeCefHts7V8CUhpRSlGgVS3doFkdAJbY4Ia99MXV9lChoBmgJaA9DCLQ7pBig/mjAlIaUUpRoFUtAaBZHQCZKvFFUhmp1fZQoaAZoCWgPQwgQBMjQsfhnwJSGlFKUaBVLaGgWR0AmVhJiAlOXdX2UKGgGaAloD0MI6l4n9eW6bcCUhpRSlGgVS0VoFkdAJlqkl/pdKXV9lChoBmgJaA9DCDIFa5zNi2fAlIaUUpRoFUtraBZHQCaErmQr+YN1fZQoaAZoCWgPQwiIn/8evIR+wJSGlFKUaBVLbGgWR0AmhS9du5z6dX2UKGgGaAloD0MIyhZJu9FLOsCUhpRSlGgVS1xoFkdAJo+2E0zj3nV9lChoBmgJaA9DCK6cvTNaUXzAlIaUUpRoFUt6aBZHQCaWa4MF2V51fZQoaAZoCWgPQwjJc30fjrBkwJSGlFKUaBVLTmgWR0AmtlhgE2YOdX2UKGgGaAloD0MI4BPrVLkJd8CUhpRSlGgVS1NoFkdAJtBOxjawlnV9lChoBmgJaA9DCKAbmrJT/mHAlIaUUpRoFUtfaBZHQCbXDpC8e0Z1fZQoaAZoCWgPQwi3zyozJeFmwJSGlFKUaBVLZ2gWR0Am6pH7P6bfdX2UKGgGaAloD0MI4zeFlQoCdMCUhpRSlGgVS1hoFkdAJ004zabnYHV9lChoBmgJaA9DCMYwJ2gTXnrAlIaUUpRoFUtiaBZHQCdycNH6Mzd1fZQoaAZoCWgPQwgSiNf1C7pVwJSGlFKUaBVLS2gWR0Anhkf9xZMddX2UKGgGaAloD0MIk2+2uTFMbcCUhpRSlGgVS11oFkdAJ5lYEGJN03V9lChoBmgJaA9DCKIKf4Y3FVHAlIaUUpRoFUtDaBZHQCe0rqdH2AZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_model_lunarlander_v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:061b219536f20853aa6f1c66c0bd9c2614c9352d7535ed569b5b183aa821b035
3
+ size 84829
ppo_model_lunarlander_v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e52758691c7dba7b568a2cb8ffb6d5049468b534b23ceb23e719f8badc312a5
3
+ size 43201
ppo_model_lunarlander_v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_model_lunarlander_v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f272030dee71647e38fe6494d593fb11c2c699b63afcd263747f2c20e5ac64b4
3
+ size 106307
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -754.8428779048845, "std_reward": 268.9993732121985, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-24T14:28:35.825060"}