pierreinalco commited on
Commit
24eb417
1 Parent(s): 6edc749

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:CosineSimilarityLoss
10
+ base_model: distilbert/distilbert-base-uncased
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: The long jump pit had to be raked after every few attempts.
24
+ sentences:
25
+ - The high jumper cleared the bar on his first attempt.
26
+ - Chemists use quantum mechanics to predict electron behavior and molecular bonding.
27
+ - Eczema frequently appears as inflamed, tender spots on several parts of the body.
28
+ - source_sentence: Street art transforms empty rural barns into lively murals.
29
+ sentences:
30
+ - Traditional folk music plays a significant role in preserving a community's history.
31
+ - '[SYNTAX] The saxophone offers the high-pitched, thrilling elements in a jazz
32
+ trio.'
33
+ - Atmospheric pressure decreases as you move higher above sea level.
34
+ - source_sentence: Proteins are synthesized through the process of translation.
35
+ sentences:
36
+ - Molecular genetics studies the structure and function of genes at a molecular
37
+ level.
38
+ - The mathematics lecture is a compelling method for introducing integral equations.
39
+ - 'The correlation between air pollution and increased mortality rates is well-documented. '
40
+ - source_sentence: '[SYNTAX] A barometer is used to measure atmospheric pressure.'
41
+ sentences:
42
+ - '[SYNTAX] Colonialism is a primary subject in several political science research
43
+ papers.'
44
+ - '[SYNTAX] Ordinary urban walls are turned into vibrant masterpieces by street
45
+ art.'
46
+ - Email remains a significant device for academic and fictional correspondence.
47
+ - source_sentence: Salinity gradients in oceans affect local wildlife habitats.
48
+ sentences:
49
+ - The distribution of wildlife in different habitats has fascinated ecologists for
50
+ decades.
51
+ - '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.'
52
+ - Proper management of irrigation schedules is crucial for crop health.
53
+ pipeline_tag: sentence-similarity
54
+ model-index:
55
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
56
+ results:
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: custom dev
62
+ type: custom-dev
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.9117000984572255
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.8442193394453843
69
+ name: Spearman Cosine
70
+ - type: pearson_manhattan
71
+ value: 0.9156511082976959
72
+ name: Pearson Manhattan
73
+ - type: spearman_manhattan
74
+ value: 0.8440889792296263
75
+ name: Spearman Manhattan
76
+ - type: pearson_euclidean
77
+ value: 0.9159884478218315
78
+ name: Pearson Euclidean
79
+ - type: spearman_euclidean
80
+ value: 0.8445673615230997
81
+ name: Spearman Euclidean
82
+ - type: pearson_dot
83
+ value: 0.9046139794819923
84
+ name: Pearson Dot
85
+ - type: spearman_dot
86
+ value: 0.8327655787489855
87
+ name: Spearman Dot
88
+ - type: pearson_max
89
+ value: 0.9159884478218315
90
+ name: Pearson Max
91
+ - type: spearman_max
92
+ value: 0.8445673615230997
93
+ name: Spearman Max
94
+ - task:
95
+ type: semantic-similarity
96
+ name: Semantic Similarity
97
+ dataset:
98
+ name: custom test
99
+ type: custom-test
100
+ metrics:
101
+ - type: pearson_cosine
102
+ value: 0.919801732989496
103
+ name: Pearson Cosine
104
+ - type: spearman_cosine
105
+ value: 0.8500534773438543
106
+ name: Spearman Cosine
107
+ - type: pearson_manhattan
108
+ value: 0.9282084953416339
109
+ name: Pearson Manhattan
110
+ - type: spearman_manhattan
111
+ value: 0.8493690342081703
112
+ name: Spearman Manhattan
113
+ - type: pearson_euclidean
114
+ value: 0.9284184436823353
115
+ name: Pearson Euclidean
116
+ - type: spearman_euclidean
117
+ value: 0.849759760833697
118
+ name: Spearman Euclidean
119
+ - type: pearson_dot
120
+ value: 0.9141474471982576
121
+ name: Pearson Dot
122
+ - type: spearman_dot
123
+ value: 0.8410969822964006
124
+ name: Spearman Dot
125
+ - type: pearson_max
126
+ value: 0.9284184436823353
127
+ name: Pearson Max
128
+ - type: spearman_max
129
+ value: 0.8500534773438543
130
+ name: Spearman Max
131
+ ---
132
+
133
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
134
+
135
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
136
+
137
+ ## Model Details
138
+
139
+ ### Model Description
140
+ - **Model Type:** Sentence Transformer
141
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
142
+ - **Maximum Sequence Length:** 512 tokens
143
+ - **Output Dimensionality:** 768 tokens
144
+ - **Similarity Function:** Cosine Similarity
145
+ <!-- - **Training Dataset:** Unknown -->
146
+ <!-- - **Language:** Unknown -->
147
+ <!-- - **License:** Unknown -->
148
+
149
+ ### Model Sources
150
+
151
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
152
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
153
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
154
+
155
+ ### Full Model Architecture
156
+
157
+ ```
158
+ SentenceTransformer(
159
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
160
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
161
+ )
162
+ ```
163
+
164
+ ## Usage
165
+
166
+ ### Direct Usage (Sentence Transformers)
167
+
168
+ First install the Sentence Transformers library:
169
+
170
+ ```bash
171
+ pip install -U sentence-transformers
172
+ ```
173
+
174
+ Then you can load this model and run inference.
175
+ ```python
176
+ from sentence_transformers import SentenceTransformer
177
+
178
+ # Download from the 🤗 Hub
179
+ model = SentenceTransformer("sentence_transformers_model_id")
180
+ # Run inference
181
+ sentences = [
182
+ 'Salinity gradients in oceans affect local wildlife habitats.',
183
+ 'The distribution of wildlife in different habitats has fascinated ecologists for decades.',
184
+ '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.',
185
+ ]
186
+ embeddings = model.encode(sentences)
187
+ print(embeddings.shape)
188
+ # [3, 768]
189
+
190
+ # Get the similarity scores for the embeddings
191
+ similarities = model.similarity(embeddings, embeddings)
192
+ print(similarities.shape)
193
+ # [3, 3]
194
+ ```
195
+
196
+ <!--
197
+ ### Direct Usage (Transformers)
198
+
199
+ <details><summary>Click to see the direct usage in Transformers</summary>
200
+
201
+ </details>
202
+ -->
203
+
204
+ <!--
205
+ ### Downstream Usage (Sentence Transformers)
206
+
207
+ You can finetune this model on your own dataset.
208
+
209
+ <details><summary>Click to expand</summary>
210
+
211
+ </details>
212
+ -->
213
+
214
+ <!--
215
+ ### Out-of-Scope Use
216
+
217
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
218
+ -->
219
+
220
+ ## Evaluation
221
+
222
+ ### Metrics
223
+
224
+ #### Semantic Similarity
225
+ * Dataset: `custom-dev`
226
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
227
+
228
+ | Metric | Value |
229
+ |:--------------------|:-----------|
230
+ | pearson_cosine | 0.9117 |
231
+ | **spearman_cosine** | **0.8442** |
232
+ | pearson_manhattan | 0.9157 |
233
+ | spearman_manhattan | 0.8441 |
234
+ | pearson_euclidean | 0.916 |
235
+ | spearman_euclidean | 0.8446 |
236
+ | pearson_dot | 0.9046 |
237
+ | spearman_dot | 0.8328 |
238
+ | pearson_max | 0.916 |
239
+ | spearman_max | 0.8446 |
240
+
241
+ #### Semantic Similarity
242
+ * Dataset: `custom-test`
243
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
244
+
245
+ | Metric | Value |
246
+ |:--------------------|:-----------|
247
+ | pearson_cosine | 0.9198 |
248
+ | **spearman_cosine** | **0.8501** |
249
+ | pearson_manhattan | 0.9282 |
250
+ | spearman_manhattan | 0.8494 |
251
+ | pearson_euclidean | 0.9284 |
252
+ | spearman_euclidean | 0.8498 |
253
+ | pearson_dot | 0.9141 |
254
+ | spearman_dot | 0.8411 |
255
+ | pearson_max | 0.9284 |
256
+ | spearman_max | 0.8501 |
257
+
258
+ <!--
259
+ ## Bias, Risks and Limitations
260
+
261
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
262
+ -->
263
+
264
+ <!--
265
+ ### Recommendations
266
+
267
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
268
+ -->
269
+
270
+ ## Training Details
271
+
272
+ ### Training Dataset
273
+
274
+ #### Unnamed Dataset
275
+
276
+
277
+ * Size: 19,352 training samples
278
+ * Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
279
+ * Approximate statistics based on the first 1000 samples:
280
+ | | s1 | s2 | label |
281
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
282
+ | type | string | string | int |
283
+ | details | <ul><li>min: 10 tokens</li><li>mean: 19.92 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.53 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~50.50%</li><li>1: ~49.50%</li></ul> |
284
+ * Samples:
285
+ | s1 | s2 | label |
286
+ |:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:---------------|
287
+ | <code>According to labeling theory, individuals are considered deviant once society has tagged them with that label.</code> | <code>Labeling theory posits that corporations become powerful when labeled as such by stakeholders.</code> | <code>0</code> |
288
+ | <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>1</code> |
289
+ | <code>Higher education institutions play a critical role in advancing research and innovation.</code> | <code>Advancement in research and innovation is significantly driven by the contributions of higher education institutions.</code> | <code>1</code> |
290
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
291
+ ```json
292
+ {
293
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
294
+ }
295
+ ```
296
+
297
+ ### Evaluation Dataset
298
+
299
+ #### Unnamed Dataset
300
+
301
+
302
+ * Size: 2,419 evaluation samples
303
+ * Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
304
+ * Approximate statistics based on the first 1000 samples:
305
+ | | s1 | s2 | label |
306
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
307
+ | type | string | string | int |
308
+ | details | <ul><li>min: 11 tokens</li><li>mean: 19.91 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 20.46 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~49.70%</li><li>1: ~50.30%</li></ul> |
309
+ * Samples:
310
+ | s1 | s2 | label |
311
+ |:----------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
312
+ | <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code> | <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code> | <code>1</code> |
313
+ | <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code> | <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code> | <code>1</code> |
314
+ | <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>1</code> |
315
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
316
+ ```json
317
+ {
318
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
319
+ }
320
+ ```
321
+
322
+ ### Training Hyperparameters
323
+ #### Non-Default Hyperparameters
324
+
325
+ - `eval_strategy`: steps
326
+ - `per_device_train_batch_size`: 16
327
+ - `per_device_eval_batch_size`: 16
328
+ - `num_train_epochs`: 10
329
+ - `warmup_ratio`: 0.1
330
+ - `fp16`: True
331
+
332
+ #### All Hyperparameters
333
+ <details><summary>Click to expand</summary>
334
+
335
+ - `overwrite_output_dir`: False
336
+ - `do_predict`: False
337
+ - `eval_strategy`: steps
338
+ - `prediction_loss_only`: True
339
+ - `per_device_train_batch_size`: 16
340
+ - `per_device_eval_batch_size`: 16
341
+ - `per_gpu_train_batch_size`: None
342
+ - `per_gpu_eval_batch_size`: None
343
+ - `gradient_accumulation_steps`: 1
344
+ - `eval_accumulation_steps`: None
345
+ - `learning_rate`: 5e-05
346
+ - `weight_decay`: 0.0
347
+ - `adam_beta1`: 0.9
348
+ - `adam_beta2`: 0.999
349
+ - `adam_epsilon`: 1e-08
350
+ - `max_grad_norm`: 1.0
351
+ - `num_train_epochs`: 10
352
+ - `max_steps`: -1
353
+ - `lr_scheduler_type`: linear
354
+ - `lr_scheduler_kwargs`: {}
355
+ - `warmup_ratio`: 0.1
356
+ - `warmup_steps`: 0
357
+ - `log_level`: passive
358
+ - `log_level_replica`: warning
359
+ - `log_on_each_node`: True
360
+ - `logging_nan_inf_filter`: True
361
+ - `save_safetensors`: True
362
+ - `save_on_each_node`: False
363
+ - `save_only_model`: False
364
+ - `restore_callback_states_from_checkpoint`: False
365
+ - `no_cuda`: False
366
+ - `use_cpu`: False
367
+ - `use_mps_device`: False
368
+ - `seed`: 42
369
+ - `data_seed`: None
370
+ - `jit_mode_eval`: False
371
+ - `use_ipex`: False
372
+ - `bf16`: False
373
+ - `fp16`: True
374
+ - `fp16_opt_level`: O1
375
+ - `half_precision_backend`: auto
376
+ - `bf16_full_eval`: False
377
+ - `fp16_full_eval`: False
378
+ - `tf32`: None
379
+ - `local_rank`: 0
380
+ - `ddp_backend`: None
381
+ - `tpu_num_cores`: None
382
+ - `tpu_metrics_debug`: False
383
+ - `debug`: []
384
+ - `dataloader_drop_last`: False
385
+ - `dataloader_num_workers`: 0
386
+ - `dataloader_prefetch_factor`: None
387
+ - `past_index`: -1
388
+ - `disable_tqdm`: False
389
+ - `remove_unused_columns`: True
390
+ - `label_names`: None
391
+ - `load_best_model_at_end`: False
392
+ - `ignore_data_skip`: False
393
+ - `fsdp`: []
394
+ - `fsdp_min_num_params`: 0
395
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
396
+ - `fsdp_transformer_layer_cls_to_wrap`: None
397
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
398
+ - `deepspeed`: None
399
+ - `label_smoothing_factor`: 0.0
400
+ - `optim`: adamw_torch
401
+ - `optim_args`: None
402
+ - `adafactor`: False
403
+ - `group_by_length`: False
404
+ - `length_column_name`: length
405
+ - `ddp_find_unused_parameters`: None
406
+ - `ddp_bucket_cap_mb`: None
407
+ - `ddp_broadcast_buffers`: False
408
+ - `dataloader_pin_memory`: True
409
+ - `dataloader_persistent_workers`: False
410
+ - `skip_memory_metrics`: True
411
+ - `use_legacy_prediction_loop`: False
412
+ - `push_to_hub`: False
413
+ - `resume_from_checkpoint`: None
414
+ - `hub_model_id`: None
415
+ - `hub_strategy`: every_save
416
+ - `hub_private_repo`: False
417
+ - `hub_always_push`: False
418
+ - `gradient_checkpointing`: False
419
+ - `gradient_checkpointing_kwargs`: None
420
+ - `include_inputs_for_metrics`: False
421
+ - `eval_do_concat_batches`: True
422
+ - `fp16_backend`: auto
423
+ - `push_to_hub_model_id`: None
424
+ - `push_to_hub_organization`: None
425
+ - `mp_parameters`:
426
+ - `auto_find_batch_size`: False
427
+ - `full_determinism`: False
428
+ - `torchdynamo`: None
429
+ - `ray_scope`: last
430
+ - `ddp_timeout`: 1800
431
+ - `torch_compile`: False
432
+ - `torch_compile_backend`: None
433
+ - `torch_compile_mode`: None
434
+ - `dispatch_batches`: None
435
+ - `split_batches`: None
436
+ - `include_tokens_per_second`: False
437
+ - `include_num_input_tokens_seen`: False
438
+ - `neftune_noise_alpha`: None
439
+ - `optim_target_modules`: None
440
+ - `batch_eval_metrics`: False
441
+ - `batch_sampler`: batch_sampler
442
+ - `multi_dataset_batch_sampler`: proportional
443
+
444
+ </details>
445
+
446
+ ### Training Logs
447
+ | Epoch | Step | Training Loss | loss | custom-dev_spearman_cosine | custom-test_spearman_cosine |
448
+ |:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:|
449
+ | 0.3300 | 100 | 0.2961 | 0.1185 | 0.8063 | - |
450
+ | 0.6601 | 200 | 0.0772 | 0.0504 | 0.8461 | - |
451
+ | 0.9901 | 300 | 0.0502 | 0.0454 | 0.8486 | - |
452
+ | 1.3201 | 400 | 0.0376 | 0.0402 | 0.8481 | - |
453
+ | 1.6502 | 500 | 0.0344 | 0.0400 | 0.8501 | - |
454
+ | 1.9802 | 600 | 0.0329 | 0.0390 | 0.8518 | - |
455
+ | 2.3102 | 700 | 0.0185 | 0.0387 | 0.8496 | - |
456
+ | 2.6403 | 800 | 0.0164 | 0.0371 | 0.8492 | - |
457
+ | 2.9703 | 900 | 0.0179 | 0.0393 | 0.8428 | - |
458
+ | 3.3003 | 1000 | 0.0099 | 0.0389 | 0.8466 | - |
459
+ | 3.6304 | 1100 | 0.0092 | 0.0395 | 0.8480 | - |
460
+ | 3.9604 | 1200 | 0.0101 | 0.0368 | 0.8492 | - |
461
+ | 4.2904 | 1300 | 0.0067 | 0.0385 | 0.8474 | - |
462
+ | 4.6205 | 1400 | 0.0056 | 0.0393 | 0.8456 | - |
463
+ | 4.9505 | 1500 | 0.0068 | 0.0401 | 0.8466 | - |
464
+ | 5.2805 | 1600 | 0.0041 | 0.0410 | 0.8462 | - |
465
+ | 5.6106 | 1700 | 0.0043 | 0.0399 | 0.8469 | - |
466
+ | 5.9406 | 1800 | 0.0039 | 0.0406 | 0.8463 | - |
467
+ | 6.2706 | 1900 | 0.003 | 0.0400 | 0.8456 | - |
468
+ | 6.6007 | 2000 | 0.0026 | 0.0416 | 0.8438 | - |
469
+ | 6.9307 | 2100 | 0.0027 | 0.0420 | 0.8437 | - |
470
+ | 7.2607 | 2200 | 0.0028 | 0.0424 | 0.8449 | - |
471
+ | 7.5908 | 2300 | 0.0021 | 0.0422 | 0.8458 | - |
472
+ | 7.9208 | 2400 | 0.002 | 0.0414 | 0.8451 | - |
473
+ | 8.2508 | 2500 | 0.0015 | 0.0421 | 0.8451 | - |
474
+ | 8.5809 | 2600 | 0.0015 | 0.0427 | 0.8451 | - |
475
+ | 8.9109 | 2700 | 0.0016 | 0.0429 | 0.8444 | - |
476
+ | 9.2409 | 2800 | 0.0011 | 0.0432 | 0.8442 | - |
477
+ | 9.5710 | 2900 | 0.0014 | 0.0432 | 0.8444 | - |
478
+ | 9.9010 | 3000 | 0.0011 | 0.0432 | 0.8442 | - |
479
+ | 10.0 | 3030 | - | - | - | 0.8501 |
480
+
481
+
482
+ ### Framework Versions
483
+ - Python: 3.11.9
484
+ - Sentence Transformers: 3.0.0
485
+ - Transformers: 4.41.2
486
+ - PyTorch: 2.3.0+cu121
487
+ - Accelerate: 0.30.1
488
+ - Datasets: 2.19.1
489
+ - Tokenizers: 0.19.1
490
+
491
+ ## Citation
492
+
493
+ ### BibTeX
494
+
495
+ #### Sentence Transformers
496
+ ```bibtex
497
+ @inproceedings{reimers-2019-sentence-bert,
498
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
499
+ author = "Reimers, Nils and Gurevych, Iryna",
500
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
501
+ month = "11",
502
+ year = "2019",
503
+ publisher = "Association for Computational Linguistics",
504
+ url = "https://arxiv.org/abs/1908.10084",
505
+ }
506
+ ```
507
+
508
+ <!--
509
+ ## Glossary
510
+
511
+ *Clearly define terms in order to be accessible across audiences.*
512
+ -->
513
+
514
+ <!--
515
+ ## Model Card Authors
516
+
517
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
518
+ -->
519
+
520
+ <!--
521
+ ## Model Card Contact
522
+
523
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
524
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./output/training_stsbenchmark_distilbert-base-uncased-2024-06-18_11-20-16/final",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35a557849989bbc9a9bf27fba43bd3d80ed2def89605f38b8ab1d2cdf648ea4f
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "DistilBertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff