system HF staff commited on
Commit
fb09b71
1 Parent(s): 23852dc

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -25,3 +25,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
30
+ *.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags: autotrain
3
+ language: en
4
+ widget:
5
+ - text: "I love AutoTrain 🤗"
6
+ datasets:
7
+ - pier297/autotrain-data-chemprot-re
8
+ co2_eq_emissions: 0.0911766483095575
9
+ ---
10
+
11
+ # Model Trained Using AutoTrain
12
+
13
+ - Problem type: Multi-class Classification
14
+ - Model ID: 838426740
15
+ - CO2 Emissions (in grams): 0.0911766483095575
16
+
17
+ ## Validation Metrics
18
+
19
+ - Loss: 0.3866589665412903
20
+ - Accuracy: 0.9137332672285573
21
+ - Macro F1: 0.6518117007658014
22
+ - Micro F1: 0.9137332672285573
23
+ - Weighted F1: 0.9110993117549759
24
+ - Macro Precision: 0.649358664024301
25
+ - Micro Precision: 0.9137332672285573
26
+ - Weighted Precision: 0.9091854625539633
27
+ - Macro Recall: 0.6551854233645032
28
+ - Micro Recall: 0.9137332672285573
29
+ - Weighted Recall: 0.9137332672285573
30
+
31
+
32
+ ## Usage
33
+
34
+ You can use cURL to access this model:
35
+
36
+ ```
37
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pier297/autotrain-chemprot-re-838426740
38
+ ```
39
+
40
+ Or Python API:
41
+
42
+ ```
43
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
44
+
45
+ model = AutoModelForSequenceClassification.from_pretrained("pier297/autotrain-chemprot-re-838426740", use_auth_token=True)
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained("pier297/autotrain-chemprot-re-838426740", use_auth_token=True)
48
+
49
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
50
+
51
+ outputs = model(**inputs)
52
+ ```
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 13,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "ACTIVATOR",
16
+ "1": "AGONIST",
17
+ "2": "AGONIST-ACTIVATOR",
18
+ "3": "AGONIST-INHIBITOR",
19
+ "4": "ANTAGONIST",
20
+ "5": "DOWNREGULATOR",
21
+ "6": "INDIRECT-DOWNREGULATOR",
22
+ "7": "INDIRECT-UPREGULATOR",
23
+ "8": "INHIBITOR",
24
+ "9": "PRODUCT-OF",
25
+ "10": "SUBSTRATE",
26
+ "11": "SUBSTRATE_PRODUCT-OF",
27
+ "12": "UPREGULATOR"
28
+ },
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 4096,
31
+ "label2id": {
32
+ "ACTIVATOR": 0,
33
+ "AGONIST": 1,
34
+ "AGONIST-ACTIVATOR": 2,
35
+ "AGONIST-INHIBITOR": 3,
36
+ "ANTAGONIST": 4,
37
+ "DOWNREGULATOR": 5,
38
+ "INDIRECT-DOWNREGULATOR": 6,
39
+ "INDIRECT-UPREGULATOR": 7,
40
+ "INHIBITOR": 8,
41
+ "PRODUCT-OF": 9,
42
+ "SUBSTRATE": 10,
43
+ "SUBSTRATE_PRODUCT-OF": 11,
44
+ "UPREGULATOR": 12
45
+ },
46
+ "layer_norm_eps": 1e-12,
47
+ "max_length": 128,
48
+ "max_position_embeddings": 512,
49
+ "model_type": "bert",
50
+ "num_attention_heads": 16,
51
+ "num_hidden_layers": 24,
52
+ "pad_token_id": 0,
53
+ "padding": "max_length",
54
+ "pooler_fc_size": 768,
55
+ "pooler_num_attention_heads": 12,
56
+ "pooler_num_fc_layers": 3,
57
+ "pooler_size_per_head": 128,
58
+ "pooler_type": "first_token_transform",
59
+ "position_embedding_type": "absolute",
60
+ "problem_type": "single_label_classification",
61
+ "torch_dtype": "float32",
62
+ "transformers_version": "4.15.0",
63
+ "type_vocab_size": 2,
64
+ "use_cache": true,
65
+ "vocab_size": 28996
66
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8557956361df739288bb50b55ed7eee2e3f44db4760aef41fe2bd8d008aa21b9
3
+ size 1334532013
sample_input.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f2e16e4a66b57967aaf14875c44ac3ffa277a051ae9126e3267d20679964da9
3
+ size 4384
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "AutoTrain", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff