philschmid's picture
philschmid HF staff
add handler
3d0c874
raw
history blame
1.19 kB
from typing import Dict, List, Any
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
import base64
from io import BytesIO
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
self.pipe = self.pipe.to(device)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
inputs = data.pop("inputs", data)
# run inference pipeline
with autocast(device.type):
image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
# encode image as base 64
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
# postprocess the prediction
return {"image": img_str}