philschmid HF staff commited on
Commit
fdaaec7
·
1 Parent(s): 4c1f7f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -10
README.md CHANGED
@@ -25,17 +25,73 @@ It achieves the following results on the evaluation set:
25
  - Overall F1: 0.8900
26
  - Overall Accuracy: 0.8204
27
 
28
- ## Model description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- More information needed
31
-
32
- ## Intended uses & limitations
33
-
34
- More information needed
35
-
36
- ## Training and evaluation data
37
-
38
- More information needed
39
 
40
  ## Training procedure
41
 
 
25
  - Overall F1: 0.8900
26
  - Overall Accuracy: 0.8204
27
 
28
+ ## Model Usage
29
+
30
+ ```python
31
+ from transformers import LiltForTokenClassification, LayoutLMv3Processor
32
+ from PIL import Image, ImageDraw, ImageFont
33
+ import torch
34
+
35
+ # load model and processor from huggingface hub
36
+ model = LiltForTokenClassification.from_pretrained("philschmid/lilt-en-funsd")
37
+ processor = LayoutLMv3Processor.from_pretrained("philschmid/lilt-en-funsd")
38
+
39
+
40
+ # helper function to unnormalize bboxes for drawing onto the image
41
+ def unnormalize_box(bbox, width, height):
42
+ return [
43
+ width * (bbox[0] / 1000),
44
+ height * (bbox[1] / 1000),
45
+ width * (bbox[2] / 1000),
46
+ height * (bbox[3] / 1000),
47
+ ]
48
+
49
+
50
+ label2color = {
51
+ "B-HEADER": "blue",
52
+ "B-QUESTION": "red",
53
+ "B-ANSWER": "green",
54
+ "I-HEADER": "blue",
55
+ "I-QUESTION": "red",
56
+ "I-ANSWER": "green",
57
+ }
58
+ # draw results onto the image
59
+ def draw_boxes(image, boxes, predictions):
60
+ width, height = image.size
61
+ normalizes_boxes = [unnormalize_box(box, width, height) for box in boxes]
62
+
63
+ # draw predictions over the image
64
+ draw = ImageDraw.Draw(image)
65
+ font = ImageFont.load_default()
66
+ for prediction, box in zip(predictions, normalizes_boxes):
67
+ if prediction == "O":
68
+ continue
69
+ draw.rectangle(box, outline="black")
70
+ draw.rectangle(box, outline=label2color[prediction])
71
+ draw.text((box[0] + 10, box[1] - 10), text=prediction, fill=label2color[prediction], font=font)
72
+ return image
73
+
74
+
75
+ # run inference
76
+ def run_inference(image, model=model, processor=processor, output_image=True):
77
+ # create model input
78
+ encoding = processor(image, return_tensors="pt")
79
+ del encoding["pixel_values"]
80
+ # run inference
81
+ outputs = model(**encoding)
82
+ predictions = outputs.logits.argmax(-1).squeeze().tolist()
83
+ # get labels
84
+ labels = [model.config.id2label[prediction] for prediction in predictions]
85
+ if output_image:
86
+ return draw_boxes(image, encoding["bbox"][0], labels)
87
+ else:
88
+ return labels
89
+
90
+
91
+ run_inference(dataset["test"][34]["image"])
92
+
93
+ ```
94
 
 
 
 
 
 
 
 
 
 
95
 
96
  ## Training procedure
97