Commit
•
3d76107
1
Parent(s):
1e3780e
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
- habana
|
6 |
+
datasets:
|
7 |
+
- AmazonScience/massive
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# philschmid/habana-xlm-r-large-amazon-massive
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the AmazonScience/massive dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
|
21 |
+
|
22 |
+
## 8x HPU approx. 41min
|
23 |
+
|
24 |
+
**train results**
|
25 |
+
|
26 |
+
```bash
|
27 |
+
{'loss': 0.2651, 'learning_rate': 2.4e-05, 'epoch': 1.0}
|
28 |
+
{'loss': 0.1079, 'learning_rate': 1.8e-05, 'epoch': 2.0}
|
29 |
+
{'loss': 0.0563, 'learning_rate': 1.2e-05, 'epoch': 3.0}
|
30 |
+
{'loss': 0.0308, 'learning_rate': 6e-06, 'epoch': 4.0}
|
31 |
+
{'loss': 0.0165, 'learning_rate': 0.0, 'epoch': 5.0}
|
32 |
+
```
|
33 |
+
|
34 |
+
total
|
35 |
+
```bash
|
36 |
+
{'train_runtime': 3172.4502, 'train_samples_per_second': 127.028, 'train_steps_per_second': 1.986, 'train_loss': 0.09531746031746031, 'epoch': 5.0}
|
37 |
+
```
|
38 |
+
|
39 |
+
|
40 |
+
**eval results**
|
41 |
+
|
42 |
+
```bash
|
43 |
+
{'eval_loss': 0.3128528892993927, 'eval_accuracy': 0.9125852013210597, 'eval_f1': 0.9125852013210597, 'eval_runtime': 45.1795, 'eval_samples_per_second': 314.988, 'eval_steps_per_second': 4.936, 'epoch': 1.0}
|
44 |
+
{'eval_loss': 0.36222779750823975, 'eval_accuracy': 0.9134987000210807, 'eval_f1': 0.9134987000210807, 'eval_runtime': 29.8241, 'eval_samples_per_second': 477.165, 'eval_steps_per_second': 7.477, 'epoch': 2.0}
|
45 |
+
{'eval_loss': 0.3943144679069519, 'eval_accuracy': 0.9140608530672476, 'eval_f1': 0.9140
|
46 |
+
608530672476, 'eval_runtime': 30.1085, 'eval_samples_per_second': 472.657, 'eval_steps_per_second': 7.407, 'epoch': 3.0}
|
47 |
+
{'eval_loss': 0.40938863158226013, 'eval_accuracy': 0.9158878504672897, 'eval_f1': 0.9158878504672897, 'eval_runtime': 30.4546, 'eval_samples_per_second': 467.286, 'eval_steps_per_second': 7.322, 'epoch': 4.0}
|
48 |
+
{'eval_loss': 0.4137658476829529, 'eval_accuracy': 0.9172932330827067, 'eval_f1': 0.9172932330827067, 'eval_runtime': 30.3464, 'eval_samples_per_second': 468.952, 'eval_steps_per_second': 7.348, 'epoch': 5.0}
|
49 |
+
```
|
50 |
+
|
51 |
+
# Environment
|
52 |
+
|
53 |
+
The training was run on a `DL1` instance on AWS using Habana Gaudi1 and `optimum`.
|
54 |
+
|
55 |
+
see for more information: https://github.com/philschmid/deep-learning-habana-huggingface
|