Upload 2 files
Browse files- inference.py +37 -0
- trl-lora.py +76 -0
inference.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from peft import AutoPeftModelForCausalLM
|
3 |
+
from transformers import AutoTokenizer, pipeline
|
4 |
+
|
5 |
+
peft_model_id = "philschmid/gemma-7b-dolly-chatml"
|
6 |
+
|
7 |
+
# Load Model with PEFT adapter
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
9 |
+
model = AutoPeftModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", torch_dtype=torch.float16)
|
10 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
# run inference
|
13 |
+
messages = [
|
14 |
+
{
|
15 |
+
"role": "user",
|
16 |
+
"content": "What is the capital of Germany? Explain why thats the case and if it was different in the past?"
|
17 |
+
}
|
18 |
+
]
|
19 |
+
|
20 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
21 |
+
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, pad_token_id=pipe.tokenizer.pad_token_id, eos_token_id=pipe.tokenizer.eos_token_id)
|
22 |
+
print(outputs[0]["generated_text"])
|
23 |
+
|
24 |
+
# run inference
|
25 |
+
messages = [
|
26 |
+
{
|
27 |
+
"role": "user",
|
28 |
+
"content": "In a town, 60% of the population are adults. Among the adults, 30% have a pet dog and 40% have a pet cat. What percentage of the total population has a pet dog?"
|
29 |
+
}
|
30 |
+
]
|
31 |
+
|
32 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
33 |
+
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, pad_token_id=pipe.tokenizer.pad_token_id, eos_token_id=pipe.tokenizer.eos_token_id)
|
34 |
+
print(outputs[0]["generated_text"])
|
35 |
+
|
36 |
+
|
37 |
+
# pip3 list | grep -e transformers -e peft -e torch -e trl -e accelerate
|
trl-lora.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import TrainingArguments
|
3 |
+
from trl import SFTTrainer
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from peft import LoraConfig
|
7 |
+
|
8 |
+
# Load jsonl data from disk
|
9 |
+
dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
|
10 |
+
|
11 |
+
# Hugging Face model id
|
12 |
+
model_id = "google/gemma-7b"
|
13 |
+
tokenizer_id = "philschmid/gemma-tokenizer-chatml"
|
14 |
+
|
15 |
+
# Load model and tokenizer
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
device_map="auto",
|
19 |
+
attn_implementation="flash_attention_2",
|
20 |
+
torch_dtype=torch.bfloat16,
|
21 |
+
)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
23 |
+
tokenizer.padding_side = 'right' # to prevent warnings
|
24 |
+
|
25 |
+
# LoRA config based on QLoRA paper & Sebastian Raschka experiment
|
26 |
+
peft_config = LoraConfig(
|
27 |
+
lora_alpha=8,
|
28 |
+
lora_dropout=0.05,
|
29 |
+
r=16,
|
30 |
+
bias="none",
|
31 |
+
target_modules="all-linear",
|
32 |
+
task_type="CAUSAL_LM",
|
33 |
+
)
|
34 |
+
|
35 |
+
args = TrainingArguments(
|
36 |
+
output_dir="gemma-7b-dolly-chatml", # directory to save and repository id
|
37 |
+
num_train_epochs=3, # number of training epochs
|
38 |
+
per_device_train_batch_size=8, # batch size per device during training
|
39 |
+
gradient_checkpointing=True, # use gradient checkpointing to save memory
|
40 |
+
optim="adamw_torch_fused", # use fused adamw optimizer
|
41 |
+
logging_steps=10, # log every 10 steps
|
42 |
+
save_strategy="epoch", # save checkpoint every epoch
|
43 |
+
bf16=True, # use bfloat16 precision
|
44 |
+
tf32=True, # use tf32 precision
|
45 |
+
### peft specific arguments ###
|
46 |
+
learning_rate=2e-4, # learning rate, based on QLoRA paper
|
47 |
+
max_grad_norm=0.3, # max gradient norm based on QLoRA paper
|
48 |
+
warmup_ratio=0.03, # warmup ratio based on QLoRA paper
|
49 |
+
lr_scheduler_type="constant", # use constant learning rate scheduler
|
50 |
+
report_to="tensorboard", # report metrics to tensorboard
|
51 |
+
push_to_hub=True, # push model to hub
|
52 |
+
|
53 |
+
)
|
54 |
+
|
55 |
+
max_seq_length = 1512 # max sequence length for model and packing of the dataset
|
56 |
+
|
57 |
+
trainer = SFTTrainer(
|
58 |
+
model=model,
|
59 |
+
args=args,
|
60 |
+
train_dataset=dataset,
|
61 |
+
### peft specific arguments ###
|
62 |
+
peft_config=peft_config,
|
63 |
+
max_seq_length=max_seq_length,
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
packing=True,
|
66 |
+
dataset_kwargs={
|
67 |
+
"add_special_tokens": True, # make sure we add <bos> and <eos> tokens
|
68 |
+
"append_concat_token": False, # make sure to not add additional tokens when packing
|
69 |
+
}
|
70 |
+
)
|
71 |
+
|
72 |
+
# start training, the model will be automatically saved to the hub and the output directory
|
73 |
+
trainer.train()
|
74 |
+
|
75 |
+
# save model
|
76 |
+
trainer.save_model()
|