philschmid HF staff commited on
Commit
80d62f8
1 Parent(s): e1223c2

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,822 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - dataset_size:1K<n<10K
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-base-en-v1.5
14
+ metrics:
15
+ - cosine_accuracy@1
16
+ - cosine_accuracy@3
17
+ - cosine_accuracy@5
18
+ - cosine_accuracy@10
19
+ - cosine_precision@1
20
+ - cosine_precision@3
21
+ - cosine_precision@5
22
+ - cosine_precision@10
23
+ - cosine_recall@1
24
+ - cosine_recall@3
25
+ - cosine_recall@5
26
+ - cosine_recall@10
27
+ - cosine_ndcg@10
28
+ - cosine_mrr@10
29
+ - cosine_map@100
30
+ widget:
31
+ - source_sentence: What begins on page 105 of this report?
32
+ sentences:
33
+ - What sections are included alongside the Financial Statements in this report?
34
+ - How did net revenues change from 2021 to 2022 on a FX-Neutral basis?
35
+ - How much did MedTech's sales increase in 2023 compared to 2022?
36
+ - source_sentence: When does the Company's fiscal year end?
37
+ sentences:
38
+ - What was the total store count for the company at the end of fiscal 2022?
39
+ - What was the total revenue for all UnitedHealthcare services in 2023?
40
+ - What were the main factors contributing to the increase in net income in 2023?
41
+ - source_sentence: AutoZone, Inc. began operations in 1979.
42
+ sentences:
43
+ - When did AutoZone, Inc. begin its operations?
44
+ - Mr. Pleas was named Senior Vice President and Controller during 2007.
45
+ - Which item discusses Financial Statements and Supplementary Data?
46
+ - source_sentence: Are the ESG goals guaranteed to be met?
47
+ sentences:
48
+ - What measures is the company implementing to support climate goals?
49
+ - What types of diseases does Gilead Sciences, Inc. focus on treating?
50
+ - Changes in foreign exchange rates reduced cost of sales by $254 million in 2023.
51
+ - source_sentence: What was Gilead's total revenue in 2023?
52
+ sentences:
53
+ - What was the total revenue for the year ended December 31, 2023?
54
+ - How much was the impairment related to the CAT loan receivable in 2023?
55
+ - What are some of the critical accounting policies that affect financial statements?
56
+ pipeline_tag: sentence-similarity
57
+ model-index:
58
+ - name: BGE base Financial Matryoshka
59
+ results:
60
+ - task:
61
+ type: information-retrieval
62
+ name: Information Retrieval
63
+ dataset:
64
+ name: basline 768
65
+ type: basline_768
66
+ metrics:
67
+ - type: cosine_accuracy@1
68
+ value: 0.7085714285714285
69
+ name: Cosine Accuracy@1
70
+ - type: cosine_accuracy@3
71
+ value: 0.8514285714285714
72
+ name: Cosine Accuracy@3
73
+ - type: cosine_accuracy@5
74
+ value: 0.8842857142857142
75
+ name: Cosine Accuracy@5
76
+ - type: cosine_accuracy@10
77
+ value: 0.9271428571428572
78
+ name: Cosine Accuracy@10
79
+ - type: cosine_precision@1
80
+ value: 0.7085714285714285
81
+ name: Cosine Precision@1
82
+ - type: cosine_precision@3
83
+ value: 0.2838095238095238
84
+ name: Cosine Precision@3
85
+ - type: cosine_precision@5
86
+ value: 0.17685714285714282
87
+ name: Cosine Precision@5
88
+ - type: cosine_precision@10
89
+ value: 0.09271428571428571
90
+ name: Cosine Precision@10
91
+ - type: cosine_recall@1
92
+ value: 0.7085714285714285
93
+ name: Cosine Recall@1
94
+ - type: cosine_recall@3
95
+ value: 0.8514285714285714
96
+ name: Cosine Recall@3
97
+ - type: cosine_recall@5
98
+ value: 0.8842857142857142
99
+ name: Cosine Recall@5
100
+ - type: cosine_recall@10
101
+ value: 0.9271428571428572
102
+ name: Cosine Recall@10
103
+ - type: cosine_ndcg@10
104
+ value: 0.8214972164555796
105
+ name: Cosine Ndcg@10
106
+ - type: cosine_mrr@10
107
+ value: 0.7873509070294781
108
+ name: Cosine Mrr@10
109
+ - type: cosine_map@100
110
+ value: 0.790665594958196
111
+ name: Cosine Map@100
112
+ - task:
113
+ type: information-retrieval
114
+ name: Information Retrieval
115
+ dataset:
116
+ name: basline 512
117
+ type: basline_512
118
+ metrics:
119
+ - type: cosine_accuracy@1
120
+ value: 0.7114285714285714
121
+ name: Cosine Accuracy@1
122
+ - type: cosine_accuracy@3
123
+ value: 0.85
124
+ name: Cosine Accuracy@3
125
+ - type: cosine_accuracy@5
126
+ value: 0.8828571428571429
127
+ name: Cosine Accuracy@5
128
+ - type: cosine_accuracy@10
129
+ value: 0.9228571428571428
130
+ name: Cosine Accuracy@10
131
+ - type: cosine_precision@1
132
+ value: 0.7114285714285714
133
+ name: Cosine Precision@1
134
+ - type: cosine_precision@3
135
+ value: 0.2833333333333333
136
+ name: Cosine Precision@3
137
+ - type: cosine_precision@5
138
+ value: 0.17657142857142855
139
+ name: Cosine Precision@5
140
+ - type: cosine_precision@10
141
+ value: 0.09228571428571428
142
+ name: Cosine Precision@10
143
+ - type: cosine_recall@1
144
+ value: 0.7114285714285714
145
+ name: Cosine Recall@1
146
+ - type: cosine_recall@3
147
+ value: 0.85
148
+ name: Cosine Recall@3
149
+ - type: cosine_recall@5
150
+ value: 0.8828571428571429
151
+ name: Cosine Recall@5
152
+ - type: cosine_recall@10
153
+ value: 0.9228571428571428
154
+ name: Cosine Recall@10
155
+ - type: cosine_ndcg@10
156
+ value: 0.820942296767774
157
+ name: Cosine Ndcg@10
158
+ - type: cosine_mrr@10
159
+ value: 0.7878956916099771
160
+ name: Cosine Mrr@10
161
+ - type: cosine_map@100
162
+ value: 0.7915593121031292
163
+ name: Cosine Map@100
164
+ - task:
165
+ type: information-retrieval
166
+ name: Information Retrieval
167
+ dataset:
168
+ name: basline 256
169
+ type: basline_256
170
+ metrics:
171
+ - type: cosine_accuracy@1
172
+ value: 0.7057142857142857
173
+ name: Cosine Accuracy@1
174
+ - type: cosine_accuracy@3
175
+ value: 0.8414285714285714
176
+ name: Cosine Accuracy@3
177
+ - type: cosine_accuracy@5
178
+ value: 0.88
179
+ name: Cosine Accuracy@5
180
+ - type: cosine_accuracy@10
181
+ value: 0.9228571428571428
182
+ name: Cosine Accuracy@10
183
+ - type: cosine_precision@1
184
+ value: 0.7057142857142857
185
+ name: Cosine Precision@1
186
+ - type: cosine_precision@3
187
+ value: 0.28047619047619043
188
+ name: Cosine Precision@3
189
+ - type: cosine_precision@5
190
+ value: 0.176
191
+ name: Cosine Precision@5
192
+ - type: cosine_precision@10
193
+ value: 0.09228571428571428
194
+ name: Cosine Precision@10
195
+ - type: cosine_recall@1
196
+ value: 0.7057142857142857
197
+ name: Cosine Recall@1
198
+ - type: cosine_recall@3
199
+ value: 0.8414285714285714
200
+ name: Cosine Recall@3
201
+ - type: cosine_recall@5
202
+ value: 0.88
203
+ name: Cosine Recall@5
204
+ - type: cosine_recall@10
205
+ value: 0.9228571428571428
206
+ name: Cosine Recall@10
207
+ - type: cosine_ndcg@10
208
+ value: 0.8161680075424235
209
+ name: Cosine Ndcg@10
210
+ - type: cosine_mrr@10
211
+ value: 0.7817953514739227
212
+ name: Cosine Mrr@10
213
+ - type: cosine_map@100
214
+ value: 0.785367816349997
215
+ name: Cosine Map@100
216
+ - task:
217
+ type: information-retrieval
218
+ name: Information Retrieval
219
+ dataset:
220
+ name: basline 128
221
+ type: basline_128
222
+ metrics:
223
+ - type: cosine_accuracy@1
224
+ value: 0.7028571428571428
225
+ name: Cosine Accuracy@1
226
+ - type: cosine_accuracy@3
227
+ value: 0.8342857142857143
228
+ name: Cosine Accuracy@3
229
+ - type: cosine_accuracy@5
230
+ value: 0.8742857142857143
231
+ name: Cosine Accuracy@5
232
+ - type: cosine_accuracy@10
233
+ value: 0.9171428571428571
234
+ name: Cosine Accuracy@10
235
+ - type: cosine_precision@1
236
+ value: 0.7028571428571428
237
+ name: Cosine Precision@1
238
+ - type: cosine_precision@3
239
+ value: 0.27809523809523806
240
+ name: Cosine Precision@3
241
+ - type: cosine_precision@5
242
+ value: 0.17485714285714282
243
+ name: Cosine Precision@5
244
+ - type: cosine_precision@10
245
+ value: 0.09171428571428569
246
+ name: Cosine Precision@10
247
+ - type: cosine_recall@1
248
+ value: 0.7028571428571428
249
+ name: Cosine Recall@1
250
+ - type: cosine_recall@3
251
+ value: 0.8342857142857143
252
+ name: Cosine Recall@3
253
+ - type: cosine_recall@5
254
+ value: 0.8742857142857143
255
+ name: Cosine Recall@5
256
+ - type: cosine_recall@10
257
+ value: 0.9171428571428571
258
+ name: Cosine Recall@10
259
+ - type: cosine_ndcg@10
260
+ value: 0.8109319521599055
261
+ name: Cosine Ndcg@10
262
+ - type: cosine_mrr@10
263
+ value: 0.7768752834467119
264
+ name: Cosine Mrr@10
265
+ - type: cosine_map@100
266
+ value: 0.7802736634060462
267
+ name: Cosine Map@100
268
+ - task:
269
+ type: information-retrieval
270
+ name: Information Retrieval
271
+ dataset:
272
+ name: basline 64
273
+ type: basline_64
274
+ metrics:
275
+ - type: cosine_accuracy@1
276
+ value: 0.6728571428571428
277
+ name: Cosine Accuracy@1
278
+ - type: cosine_accuracy@3
279
+ value: 0.8171428571428572
280
+ name: Cosine Accuracy@3
281
+ - type: cosine_accuracy@5
282
+ value: 0.8614285714285714
283
+ name: Cosine Accuracy@5
284
+ - type: cosine_accuracy@10
285
+ value: 0.9014285714285715
286
+ name: Cosine Accuracy@10
287
+ - type: cosine_precision@1
288
+ value: 0.6728571428571428
289
+ name: Cosine Precision@1
290
+ - type: cosine_precision@3
291
+ value: 0.2723809523809524
292
+ name: Cosine Precision@3
293
+ - type: cosine_precision@5
294
+ value: 0.17228571428571426
295
+ name: Cosine Precision@5
296
+ - type: cosine_precision@10
297
+ value: 0.09014285714285714
298
+ name: Cosine Precision@10
299
+ - type: cosine_recall@1
300
+ value: 0.6728571428571428
301
+ name: Cosine Recall@1
302
+ - type: cosine_recall@3
303
+ value: 0.8171428571428572
304
+ name: Cosine Recall@3
305
+ - type: cosine_recall@5
306
+ value: 0.8614285714285714
307
+ name: Cosine Recall@5
308
+ - type: cosine_recall@10
309
+ value: 0.9014285714285715
310
+ name: Cosine Recall@10
311
+ - type: cosine_ndcg@10
312
+ value: 0.7900026049536226
313
+ name: Cosine Ndcg@10
314
+ - type: cosine_mrr@10
315
+ value: 0.7539795918367346
316
+ name: Cosine Mrr@10
317
+ - type: cosine_map@100
318
+ value: 0.7582240178397145
319
+ name: Cosine Map@100
320
+ ---
321
+
322
+ # BGE base Financial Matryoshka
323
+
324
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
325
+
326
+ ## Model Details
327
+
328
+ ### Model Description
329
+ - **Model Type:** Sentence Transformer
330
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
331
+ - **Maximum Sequence Length:** 512 tokens
332
+ - **Output Dimensionality:** 768 tokens
333
+ - **Similarity Function:** Cosine Similarity
334
+ <!-- - **Training Dataset:** Unknown -->
335
+ - **Language:** en
336
+ - **License:** apache-2.0
337
+
338
+ ### Model Sources
339
+
340
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
341
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
342
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
343
+
344
+ ### Full Model Architecture
345
+
346
+ ```
347
+ SentenceTransformer(
348
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
349
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
350
+ (2): Normalize()
351
+ )
352
+ ```
353
+
354
+ ## Usage
355
+
356
+ ### Direct Usage (Sentence Transformers)
357
+
358
+ First install the Sentence Transformers library:
359
+
360
+ ```bash
361
+ pip install -U sentence-transformers
362
+ ```
363
+
364
+ Then you can load this model and run inference.
365
+ ```python
366
+ from sentence_transformers import SentenceTransformer
367
+
368
+ # Download from the 🤗 Hub
369
+ model = SentenceTransformer("philschmid/bge-base-financial-matryoshka")
370
+ # Run inference
371
+ sentences = [
372
+ "What was Gilead's total revenue in 2023?",
373
+ 'What was the total revenue for the year ended December 31, 2023?',
374
+ 'How much was the impairment related to the CAT loan receivable in 2023?',
375
+ ]
376
+ embeddings = model.encode(sentences)
377
+ print(embeddings.shape)
378
+ # [3, 768]
379
+
380
+ # Get the similarity scores for the embeddings
381
+ similarities = model.similarity(embeddings, embeddings)
382
+ print(similarities.shape)
383
+ # [3, 3]
384
+ ```
385
+
386
+ <!--
387
+ ### Direct Usage (Transformers)
388
+
389
+ <details><summary>Click to see the direct usage in Transformers</summary>
390
+
391
+ </details>
392
+ -->
393
+
394
+ <!--
395
+ ### Downstream Usage (Sentence Transformers)
396
+
397
+ You can finetune this model on your own dataset.
398
+
399
+ <details><summary>Click to expand</summary>
400
+
401
+ </details>
402
+ -->
403
+
404
+ <!--
405
+ ### Out-of-Scope Use
406
+
407
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
408
+ -->
409
+
410
+ ## Evaluation
411
+
412
+ ### Metrics
413
+
414
+ #### Information Retrieval
415
+ * Dataset: `basline_768`
416
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
417
+
418
+ | Metric | Value |
419
+ |:--------------------|:-----------|
420
+ | cosine_accuracy@1 | 0.7086 |
421
+ | cosine_accuracy@3 | 0.8514 |
422
+ | cosine_accuracy@5 | 0.8843 |
423
+ | cosine_accuracy@10 | 0.9271 |
424
+ | cosine_precision@1 | 0.7086 |
425
+ | cosine_precision@3 | 0.2838 |
426
+ | cosine_precision@5 | 0.1769 |
427
+ | cosine_precision@10 | 0.0927 |
428
+ | cosine_recall@1 | 0.7086 |
429
+ | cosine_recall@3 | 0.8514 |
430
+ | cosine_recall@5 | 0.8843 |
431
+ | cosine_recall@10 | 0.9271 |
432
+ | cosine_ndcg@10 | 0.8215 |
433
+ | cosine_mrr@10 | 0.7874 |
434
+ | **cosine_map@100** | **0.7907** |
435
+
436
+ #### Information Retrieval
437
+ * Dataset: `basline_512`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:--------------------|:-----------|
442
+ | cosine_accuracy@1 | 0.7114 |
443
+ | cosine_accuracy@3 | 0.85 |
444
+ | cosine_accuracy@5 | 0.8829 |
445
+ | cosine_accuracy@10 | 0.9229 |
446
+ | cosine_precision@1 | 0.7114 |
447
+ | cosine_precision@3 | 0.2833 |
448
+ | cosine_precision@5 | 0.1766 |
449
+ | cosine_precision@10 | 0.0923 |
450
+ | cosine_recall@1 | 0.7114 |
451
+ | cosine_recall@3 | 0.85 |
452
+ | cosine_recall@5 | 0.8829 |
453
+ | cosine_recall@10 | 0.9229 |
454
+ | cosine_ndcg@10 | 0.8209 |
455
+ | cosine_mrr@10 | 0.7879 |
456
+ | **cosine_map@100** | **0.7916** |
457
+
458
+ #### Information Retrieval
459
+ * Dataset: `basline_256`
460
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:-----------|
464
+ | cosine_accuracy@1 | 0.7057 |
465
+ | cosine_accuracy@3 | 0.8414 |
466
+ | cosine_accuracy@5 | 0.88 |
467
+ | cosine_accuracy@10 | 0.9229 |
468
+ | cosine_precision@1 | 0.7057 |
469
+ | cosine_precision@3 | 0.2805 |
470
+ | cosine_precision@5 | 0.176 |
471
+ | cosine_precision@10 | 0.0923 |
472
+ | cosine_recall@1 | 0.7057 |
473
+ | cosine_recall@3 | 0.8414 |
474
+ | cosine_recall@5 | 0.88 |
475
+ | cosine_recall@10 | 0.9229 |
476
+ | cosine_ndcg@10 | 0.8162 |
477
+ | cosine_mrr@10 | 0.7818 |
478
+ | **cosine_map@100** | **0.7854** |
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `basline_128`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.7029 |
487
+ | cosine_accuracy@3 | 0.8343 |
488
+ | cosine_accuracy@5 | 0.8743 |
489
+ | cosine_accuracy@10 | 0.9171 |
490
+ | cosine_precision@1 | 0.7029 |
491
+ | cosine_precision@3 | 0.2781 |
492
+ | cosine_precision@5 | 0.1749 |
493
+ | cosine_precision@10 | 0.0917 |
494
+ | cosine_recall@1 | 0.7029 |
495
+ | cosine_recall@3 | 0.8343 |
496
+ | cosine_recall@5 | 0.8743 |
497
+ | cosine_recall@10 | 0.9171 |
498
+ | cosine_ndcg@10 | 0.8109 |
499
+ | cosine_mrr@10 | 0.7769 |
500
+ | **cosine_map@100** | **0.7803** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `basline_64`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.6729 |
509
+ | cosine_accuracy@3 | 0.8171 |
510
+ | cosine_accuracy@5 | 0.8614 |
511
+ | cosine_accuracy@10 | 0.9014 |
512
+ | cosine_precision@1 | 0.6729 |
513
+ | cosine_precision@3 | 0.2724 |
514
+ | cosine_precision@5 | 0.1723 |
515
+ | cosine_precision@10 | 0.0901 |
516
+ | cosine_recall@1 | 0.6729 |
517
+ | cosine_recall@3 | 0.8171 |
518
+ | cosine_recall@5 | 0.8614 |
519
+ | cosine_recall@10 | 0.9014 |
520
+ | cosine_ndcg@10 | 0.79 |
521
+ | cosine_mrr@10 | 0.754 |
522
+ | **cosine_map@100** | **0.7582** |
523
+
524
+ <!--
525
+ ## Bias, Risks and Limitations
526
+
527
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
528
+ -->
529
+
530
+ <!--
531
+ ### Recommendations
532
+
533
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
534
+ -->
535
+
536
+ ## Training Details
537
+
538
+ ### Training Dataset
539
+
540
+ #### Unnamed Dataset
541
+
542
+
543
+ * Size: 6,300 training samples
544
+ * Columns: <code>positive</code> and <code>anchor</code>
545
+ * Approximate statistics based on the first 1000 samples:
546
+ | | positive | anchor |
547
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
548
+ | type | string | string |
549
+ | details | <ul><li>min: 10 tokens</li><li>mean: 46.11 tokens</li><li>max: 289 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.26 tokens</li><li>max: 43 tokens</li></ul> |
550
+ * Samples:
551
+ | positive | anchor |
552
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
553
+ | <code>Fiscal 2023 total gross profit margin of 35.1% represents an increase of 1.7 percentage points as compared to the respective prior year period.</code> | <code>What was the total gross profit margin for Hewlett Packard Enterprise in fiscal 2023?</code> |
554
+ | <code>Noninterest expense increased to $65.8 billion in 2023, primarily due to higher investments in people and technology and higher FDIC expense, including $2.1 billion for the estimated special assessment amount arising from the closure of Silicon Valley Bank and Signature Bank.</code> | <code>What was the total noninterest expense for the company in 2023?</code> |
555
+ | <code>As of May 31, 2022, FedEx Office had approximately 12,000 employees.</code> | <code>How many employees did FedEx Office have as of May 31, 2023?</code> |
556
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
557
+ ```json
558
+ {
559
+ "loss": "MultipleNegativesRankingLoss",
560
+ "matryoshka_dims": [
561
+ 768,
562
+ 512,
563
+ 256,
564
+ 128,
565
+ 64
566
+ ],
567
+ "matryoshka_weights": [
568
+ 1,
569
+ 1,
570
+ 1,
571
+ 1,
572
+ 1
573
+ ],
574
+ "n_dims_per_step": -1
575
+ }
576
+ ```
577
+
578
+ ### Training Hyperparameters
579
+ #### Non-Default Hyperparameters
580
+
581
+ - `eval_strategy`: epoch
582
+ - `per_device_train_batch_size`: 32
583
+ - `per_device_eval_batch_size`: 16
584
+ - `gradient_accumulation_steps`: 16
585
+ - `learning_rate`: 2e-05
586
+ - `num_train_epochs`: 4
587
+ - `lr_scheduler_type`: cosine
588
+ - `warmup_ratio`: 0.1
589
+ - `bf16`: True
590
+ - `tf32`: True
591
+ - `load_best_model_at_end`: True
592
+ - `optim`: adamw_torch_fused
593
+ - `batch_sampler`: no_duplicates
594
+
595
+ #### All Hyperparameters
596
+ <details><summary>Click to expand</summary>
597
+
598
+ - `overwrite_output_dir`: False
599
+ - `do_predict`: False
600
+ - `eval_strategy`: epoch
601
+ - `prediction_loss_only`: True
602
+ - `per_device_train_batch_size`: 32
603
+ - `per_device_eval_batch_size`: 16
604
+ - `per_gpu_train_batch_size`: None
605
+ - `per_gpu_eval_batch_size`: None
606
+ - `gradient_accumulation_steps`: 16
607
+ - `eval_accumulation_steps`: None
608
+ - `learning_rate`: 2e-05
609
+ - `weight_decay`: 0.0
610
+ - `adam_beta1`: 0.9
611
+ - `adam_beta2`: 0.999
612
+ - `adam_epsilon`: 1e-08
613
+ - `max_grad_norm`: 1.0
614
+ - `num_train_epochs`: 4
615
+ - `max_steps`: -1
616
+ - `lr_scheduler_type`: cosine
617
+ - `lr_scheduler_kwargs`: {}
618
+ - `warmup_ratio`: 0.1
619
+ - `warmup_steps`: 0
620
+ - `log_level`: passive
621
+ - `log_level_replica`: warning
622
+ - `log_on_each_node`: True
623
+ - `logging_nan_inf_filter`: True
624
+ - `save_safetensors`: True
625
+ - `save_on_each_node`: False
626
+ - `save_only_model`: False
627
+ - `restore_callback_states_from_checkpoint`: False
628
+ - `no_cuda`: False
629
+ - `use_cpu`: False
630
+ - `use_mps_device`: False
631
+ - `seed`: 42
632
+ - `data_seed`: None
633
+ - `jit_mode_eval`: False
634
+ - `use_ipex`: False
635
+ - `bf16`: True
636
+ - `fp16`: False
637
+ - `fp16_opt_level`: O1
638
+ - `half_precision_backend`: auto
639
+ - `bf16_full_eval`: False
640
+ - `fp16_full_eval`: False
641
+ - `tf32`: True
642
+ - `local_rank`: 0
643
+ - `ddp_backend`: None
644
+ - `tpu_num_cores`: None
645
+ - `tpu_metrics_debug`: False
646
+ - `debug`: []
647
+ - `dataloader_drop_last`: False
648
+ - `dataloader_num_workers`: 0
649
+ - `dataloader_prefetch_factor`: None
650
+ - `past_index`: -1
651
+ - `disable_tqdm`: False
652
+ - `remove_unused_columns`: True
653
+ - `label_names`: None
654
+ - `load_best_model_at_end`: True
655
+ - `ignore_data_skip`: False
656
+ - `fsdp`: []
657
+ - `fsdp_min_num_params`: 0
658
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
659
+ - `fsdp_transformer_layer_cls_to_wrap`: None
660
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
661
+ - `deepspeed`: None
662
+ - `label_smoothing_factor`: 0.0
663
+ - `optim`: adamw_torch_fused
664
+ - `optim_args`: None
665
+ - `adafactor`: False
666
+ - `group_by_length`: False
667
+ - `length_column_name`: length
668
+ - `ddp_find_unused_parameters`: None
669
+ - `ddp_bucket_cap_mb`: None
670
+ - `ddp_broadcast_buffers`: False
671
+ - `dataloader_pin_memory`: True
672
+ - `dataloader_persistent_workers`: False
673
+ - `skip_memory_metrics`: True
674
+ - `use_legacy_prediction_loop`: False
675
+ - `push_to_hub`: False
676
+ - `resume_from_checkpoint`: None
677
+ - `hub_model_id`: None
678
+ - `hub_strategy`: every_save
679
+ - `hub_private_repo`: False
680
+ - `hub_always_push`: False
681
+ - `gradient_checkpointing`: False
682
+ - `gradient_checkpointing_kwargs`: None
683
+ - `include_inputs_for_metrics`: False
684
+ - `eval_do_concat_batches`: True
685
+ - `fp16_backend`: auto
686
+ - `push_to_hub_model_id`: None
687
+ - `push_to_hub_organization`: None
688
+ - `mp_parameters`:
689
+ - `auto_find_batch_size`: False
690
+ - `full_determinism`: False
691
+ - `torchdynamo`: None
692
+ - `ray_scope`: last
693
+ - `ddp_timeout`: 1800
694
+ - `torch_compile`: False
695
+ - `torch_compile_backend`: None
696
+ - `torch_compile_mode`: None
697
+ - `dispatch_batches`: None
698
+ - `split_batches`: None
699
+ - `include_tokens_per_second`: False
700
+ - `include_num_input_tokens_seen`: False
701
+ - `neftune_noise_alpha`: None
702
+ - `optim_target_modules`: None
703
+ - `batch_eval_metrics`: False
704
+ - `sanity_evaluation`: False
705
+ - `batch_sampler`: no_duplicates
706
+ - `multi_dataset_batch_sampler`: proportional
707
+
708
+ </details>
709
+
710
+ ### Training Logs
711
+ | Epoch | Step | Training Loss | basline_128_cosine_map@100 | basline_256_cosine_map@100 | basline_512_cosine_map@100 | basline_64_cosine_map@100 | basline_768_cosine_map@100 |
712
+ |:----------:|:------:|:-------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-------------------------:|:--------------------------:|
713
+ | 0.8122 | 10 | 1.5259 | - | - | - | - | - |
714
+ | 0.9746 | 12 | - | 0.7502 | 0.7737 | 0.7827 | 0.7185 | 0.7806 |
715
+ | 1.6244 | 20 | 0.6545 | - | - | - | - | - |
716
+ | **1.9492** | **24** | **-** | **0.7689** | **0.7844** | **0.7869** | **0.7447** | **0.7909** |
717
+ | 2.4365 | 30 | 0.4784 | - | - | - | - | - |
718
+ | 2.9239 | 36 | - | 0.7733 | 0.7916 | 0.7904 | 0.7491 | 0.7930 |
719
+ | 3.2487 | 40 | 0.3827 | - | - | - | - | - |
720
+ | 3.8985 | 48 | - | 0.7739 | 0.7907 | 0.7900 | 0.7479 | 0.7948 |
721
+ | 0.8122 | 10 | 0.2685 | - | - | - | - | - |
722
+ | 0.9746 | 12 | - | 0.7779 | 0.7932 | 0.7948 | 0.7517 | 0.7943 |
723
+ | 1.6244 | 20 | 0.183 | - | - | - | - | - |
724
+ | **1.9492** | **24** | **-** | **0.7784** | **0.7929** | **0.7963** | **0.7575** | **0.7957** |
725
+ | 2.4365 | 30 | 0.1877 | - | - | - | - | - |
726
+ | 2.9239 | 36 | - | 0.7814 | 0.7914 | 0.7992 | 0.7570 | 0.7974 |
727
+ | 3.2487 | 40 | 0.1826 | - | - | - | - | - |
728
+ | 3.8985 | 48 | - | 0.7818 | 0.7916 | 0.7976 | 0.7580 | 0.7960 |
729
+ | 0.8122 | 10 | 0.071 | - | - | - | - | - |
730
+ | 0.9746 | 12 | - | 0.7810 | 0.7935 | 0.7954 | 0.7550 | 0.7949 |
731
+ | 1.6244 | 20 | 0.0629 | - | - | - | - | - |
732
+ | **1.9492** | **24** | **-** | **0.7855** | **0.7914** | **0.7989** | **0.7559** | **0.7981** |
733
+ | 2.4365 | 30 | 0.0827 | - | - | - | - | - |
734
+ | 2.9239 | 36 | - | 0.7893 | 0.7927 | 0.7987 | 0.7539 | 0.7961 |
735
+ | 3.2487 | 40 | 0.1003 | - | - | - | - | - |
736
+ | 3.8985 | 48 | - | 0.7903 | 0.7915 | 0.7980 | 0.7530 | 0.7951 |
737
+ | 0.8122 | 10 | 0.0213 | - | - | - | - | - |
738
+ | 0.9746 | 12 | - | 0.7786 | 0.7869 | 0.7885 | 0.7566 | 0.7908 |
739
+ | 1.6244 | 20 | 0.0234 | - | - | - | - | - |
740
+ | **1.9492** | **24** | **-** | **0.783** | **0.7882** | **0.793** | **0.7551** | **0.7946** |
741
+ | 2.4365 | 30 | 0.0357 | - | - | - | - | - |
742
+ | 2.9239 | 36 | - | 0.7838 | 0.7892 | 0.7922 | 0.7579 | 0.7907 |
743
+ | 3.2487 | 40 | 0.0563 | - | - | - | - | - |
744
+ | 3.8985 | 48 | - | 0.7846 | 0.7887 | 0.7912 | 0.7582 | 0.7901 |
745
+ | 0.8122 | 10 | 0.0075 | - | - | - | - | - |
746
+ | 0.9746 | 12 | - | 0.7730 | 0.7816 | 0.7818 | 0.7550 | 0.7868 |
747
+ | 1.6244 | 20 | 0.01 | - | - | - | - | - |
748
+ | **1.9492** | **24** | **-** | **0.7827** | **0.785** | **0.7896** | **0.7551** | **0.7915** |
749
+ | 2.4365 | 30 | 0.0154 | - | - | - | - | - |
750
+ | 2.9239 | 36 | - | 0.7808 | 0.7838 | 0.7921 | 0.7584 | 0.7916 |
751
+ | 3.2487 | 40 | 0.0312 | - | - | - | - | - |
752
+ | 3.8985 | 48 | - | 0.7803 | 0.7854 | 0.7916 | 0.7582 | 0.7907 |
753
+
754
+ * The bold row denotes the saved checkpoint.
755
+
756
+ ### Framework Versions
757
+ - Python: 3.10.13
758
+ - Sentence Transformers: 3.0.0
759
+ - Transformers: 4.42.0.dev0
760
+ - PyTorch: 2.1.2+cu121
761
+ - Accelerate: 0.29.2
762
+ - Datasets: 2.19.1
763
+ - Tokenizers: 0.19.1
764
+
765
+ ## Citation
766
+
767
+ ### BibTeX
768
+
769
+ #### Sentence Transformers
770
+ ```bibtex
771
+ @inproceedings{reimers-2019-sentence-bert,
772
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
773
+ author = "Reimers, Nils and Gurevych, Iryna",
774
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
775
+ month = "11",
776
+ year = "2019",
777
+ publisher = "Association for Computational Linguistics",
778
+ url = "https://arxiv.org/abs/1908.10084",
779
+ }
780
+ ```
781
+
782
+ #### MatryoshkaLoss
783
+ ```bibtex
784
+ @misc{kusupati2024matryoshka,
785
+ title={Matryoshka Representation Learning},
786
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
787
+ year={2024},
788
+ eprint={2205.13147},
789
+ archivePrefix={arXiv},
790
+ primaryClass={cs.LG}
791
+ }
792
+ ```
793
+
794
+ #### MultipleNegativesRankingLoss
795
+ ```bibtex
796
+ @misc{henderson2017efficient,
797
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
798
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
799
+ year={2017},
800
+ eprint={1705.00652},
801
+ archivePrefix={arXiv},
802
+ primaryClass={cs.CL}
803
+ }
804
+ ```
805
+
806
+ <!--
807
+ ## Glossary
808
+
809
+ *Clearly define terms in order to be accessible across audiences.*
810
+ -->
811
+
812
+ <!--
813
+ ## Model Card Authors
814
+
815
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
816
+ -->
817
+
818
+ <!--
819
+ ## Model Card Contact
820
+
821
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
822
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.0.dev0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:056de75731b8c5f3c4540d8064159852263cee5e15b59170f3a223191e0f3b71
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff