RL Agent for Lunar lander. n_epochs = 4,
Browse filesgamma = 0.999,
gae_lambda = 0.98,
ent_coef = 0.01,
- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +2 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 254.44 +/- 27.93
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f170e30e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f170e30e830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f170e30e8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f170e30e950>", "_build": "<function ActorCriticPolicy._build at 0x7f170e30e9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f170e30ea70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f170e30eb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f170e30eb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f170e30ec20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f170e30ecb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f170e30ed40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f170e30edd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f170e752c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719601288239709471, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAA04mT2FI/e5YEWAOW5AhrZNyUk6zn2SuAAAgD8AAIA/MyNvPFIQlLkJZpE7b3keNkA117mXgqe6AACAPwAAgD/NPFA7XPd6ukOIxDs6mY04psYRO16fgLoAAIA/AACAP2CEB76TdjA/JG4aPKah576W8he+FtfLPQAAAAAAAAAAgIi8PSnUALofW6W6oKFXtn1LJLvKR785AACAPwAAgD8a2hU9w2E9ugrai7s1VHo3/WuiOTA1XDoAAIA/AACAPw1iiz0UCJ+68+3QOo13kzW8PsA5Ru/wuQAAgD8AAIA/jVGUPeE8nLoqCOu6Pjfete3/uTqCVwc6AACAPwAAgD8znWI917I6PozvRD5l4Rm+ARfNPY1JebsAAAAAAAAAAAAQST1IY4S6ux7XO8oofzZ8w1A6eEp5NQAAgD8AAIA/zUwfO/b8WrrcfrG8FwDoOf1R+zlrFZ66AACAPwAAgD9mvVI9rqmmuvvN9jqgQcy1SfI8udq6DboAAIA/AACAPzOww70F3Zc/rJwEv0B5H7+BcvW9OkhhvgAAAAAAAAAAzS9BPY/iUbqIFdI7kVCnN/0Ah7tTNWU2AACAPwAAgD8zx0698DLnPvLZ3j0U5XC+HZtRPZkbvL0AAAAAAAAAAFoR7703foQ/hCaAvo8SDb9CxTO+4rk3vQAAAAAAAAAAszYNPY+WMbqgnlc7IKv7s1GnxrpiQKWzAACAPwAAgD9NP8m9aV1oPlnuID6zmeW9c2AOPeYeCb4AAAAAAAAAAOYERT1IA5O6YBbrundB87V0IVy6QjUIOgAAgD8AAIA/M8bKPSmoOLp+JyK6zygGtVuI07qdwDo5AACAPwAAgD/N0AK8UiCZuRdvDjyd9Jw2KJNMu4rgmjUAAIA/AACAP43pmz2P5j66JSFZOfvHxzSmH626uMp8uAAAgD8AAIA/TXbOPfb8Hrpj7FK1FPTGsP+3WrlLiFw0AACAPwAAgD+Agic9SF+Rui1f7rpiAtm1WttVuJxACjoAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGTTpgTh5yMAWyUTegDjAF0lEdAhcZeglF+eHV9lChoBkdAY8MSDh99dGgHTegDaAhHQIXJlqL0jC51fZQoaAZHQGDlOVgQYk5oB03oA2gIR0CFzA78Nx2jdX2UKGgGR0Bmh5azNUwSaAdN6ANoCEdAhcwwwj+rEXV9lChoBkdAS2b3mFJxvWgHS71oCEdAhdTWwV0tAnV9lChoBkdAZaOf8uSOimgHTegDaAhHQIXfn8ZUDMh1fZQoaAZHQGM2RWT5ftxoB03oA2gIR0CF4OKQ7tAtdX2UKGgGR0BhrOdbxEv1aAdN6ANoCEdAhfA5LqUu+XV9lChoBkdAYzS7hegL7WgHTegDaAhHQIXw6ItUXHl1fZQoaAZHQGgqQDeTFERoB03oA2gIR0CF97k8zQ/pdX2UKGgGR0BgOmD8LrooaAdN6ANoCEdAhgarRKHwgHV9lChoBkdAZinT6zmfXmgHTegDaAhHQIYGzcO9WZJ1fZQoaAZHQGQAl+EytV9oB03oA2gIR0CGCAXfIjnndX2UKGgGR0BfD7IPsiSraAdN6ANoCEdAhhS/qX4TK3V9lChoBkdAZiglabF0gmgHTegDaAhHQIYWEygwoLJ1fZQoaAZHQF5Fzw+dK/VoB03oA2gIR0CGFhmLcbiqdX2UKGgGR0Bfkup84PwvaAdN6ANoCEdAhhbX36AOKHV9lChoBkdAYI2XOW0JGGgHTegDaAhHQIYiAOH31z11fZQoaAZHQGOcVxCIDYBoB03oA2gIR0CGJN8rI5o5dX2UKGgGR0BjJIISlFc6aAdN6ANoCEdAhiapDu0CzXV9lChoBkdAZmjQoCuEEmgHTegDaAhHQIZXRgJC0F91fZQoaAZHQGdbMSK3uu1oB03oA2gIR0CGWfXRPXTWdX2UKGgGR0BliVWS2Yv4aAdN6ANoCEdAhlwy4e9zwXV9lChoBkdAX4AneBQN1GgHTegDaAhHQIZnw8Md92J1fZQoaAZHQGaseNcW0qpoB03oA2gIR0CGbvtXPqs2dX2UKGgGR0Bh+G0Xxe9jaAdN6ANoCEdAhnHqUVzp5nV9lChoBkdAYzmt6ol2NmgHTegDaAhHQIZ0ITZg5R11fZQoaAZHQGQ2ITGo73hoB03oA2gIR0CGdEjafzz3dX2UKGgGR0Bl+yVt4zJqaAdN6ANoCEdAhnxK/Efkm3V9lChoBkdAZgBgrpaA4GgHTegDaAhHQIaGHxH5Jsh1fZQoaAZHQGXy3qiXY15oB03oA2gIR0CGhzcxj8UFdX2UKGgGR0BjtZkwvg3taAdN6ANoCEdAhpVmGmDUVnV9lChoBkdAY1/r0rbxmWgHTegDaAhHQIaWCXQdCE91fZQoaAZHQF8dD+BH09RoB03oA2gIR0CGnIQkHD77dX2UKGgGR0BIbgrYoRZmaAdLvmgIR0CGnl863iJgdX2UKGgGR0BiZig7HQyAaAdN6ANoCEdAhqq4pc5bQnV9lChoBkdAYQ7+irT6SGgHTegDaAhHQIaq2S4e9zx1fZQoaAZHQGQC464lQdloB03oA2gIR0CGrA6r/82rdX2UKGgGR0BlGD9If8uSaAdN6ANoCEdAhrizSb6P83V9lChoBkdAZUexfOUt7WgHTegDaAhHQIa6BXQtz0Z1fZQoaAZHQGTIoeo1k2BoB03oA2gIR0CGuguf29L6dX2UKGgGR0BlWifFrEcbaAdN6ANoCEdAhrrGYKIBR3V9lChoBkdAZKUqABkqc2gHTegDaAhHQIbF8+u/1xt1fZQoaAZHQGMZY7q6e5FoB03oA2gIR0CGyN12aDwpdX2UKGgGR0BiC/C9AX2vaAdN6ANoCEdAhsrEDhcZ+HV9lChoBkdAY7ySs8xKx2gHTegDaAhHQIbTMcdYGMZ1fZQoaAZHQGHnDCpFTehoB03oA2gIR0CG/vvjwQUYdX2UKGgGR0BjomxdIGyHaAdN6ANoCEdAhwF+aBqbjXV9lChoBkdAYgEx5cC5mWgHTegDaAhHQIcOKIWP91l1fZQoaAZHQGFmOq//NqxoB03oA2gIR0CHFlPszEaVdX2UKGgGR0Blu2ITGo73aAdN6ANoCEdAhxlvnKW9lHV9lChoBkdAZJCg0TDfnGgHTegDaAhHQIcb0sasIVx1fZQoaAZHQGZmfEfkmyBoB03oA2gIR0CHG/RlYlpodX2UKGgGR0Bho5NM495haAdN6ANoCEdAhyRJm29cr3V9lChoBkdASopVfeDWb2gHS7JoCEdAhyw1LrX18XV9lChoBkdAZmD77bcoIGgHTegDaAhHQIcvMaAFxGV1fZQoaAZHQC8TposZpBZoB0vAaAhHQIcw573PAwh1fZQoaAZHQGT0X7cfvF5oB03oA2gIR0CHPV5ZbILgdX2UKGgGR0Bi0XjCHh0haAdN6ANoCEdAhz3+gUUO/nV9lChoBkdAZypi5uqFRGgHTegDaAhHQIdEFglWwNd1fZQoaAZHQGC1PduYQatoB03oA2gIR0CHRdPKuB+XdX2UKGgGR0Bmr/5Jsfq5aAdN6ANoCEdAh1FRhMJyAHV9lChoBkdAZd6LS/j81mgHTegDaAhHQIdRcNhE0BR1fZQoaAZHQGekbExZdOZoB03oA2gIR0CHUpGNJe3QdX2UKGgGR0BMKzd1uBMBaAdLs2gIR0CHW+gK4QSSdX2UKGgGR0BlU8A93bEhaAdN6ANoCEdAh15tYbKif3V9lChoBkdAYlt2FnIyTWgHTegDaAhHQIdfpiExqO91fZQoaAZHQGWVrPdEb5xoB03oA2gIR0CHX6n4O+ZgdX2UKGgGR0BkwDTc6/7BaAdN6ANoCEdAh2BNQbdadXV9lChoBkdAaGXdhRZU1mgHTegDaAhHQIdqch/y5I91fZQoaAZHQFPfwpON5t5oB0vcaAhHQIdsTlq8Djl1fZQoaAZHQGCefzreImBoB03oA2gIR0CHbRj0+TvBdX2UKGgGR0BjTm+h4+r3aAdN6ANoCEdAh27Bf0Eov3V9lChoBkdAZi51lGwzL2gHTegDaAhHQId2XSx7iQ11fZQoaAZHQGfLFAu7HyVoB03oA2gIR0CHePtygf2cdX2UKGgGR0BkWZsKsuFpaAdN6ANoCEdAh6OwEyLyc3V9lChoBkdAbn1+KCQLeGgHS95oCEdAh6wPfsNUfnV9lChoBkdAZsE9zwMH8mgHTegDaAhHQIevcAT7EYR1fZQoaAZHQGVz5NGmUGFoB03oA2gIR0CHvFUEPlMidX2UKGgGR0BiCtKIznA7aAdN6ANoCEdAh7x3oC+10HV9lChoBkdAZAZNRm9QGmgHTegDaAhHQIfFTzshPj51fZQoaAZHQGNjzWwu/URoB03oA2gIR0CHzdW+XZ5BdX2UKGgGR0Bhyk0SAYpEaAdN6ANoCEdAh9EExREWqXV9lChoBkdAZo6oScslLWgHTegDaAhHQIfSzr3TNMZ1fZQoaAZHQGX4dqUNayNoB03oA2gIR0CH32kO7QLNdX2UKGgGR0BiAEKqn3tbaAdN6ANoCEdAh+AFYlpoK3V9lChoBkdAYpEOTaCcw2gHTegDaAhHQIfmdNpM6BB1fZQoaAZHQF26wIt16mhoB03oA2gIR0CH9N3Ux20RdX2UKGgGR0BkzzxXnyNGaAdN6ANoCEdAh/UAlOXVsnV9lChoBkdAYuXloUSIxmgHTegDaAhHQIgBLBXS0Bx1fZQoaAZHQGeqzcqOLixoB03oA2gIR0CIBBk9U0emdX2UKGgGR0BlCSidrftQaAdN6ANoCEdAiAV+gUUO/nV9lChoBkdAZdoQWepXIWgHTegDaAhHQIgFh4B3iaR1fZQoaAZHQGSlmeUY8+1oB03oA2gIR0CIBk1IiC8OdX2UKGgGR0BjTyMHbAUMaAdN6ANoCEdAiBR655JK8XV9lChoBkdAZ0Ljz7MxGmgHTegDaAhHQIgVYwGnn+11fZQoaAZHQGJm5+H8CPpoB03oA2gIR0CIF1NZeRgadX2UKGgGR0BmDva37UG3aAdN6ANoCEdAiCAd0Rvm5nV9lChoBkdAZ7gn3ta6jGgHTegDaAhHQIgjORFI/aB1fZQoaAZHQGPBl2mpEQZoB03oA2gIR0CIJdRc/t6YdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 410, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-4.14.345-262.561.amzn2.x86_64-x86_64-with-glibc2.35 # 1 SMP Fri May 31 18:15:42 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0.post304", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f18a0ba11b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f18a0ba1240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f18a0ba12d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f18a0ba1360>", "_build": "<function ActorCriticPolicy._build at 0x7f18a0ba13f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f18a0ba1480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f18a0ba1510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f18a0ba15a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f18a0ba1630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f18a0ba16c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18a0ba1750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f18a0ba17e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f18719c1f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724068289018703505, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAE0yc71SYOa5rSLquYmw7rSV20o64+xaNAAAgD8AAIA/c2eXvR89/LkklCm374ioMYFKx7vb0Uc2AACAPwAAgD9muTe9jx4TuujZHrsHvaK2wg28upNlFjYAAIA/AACAPzO5PLyetO49+K0tvj8iRr5itYS9JnM7vQAAAAAAAAAA2vCNvVwfL7oTyJc6YGzGNcQT/rre6q+5AACAPwAAgD8a8gW9uP6qudiRpLrzRSS2lnSiOzW0wzkAAIA/AACAPzMWVr2u9YG6a90SOkSSBjVwkz67an8ouQAAgD8AAIA/zQKPPVwzVLpr9mw6IrngMxgCWztXJom5AACAPwAAgD+aYD69AmjePpULJb0zOz++WOiGvAslXj0AAAAAAAAAAJpavz1I/4S60l8mPMR/h7U/47a6675/tAAAAAAAAIA/ZqLCOwqfDrtsTA490VqvPPsPMTzFGpa9AACAPwAAgD/N3rk8H4WFNi0PcLqNxDe2ugyotlpmjTkAAIA/AACAPwPCUb5t3IY/S2blvruIlL6bU3i+Bke8vQAAAAAAAAAApsCXvoVYPT8hLQu8RsmRvtKZBLzHzke9AAAAAAAAAABAO4W94S6Guv3pgTvCrhS22C1tO3wlCrUAAIA/AACAP83sezykACC5UekMvIoMhzc/7ji7sPnwtgAAgD8AAIA/AF5hvRQelbr/wi+6oea5teFUCbvPdko5AACAPwAAgD8Ae6W8hbO+uSJmcjsFmoo4dRy2O4KnEroAAIA/AACAP+bzNb6cPG68CvsqO+OMpzlENdY9he1rugAAgD8AAIA/GuIDvRREkLq3IZi4mh/hMp1+RrsLoqw3AACAPwAAgD9mNum8Kbg3uvra/7kGjWe1sTePO6C6EzkAAIA/AACAP80IpTxxXUm5cOHPOqBQljWG3iu7daj1uQAAgD8AAIA/DRSLPdfzHrmVVNC7J29nNBvPojhVq+CzAACAPwAAgD+NRu29uU+zPxOdbr550YW+1uoNvm8gCrsAAAAAAAAAALNiL724h7E9vW1+vSdBRL5i5R69FbYNvgAAAAAAAAAAc1idvnvxST+klA4+8zGcvt/Z6rxr9vs9AAAAAAAAAADNdGA8lo21P/PZLz+F1Rw+lQFivDpV7r0AAAAAAAAAAObH9L09ima5eDuWPEohErq7k6K7Mo4AOwAAgD8AAIA/M+7tPFKosLl9+Ki4fnHhs+WGHLsjl8Y3AACAPwAAgD9AoUu+g50IP7Uo6T0be1a+tR3zu0lVGTwAAAAAAAAAAGYGGjzssba5A6+HO3mOHjhdXCW7vrDqtwAAgD8AAIA/5jk/PYWj47nSa1M7duuXOHfwuTmjvfq5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUeG3WnTAqMAWyUTegDjAF0lEdAlWrB5C4SYnV9lChoBkdAZRn35eqrBGgHTegDaAhHQJVtNh2GIsR1fZQoaAZHQGDLgj6eoUBoB03oA2gIR0CVbzQVbiZOdX2UKGgGR0BhzIKYzBRAaAdN6ANoCEdAlXBnUc4o7XV9lChoBkdAYAhNxlxwQ2gHTegDaAhHQJVy2/L1VYJ1fZQoaAZHQF9934Kx9ohoB03oA2gIR0CVeG2s7uD0dX2UKGgGR0Bgrg51eSjhaAdN6ANoCEdAlXlWfXf643V9lChoBkdAXXtW912aD2gHTegDaAhHQJV6am3vx6R1fZQoaAZHQGKOitRvWH1oB03oA2gIR0CVfPFV1fVqdX2UKGgGR0Bj+Oc6NlyzaAdN6ANoCEdAlX8SiRGMGXV9lChoBkdAX54qPOpsGmgHTegDaAhHQJV/tQtSQ5p1fZQoaAZHQGJKanaWX1JoB03oA2gIR0CVgZk1uR9xdX2UKGgGR0BAsyzw+dK/aAdL52gIR0CVggZuAI6bdX2UKGgGR0BC7++VTrE+aAdL1mgIR0CVgl4x1xKhdX2UKGgGR0BkMjQ/oq0/aAdN6ANoCEdAlYeQ4sEq2HV9lChoBkdAYoz4B3iaRmgHTegDaAhHQJWJvQ2MsH11fZQoaAZHQFtEkFOfukVoB03oA2gIR0CVkIQ5WBBidX2UKGgGR0BlYKh11W8zaAdN6ANoCEdAlZIRbwBo3HV9lChoBkdAYb1f2saKk2gHTegDaAhHQJWVcF3Y+St1fZQoaAZHQGLvoWYWtU5oB03oA2gIR0CVmuaS9ugpdX2UKGgGR0BcUZqh11W9aAdN6ANoCEdAlaQW/BWPtHV9lChoBkdAYbgbExZdOmgHTegDaAhHQJWn+yKNyYJ1fZQoaAZHQGHqvY4ACGNoB03oA2gIR0CVqWu5jH4odX2UKGgGR0BeekPczqKQaAdN6ANoCEdAlamjabnX/nV9lChoBkdAYWrw97ngYWgHTegDaAhHQJWzOtYB/7V1fZQoaAZHQGEX25xzaK1oB03oA2gIR0CVs61xsEaEdX2UKGgGR0BiMmNLlFMJaAdN6ANoCEdAlbgB1gYxcnV9lChoBkdAZTjHggow22gHTegDaAhHQJW9HhBJI2B1fZQoaAZHQGQl/+85CF9oB03oA2gIR0CVv1kI5YHPdX2UKGgGR0BjCvVf/m1ZaAdN6ANoCEdAlcCZK3/gi3V9lChoBkdAZOkR/3Fkx2gHTegDaAhHQJXEC4LCvX91fZQoaAZHQGFfFqJuVHFoB03oA2gIR0CVxFrGR3eOdX2UKGgGR0BfcN9YwIt2aAdN6ANoCEdAlcd4icG1QnV9lChoBkdAYV+QhfShJ2gHTegDaAhHQJXj3cN6PbR1fZQoaAZHQFw9am4y44JoB03oA2gIR0CV5BKDkELZdX2UKGgGR0Bgq1jiGWUsaAdN6ANoCEdAlem8ir1dxHV9lChoBkdAXSLxd6cAimgHTegDaAhHQJXsY6QvHtF1fZQoaAZHQFol36hxo7FoB03oA2gIR0CV8kBuXNTtdX2UKGgGR0BiEwq/dqL1aAdN6ANoCEdAlfM5zT4L1HV9lChoBkdAZBN2tdRiw2gHTegDaAhHQJX0XgqEvkB1fZQoaAZHQGLbZAIIF/xoB03oA2gIR0CV9vvy9VWCdX2UKGgGR0Baotgnc+JQaAdN6ANoCEdAlfkx8QZn+XV9lChoBkdAXYj0e2d/a2gHTegDaAhHQJX50b+98JF1fZQoaAZHQF8V58jRlYloB03oA2gIR0CV+8OwgTysdX2UKGgGR0BiHLb8FY+0aAdN6ANoCEdAlfw0sWfseHV9lChoBkdAZFnY1YQrc2gHTegDaAhHQJX8jlV94NZ1fZQoaAZHQF3ILA57w8ZoB03oA2gIR0CWAZahYeT3dX2UKGgGR0BiUBjlPrOaaAdN6ANoCEdAlgOpyZKFqXV9lChoBkdAXszLmp2lmGgHTegDaAhHQJYKB7XxvvV1fZQoaAZHQGSfOQZGax5oB03oA2gIR0CWC3Fqi48VdX2UKGgGR0BblbqIJqqPaAdN6ANoCEdAlg5lrl/6PHV9lChoBkdAYKsXkYGdJGgHTegDaAhHQJYTFTwUg0V1fZQoaAZHQGJrwbMotthoB03oA2gIR0CWGvmuDBdldX2UKGgGR0BiZhRKpT/AaAdN6ANoCEdAlh5haX8fm3V9lChoBkdAYPYC3gDRt2gHTegDaAhHQJYfnb9If8x1fZQoaAZHQGJ3brkbPyFoB03oA2gIR0CWH9HUMG5ddX2UKGgGR0Bl9jDbah6CaAdN6ANoCEdAlidzkZJkG3V9lChoBkdAY5whhYvFnGgHTegDaAhHQJYn2PcSGrV1fZQoaAZHQGEq4TbnHNpoB03oA2gIR0CWK4pi7TUidX2UKGgGR0BgCTfP5YYBaAdN6ANoCEdAli/1pGnXNHV9lChoBkdAYnJEVFhG6WgHTegDaAhHQJYx5Ew35vd1fZQoaAZHQF3zZgG8mKJoB03oA2gIR0CWMvpcX3xndX2UKGgGR0Bl/NcIJJGwaAdN6ANoCEdAljYK3AmAsnV9lChoBkdAXZRMpPRAr2gHTegDaAhHQJY2UpLEk0J1fZQoaAZHQGQkc7p3X7NoB03oA2gIR0CWOQ4SpR4ydX2UKGgGR0BgSb4QBgeBaAdN6ANoCEdAlj6N9QXQ+nV9lChoBkdAYhbhoduHe2gHTegDaAhHQJY+u1PWQOp1fZQoaAZHQE6aVsUIsy1oB0u5aAhHQJZYd1q33Ht1fZQoaAZHQGK4YmTkhidoB03oA2gIR0CWWk84PwuvdX2UKGgGR0Bju+WjXWe6aAdN6ANoCEdAllysRDkU9XV9lChoBkdAYxanqFAVwmgHTegDaAhHQJZh1llK9PF1fZQoaAZHQGEzQGfPHDJoB03oA2gIR0CWYrD/VAiWdX2UKGgGR0BlBZT2nKnvaAdN6ANoCEdAlmOrAP/aQHV9lChoBkdAYJOiD/VAiWgHTegDaAhHQJZl7jp9qlB1fZQoaAZHQGYrF0PpY9xoB03oA2gIR0CWZ9+zdDYzdX2UKGgGR0BlkuFYdQwcaAdN6ANoCEdAlmhwZCOWB3V9lChoBkdAZlttO2y9mGgHTegDaAhHQJZqHuy/sVt1fZQoaAZHQGPiVwo9cKRoB03oA2gIR0CWaoDRMN+cdX2UKGgGR0BknaFuejEfaAdN6ANoCEdAlmrOTA31jHV9lChoBkdAZstbKzRhMWgHTegDaAhHQJZvOOAAhjh1fZQoaAZHQGIl1lPJq7BoB03oA2gIR0CWcRJ9AooedX2UKGgGR0BjHif16E8JaAdN6ANoCEdAlnb5GOMl1XV9lChoBkdAY1nHd43WF2gHTegDaAhHQJZ4S+Cbtqp1fZQoaAZHQGBVwLux8lZoB03oA2gIR0CWeyNke6qbdX2UKGgGR0Bkt7SVnmJWaAdN6ANoCEdAln/D4k/r0XV9lChoBkdAZJ8HsTnJT2gHTegDaAhHQJaHtpj+aSd1fZQoaAZHQGJ8uFg2IftoB03oA2gIR0CWix5Sm65HdX2UKGgGR0Bh7h2+wkgPaAdN6ANoCEdAloxao2n89HV9lChoBkdAYJg+HJtBOmgHTegDaAhHQJaMiXC0ngJ1fZQoaAZHQGDlI7muDBdoB03oA2gIR0CWlCAZKnNxdX2UKGgGR0BkbWLk0aZQaAdN6ANoCEdAlpSAjMV1wHV9lChoBkdAZVs+NcW0q2gHTegDaAhHQJaYHR6Ww/x1fZQoaAZHQGOKVeKKpDNoB03oA2gIR0CWnIQyAQQMdX2UKGgGR0BiTUhJRO1waAdN6ANoCEdAlp+LpRoAXHV9lChoBkdAZAsujASFoWgHTegDaAhHQJairm+0w8J1fZQoaAZHQFxnCROk+HJoB03oA2gIR0CWovhRIjGDdX2UKGgGR0Bi6hC4SYgJaAdN6ANoCEdAlqXXLvCuU3V9lChoBkdAZkoL5ylvZWgHTegDaAhHQJarpY+0PYp1fZQoaAZHQF2gehwl0HRoB03oA2gIR0CWq9ZZB9kSdX2UKGgGR0Bmf+QdS2piaAdN6ANoCEdAlq91nIyTIXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35 # 1 SMP Tue Jun 18 14:00:06 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0.post304", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69cdbf6c1c873bb4e35f0cbe5665d026ff8b75430111cd9707748ec5a2d74e84
|
3 |
+
size 147493
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -76,15 +76,15 @@
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f18a0ba11b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f18a0ba1240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f18a0ba12d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f18a0ba1360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f18a0ba13f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f18a0ba1480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f18a0ba1510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f18a0ba15a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f18a0ba1630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f18a0ba16c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18a0ba1750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f18a0ba17e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f18719c1f40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1724068289018703505,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAE0yc71SYOa5rSLquYmw7rSV20o64+xaNAAAgD8AAIA/c2eXvR89/LkklCm374ioMYFKx7vb0Uc2AACAPwAAgD9muTe9jx4TuujZHrsHvaK2wg28upNlFjYAAIA/AACAPzO5PLyetO49+K0tvj8iRr5itYS9JnM7vQAAAAAAAAAA2vCNvVwfL7oTyJc6YGzGNcQT/rre6q+5AACAPwAAgD8a8gW9uP6qudiRpLrzRSS2lnSiOzW0wzkAAIA/AACAPzMWVr2u9YG6a90SOkSSBjVwkz67an8ouQAAgD8AAIA/zQKPPVwzVLpr9mw6IrngMxgCWztXJom5AACAPwAAgD+aYD69AmjePpULJb0zOz++WOiGvAslXj0AAAAAAAAAAJpavz1I/4S60l8mPMR/h7U/47a6675/tAAAAAAAAIA/ZqLCOwqfDrtsTA490VqvPPsPMTzFGpa9AACAPwAAgD/N3rk8H4WFNi0PcLqNxDe2ugyotlpmjTkAAIA/AACAPwPCUb5t3IY/S2blvruIlL6bU3i+Bke8vQAAAAAAAAAApsCXvoVYPT8hLQu8RsmRvtKZBLzHzke9AAAAAAAAAABAO4W94S6Guv3pgTvCrhS22C1tO3wlCrUAAIA/AACAP83sezykACC5UekMvIoMhzc/7ji7sPnwtgAAgD8AAIA/AF5hvRQelbr/wi+6oea5teFUCbvPdko5AACAPwAAgD8Ae6W8hbO+uSJmcjsFmoo4dRy2O4KnEroAAIA/AACAP+bzNb6cPG68CvsqO+OMpzlENdY9he1rugAAgD8AAIA/GuIDvRREkLq3IZi4mh/hMp1+RrsLoqw3AACAPwAAgD9mNum8Kbg3uvra/7kGjWe1sTePO6C6EzkAAIA/AACAP80IpTxxXUm5cOHPOqBQljWG3iu7daj1uQAAgD8AAIA/DRSLPdfzHrmVVNC7J29nNBvPojhVq+CzAACAPwAAgD+NRu29uU+zPxOdbr550YW+1uoNvm8gCrsAAAAAAAAAALNiL724h7E9vW1+vSdBRL5i5R69FbYNvgAAAAAAAAAAc1idvnvxST+klA4+8zGcvt/Z6rxr9vs9AAAAAAAAAADNdGA8lo21P/PZLz+F1Rw+lQFivDpV7r0AAAAAAAAAAObH9L09ima5eDuWPEohErq7k6K7Mo4AOwAAgD8AAIA/M+7tPFKosLl9+Ki4fnHhs+WGHLsjl8Y3AACAPwAAgD9AoUu+g50IP7Uo6T0be1a+tR3zu0lVGTwAAAAAAAAAAGYGGjzssba5A6+HO3mOHjhdXCW7vrDqtwAAgD8AAIA/5jk/PYWj47nSa1M7duuXOHfwuTmjvfq5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUeG3WnTAqMAWyUTegDjAF0lEdAlWrB5C4SYnV9lChoBkdAZRn35eqrBGgHTegDaAhHQJVtNh2GIsR1fZQoaAZHQGDLgj6eoUBoB03oA2gIR0CVbzQVbiZOdX2UKGgGR0BhzIKYzBRAaAdN6ANoCEdAlXBnUc4o7XV9lChoBkdAYAhNxlxwQ2gHTegDaAhHQJVy2/L1VYJ1fZQoaAZHQF9934Kx9ohoB03oA2gIR0CVeG2s7uD0dX2UKGgGR0Bgrg51eSjhaAdN6ANoCEdAlXlWfXf643V9lChoBkdAXXtW912aD2gHTegDaAhHQJV6am3vx6R1fZQoaAZHQGKOitRvWH1oB03oA2gIR0CVfPFV1fVqdX2UKGgGR0Bj+Oc6NlyzaAdN6ANoCEdAlX8SiRGMGXV9lChoBkdAX54qPOpsGmgHTegDaAhHQJV/tQtSQ5p1fZQoaAZHQGJKanaWX1JoB03oA2gIR0CVgZk1uR9xdX2UKGgGR0BAsyzw+dK/aAdL52gIR0CVggZuAI6bdX2UKGgGR0BC7++VTrE+aAdL1mgIR0CVgl4x1xKhdX2UKGgGR0BkMjQ/oq0/aAdN6ANoCEdAlYeQ4sEq2HV9lChoBkdAYoz4B3iaRmgHTegDaAhHQJWJvQ2MsH11fZQoaAZHQFtEkFOfukVoB03oA2gIR0CVkIQ5WBBidX2UKGgGR0BlYKh11W8zaAdN6ANoCEdAlZIRbwBo3HV9lChoBkdAYb1f2saKk2gHTegDaAhHQJWVcF3Y+St1fZQoaAZHQGLvoWYWtU5oB03oA2gIR0CVmuaS9ugpdX2UKGgGR0BcUZqh11W9aAdN6ANoCEdAlaQW/BWPtHV9lChoBkdAYbgbExZdOmgHTegDaAhHQJWn+yKNyYJ1fZQoaAZHQGHqvY4ACGNoB03oA2gIR0CVqWu5jH4odX2UKGgGR0BeekPczqKQaAdN6ANoCEdAlamjabnX/nV9lChoBkdAYWrw97ngYWgHTegDaAhHQJWzOtYB/7V1fZQoaAZHQGEX25xzaK1oB03oA2gIR0CVs61xsEaEdX2UKGgGR0BiMmNLlFMJaAdN6ANoCEdAlbgB1gYxcnV9lChoBkdAZTjHggow22gHTegDaAhHQJW9HhBJI2B1fZQoaAZHQGQl/+85CF9oB03oA2gIR0CVv1kI5YHPdX2UKGgGR0BjCvVf/m1ZaAdN6ANoCEdAlcCZK3/gi3V9lChoBkdAZOkR/3Fkx2gHTegDaAhHQJXEC4LCvX91fZQoaAZHQGFfFqJuVHFoB03oA2gIR0CVxFrGR3eOdX2UKGgGR0BfcN9YwIt2aAdN6ANoCEdAlcd4icG1QnV9lChoBkdAYV+QhfShJ2gHTegDaAhHQJXj3cN6PbR1fZQoaAZHQFw9am4y44JoB03oA2gIR0CV5BKDkELZdX2UKGgGR0Bgq1jiGWUsaAdN6ANoCEdAlem8ir1dxHV9lChoBkdAXSLxd6cAimgHTegDaAhHQJXsY6QvHtF1fZQoaAZHQFol36hxo7FoB03oA2gIR0CV8kBuXNTtdX2UKGgGR0BiEwq/dqL1aAdN6ANoCEdAlfM5zT4L1HV9lChoBkdAZBN2tdRiw2gHTegDaAhHQJX0XgqEvkB1fZQoaAZHQGLbZAIIF/xoB03oA2gIR0CV9vvy9VWCdX2UKGgGR0Baotgnc+JQaAdN6ANoCEdAlfkx8QZn+XV9lChoBkdAXYj0e2d/a2gHTegDaAhHQJX50b+98JF1fZQoaAZHQF8V58jRlYloB03oA2gIR0CV+8OwgTysdX2UKGgGR0BiHLb8FY+0aAdN6ANoCEdAlfw0sWfseHV9lChoBkdAZFnY1YQrc2gHTegDaAhHQJX8jlV94NZ1fZQoaAZHQF3ILA57w8ZoB03oA2gIR0CWAZahYeT3dX2UKGgGR0BiUBjlPrOaaAdN6ANoCEdAlgOpyZKFqXV9lChoBkdAXszLmp2lmGgHTegDaAhHQJYKB7XxvvV1fZQoaAZHQGSfOQZGax5oB03oA2gIR0CWC3Fqi48VdX2UKGgGR0BblbqIJqqPaAdN6ANoCEdAlg5lrl/6PHV9lChoBkdAYKsXkYGdJGgHTegDaAhHQJYTFTwUg0V1fZQoaAZHQGJrwbMotthoB03oA2gIR0CWGvmuDBdldX2UKGgGR0BiZhRKpT/AaAdN6ANoCEdAlh5haX8fm3V9lChoBkdAYPYC3gDRt2gHTegDaAhHQJYfnb9If8x1fZQoaAZHQGJ3brkbPyFoB03oA2gIR0CWH9HUMG5ddX2UKGgGR0Bl9jDbah6CaAdN6ANoCEdAlidzkZJkG3V9lChoBkdAY5whhYvFnGgHTegDaAhHQJYn2PcSGrV1fZQoaAZHQGEq4TbnHNpoB03oA2gIR0CWK4pi7TUidX2UKGgGR0BgCTfP5YYBaAdN6ANoCEdAli/1pGnXNHV9lChoBkdAYnJEVFhG6WgHTegDaAhHQJYx5Ew35vd1fZQoaAZHQF3zZgG8mKJoB03oA2gIR0CWMvpcX3xndX2UKGgGR0Bl/NcIJJGwaAdN6ANoCEdAljYK3AmAsnV9lChoBkdAXZRMpPRAr2gHTegDaAhHQJY2UpLEk0J1fZQoaAZHQGQkc7p3X7NoB03oA2gIR0CWOQ4SpR4ydX2UKGgGR0BgSb4QBgeBaAdN6ANoCEdAlj6N9QXQ+nV9lChoBkdAYhbhoduHe2gHTegDaAhHQJY+u1PWQOp1fZQoaAZHQE6aVsUIsy1oB0u5aAhHQJZYd1q33Ht1fZQoaAZHQGK4YmTkhidoB03oA2gIR0CWWk84PwuvdX2UKGgGR0Bju+WjXWe6aAdN6ANoCEdAllysRDkU9XV9lChoBkdAYxanqFAVwmgHTegDaAhHQJZh1llK9PF1fZQoaAZHQGEzQGfPHDJoB03oA2gIR0CWYrD/VAiWdX2UKGgGR0BlBZT2nKnvaAdN6ANoCEdAlmOrAP/aQHV9lChoBkdAYJOiD/VAiWgHTegDaAhHQJZl7jp9qlB1fZQoaAZHQGYrF0PpY9xoB03oA2gIR0CWZ9+zdDYzdX2UKGgGR0BlkuFYdQwcaAdN6ANoCEdAlmhwZCOWB3V9lChoBkdAZlttO2y9mGgHTegDaAhHQJZqHuy/sVt1fZQoaAZHQGPiVwo9cKRoB03oA2gIR0CWaoDRMN+cdX2UKGgGR0BknaFuejEfaAdN6ANoCEdAlmrOTA31jHV9lChoBkdAZstbKzRhMWgHTegDaAhHQJZvOOAAhjh1fZQoaAZHQGIl1lPJq7BoB03oA2gIR0CWcRJ9AooedX2UKGgGR0BjHif16E8JaAdN6ANoCEdAlnb5GOMl1XV9lChoBkdAY1nHd43WF2gHTegDaAhHQJZ4S+Cbtqp1fZQoaAZHQGBVwLux8lZoB03oA2gIR0CWeyNke6qbdX2UKGgGR0Bkt7SVnmJWaAdN6ANoCEdAln/D4k/r0XV9lChoBkdAZJ8HsTnJT2gHTegDaAhHQJaHtpj+aSd1fZQoaAZHQGJ8uFg2IftoB03oA2gIR0CWix5Sm65HdX2UKGgGR0Bh7h2+wkgPaAdN6ANoCEdAloxao2n89HV9lChoBkdAYJg+HJtBOmgHTegDaAhHQJaMiXC0ngJ1fZQoaAZHQGDlI7muDBdoB03oA2gIR0CWlCAZKnNxdX2UKGgGR0BkbWLk0aZQaAdN6ANoCEdAlpSAjMV1wHV9lChoBkdAZVs+NcW0q2gHTegDaAhHQJaYHR6Ww/x1fZQoaAZHQGOKVeKKpDNoB03oA2gIR0CWnIQyAQQMdX2UKGgGR0BiTUhJRO1waAdN6ANoCEdAlp+LpRoAXHV9lChoBkdAZAsujASFoWgHTegDaAhHQJairm+0w8J1fZQoaAZHQFxnCROk+HJoB03oA2gIR0CWovhRIjGDdX2UKGgGR0Bi6hC4SYgJaAdN6ANoCEdAlqXXLvCuU3V9lChoBkdAZkoL5ylvZWgHTegDaAhHQJarpY+0PYp1fZQoaAZHQF2gehwl0HRoB03oA2gIR0CWq9ZZB9kSdX2UKGgGR0Bmf+QdS2piaAdN6ANoCEdAlq91nIyTIXVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 124,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 32,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8107cd52424928c25c0574167d13c4c02e9e9a68270633abdab509827d335c1
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3092662efa5b2a313551a2f6832cc073c7e95900b80aa64b682991c42dc171f8
|
3 |
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
- OS: Linux-
|
2 |
- Python: 3.10.14
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.0.post304
|
@@ -6,3 +6,4 @@
|
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
|
1 |
+
- OS: Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35 # 1 SMP Tue Jun 18 14:00:06 UTC 2024
|
2 |
- Python: 3.10.14
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.0.post304
|
|
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 254.4437625, "std_reward": 27.928686032131083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-19T12:11:15.251630"}
|