Upload PPO LunarLander-v2 trained agent
Browse files- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:978db881a4b02237669bdf0b8dafcfd2bea67e7013f3f123d722a67bc5bf0219
|
3 |
+
size 146787
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x165282200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x165282290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x165282320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1652823b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x165282440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x1652824d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x165282560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x1652825f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x165282680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x165282710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x1652827a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x165284f40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 65536,
|
46 |
+
"_total_timesteps": 50000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1668526154349070000,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPd/T2Ar3M/kpePPrMRX78aWkc+20xUPgAAAAAAAAAAZp36PjtYSj/+6Ao/x2Juv3fWTD/ldm4+AAAAAAAAAADaaPk9LZVhPwOlQj383kS/jgxcPp4jGT4AAAAAAAAAAM9NBb+ITsM9u7fZvuMtur8nXw2/bmravgAAAAAAAAAAnuGOvobngj/WGZE9Uc9Xv1hrgL9YVTm+AAAAAAAAAACGIzi+sSO0P1k9E7+xyYG+JUVMPc0hab4AAAAAAAAAAFoWAz/rOlQ/qjilPu/7hL+xdj0/iK20PQAAAAAAAAAAkKJSvoCLoT+ycrS+A+L4vg7CC77GNmO+AAAAAAAAAAA2iIc+waDMP4LTBD9qYrO9zR1TPv6SgD4AAAAAAAAAABrmQL7jTqc/AYgwv82K576AWO87MkQwOwAAAAAAAAAAeginvlv2Az9L0TO/L4OAv1HuHj5aoJk6AAAAAAAAAABD8CQ/etcNPnhMOz5fU4+/kxZoP/b2aj4AAAAAAAAAAFqTiL5beyg/KgijPWGGer/hToC/iSS2vgAAAAAAAAAAGlSnvTdirD9aJ+C9DfgJv2E34r7Vkna9AAAAAAAAAACAJAC9LeiHP7VRLL6H2jS/Y7wDPkoTOj4AAAAAAAAAAAAXUD321pE/9cXWPdUbI78ivx49NhmrvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi6iJPh9KVsCUhpRSlIwBbJRLXIwBdJRHQCPCTyJ9Aop1fZQoaAZoCWgPQwhTsMbZdDBhwJSGlFKUaBVLd2gWR0Ajxq0MPSUkdX2UKGgGaAloD0MIPxnjw+yWW8CUhpRSlGgVS1RoFkdAI8m5+YtxuXV9lChoBmgJaA9DCC3RWWYRjVLAlIaUUpRoFUuJaBZHQCPO1F6Rhc91fZQoaAZoCWgPQwgeNLvurSNRwJSGlFKUaBVLQ2gWR0Aj0aAnUlRhdX2UKGgGaAloD0MIAW4WL9ZcccCUhpRSlGgVS3xoFkdAI9T987ZFonV9lChoBmgJaA9DCESKARJNj1jAlIaUUpRoFUtsaBZHQCPZAprk8zR1fZQoaAZoCWgPQwhRTUnWYZFnwJSGlFKUaBVLX2gWR0Aj2jKxLTQWdX2UKGgGaAloD0MIbqRskTT1ZcCUhpRSlGgVS2toFkdAI9wNsnAqNXV9lChoBmgJaA9DCPAxWHGqjGLAlIaUUpRoFUtXaBZHQCPjiS7oSth1fZQoaAZoCWgPQwjFG5lH/pZYwJSGlFKUaBVLhWgWR0Aj8AskIHC5dX2UKGgGaAloD0MIPZzAdFpOXMCUhpRSlGgVS2NoFkdAI/JqIrOJL3V9lChoBmgJaA9DCGkAb4GEzWDAlIaUUpRoFUtWaBZHQCP5CIDYAbR1fZQoaAZoCWgPQwgaTpmb72VqwJSGlFKUaBVLdWgWR0Aj+iEg4ffXdX2UKGgGaAloD0MIiEhNu5gTW8CUhpRSlGgVS0RoFkdAJACSaEzwdHV9lChoBmgJaA9DCK4s0VlmD1fAlIaUUpRoFUtXaBZHQCQE3Kji4rl1fZQoaAZoCWgPQwhRweEFERdPwJSGlFKUaBVLR2gWR0AkEUmD15B1dX2UKGgGaAloD0MILc4Y5kTwcsCUhpRSlGgVS11oFkdAJBJGOMl1KXV9lChoBmgJaA9DCJzFi4UhjkbAlIaUUpRoFUtOaBZHQCQY176YVqN1fZQoaAZoCWgPQwidvMgE/AhiwJSGlFKUaBVLaWgWR0AkGPpY9xIbdX2UKGgGaAloD0MIs+xJYHPrXsCUhpRSlGgVS3xoFkdAJBwqRU3n6nV9lChoBmgJaA9DCCmxa3u7bVnAlIaUUpRoFUtgaBZHQCQjj5sTFl11fZQoaAZoCWgPQwjReCKI8wNQwJSGlFKUaBVLWmgWR0AkJagVXV9XdX2UKGgGaAloD0MIDYy8rInhU8CUhpRSlGgVS2hoFkdAJCcD0UXYUXV9lChoBmgJaA9DCAKdSZuqUFrAlIaUUpRoFUtXaBZHQCQryDqW1MN1fZQoaAZoCWgPQwhftp22RjBCwJSGlFKUaBVLR2gWR0AkK/SH/LkkdX2UKGgGaAloD0MIZw+0AkOPWcCUhpRSlGgVS3JoFkdAJC0EX+ERJ3V9lChoBmgJaA9DCPJfIAgQ+WDAlIaUUpRoFUtdaBZHQCRFF2FFlTZ1fZQoaAZoCWgPQwjowHKEDJ1WwJSGlFKUaBVLU2gWR0AkSVdHDrJKdX2UKGgGaAloD0MI7Sk5J/ZGWcCUhpRSlGgVS0ZoFkdAJFWDg62fCnV9lChoBmgJaA9DCHkgskiT42bAlIaUUpRoFUt4aBZHQCRVqUNayKN1fZQoaAZoCWgPQwibG9MTlkNTwJSGlFKUaBVLcGgWR0AkVs/IKc/ddX2UKGgGaAloD0MIzZGVXwZtWcCUhpRSlGgVS0JoFkdAJFyQPqcEvHV9lChoBmgJaA9DCBWqm4u/kmPAlIaUUpRoFUtaaBZHQCRcZ9/jKgZ1fZQoaAZoCWgPQwgQW3o01YNVwJSGlFKUaBVLXWgWR0AkX3Hq/ub7dX2UKGgGaAloD0MIz4dnCTJEUsCUhpRSlGgVS0poFkdAJGHJT2nKn3V9lChoBmgJaA9DCD1EozuIcG3AlIaUUpRoFUt6aBZHQCRlr9ETg2t1fZQoaAZoCWgPQwghBrr2BbJawJSGlFKUaBVLSmgWR0AkaLP2PDHfdX2UKGgGaAloD0MIiNaKNsf0VcCUhpRSlGgVS01oFkdAJGo7eVLSNXV9lChoBmgJaA9DCIuk3ehjNmHAlIaUUpRoFUttaBZHQCRxiqhlDnh1fZQoaAZoCWgPQwgIHt/eNfZpwJSGlFKUaBVLYWgWR0AkcbGWD6FedX2UKGgGaAloD0MIqMXgYdpKZcCUhpRSlGgVS3RoFkdAJHZmRNh3JXV9lChoBmgJaA9DCOiGpux0LWDAlIaUUpRoFUtnaBZHQCR8LncL0Bh1fZQoaAZoCWgPQwjaVx6kpy1gwJSGlFKUaBVLXmgWR0AknqfOD8LsdX2UKGgGaAloD0MIb2WJzrLVYsCUhpRSlGgVS3RoFkdAJKc14xDb8HV9lChoBmgJaA9DCFhTWRR2glLAlIaUUpRoFUtnaBZHQCSpkqc3EQ51fZQoaAZoCWgPQwgKndfYpWltwJSGlFKUaBVLWmgWR0AkrtCRfWtmdX2UKGgGaAloD0MIHQHcLF7QW8CUhpRSlGgVS2VoFkdAJK7qyGBWgnV9lChoBmgJaA9DCKZHUz2ZLlfAlIaUUpRoFUttaBZHQCSu1IAfdRB1fZQoaAZoCWgPQwjUKCSZ1fVQwJSGlFKUaBVLTGgWR0AksQjD8+A3dX2UKGgGaAloD0MILLr1mh6ZWcCUhpRSlGgVS2NoFkdAJLD7Q9ic5XV9lChoBmgJaA9DCPX3UnjQNl/AlIaUUpRoFUtkaBZHQCS0auOjqOd1fZQoaAZoCWgPQwhPWyOCceVbwJSGlFKUaBVLYGgWR0Akt876pHZsdX2UKGgGaAloD0MIBYcXRKRJXsCUhpRSlGgVS1ZoFkdAJLmRNh3JP3V9lChoBmgJaA9DCFewjXiyiUbAlIaUUpRoFUtRaBZHQCS7CiyprDZ1fZQoaAZoCWgPQwh6GjBI+uwyQJSGlFKUaBVLdmgWR0AkvOzIFNcodX2UKGgGaAloD0MIR5IgXAF7UcCUhpRSlGgVS05oFkdAJL8mKIi1RnV9lChoBmgJaA9DCNLlzeFa8FfAlIaUUpRoFUuUaBZHQCS/PTodMkB1fZQoaAZoCWgPQwhuh4bFKG5vwJSGlFKUaBVLcWgWR0AkxMHKOktVdX2UKGgGaAloD0MIdAmH3uI6UMCUhpRSlGgVS0NoFkdAJOF9jPOY6XV9lChoBmgJaA9DCL5Nf/YjilfAlIaUUpRoFUtUaBZHQCThVMmF8G91fZQoaAZoCWgPQwjEzalkALJVwJSGlFKUaBVLUWgWR0Ak5yBkI5YHdX2UKGgGaAloD0MI1SKimLz1RsCUhpRSlGgVS1BoFkdAJOrf1pTMq3V9lChoBmgJaA9DCLiTiPAvm1TAlIaUUpRoFUtHaBZHQCTroUzsQd11fZQoaAZoCWgPQwjowd1ZuxdawJSGlFKUaBVLUmgWR0Ak7LzwtrbhdX2UKGgGaAloD0MIbAiOy/i8dcCUhpRSlGgVS2BoFkdAJPGa6STyKHV9lChoBmgJaA9DCHO6LCY2KG/AlIaUUpRoFUtYaBZHQCT1hJAdGRV1fZQoaAZoCWgPQwhDVrd6zqxqwJSGlFKUaBVLZmgWR0Ak+/fO2RaHdX2UKGgGaAloD0MIdNAlHHq9UMCUhpRSlGgVS0xoFkdAJP6F/QSi/XV9lChoBmgJaA9DCIbnpWJj5mHAlIaUUpRoFUtqaBZHQCUA0waisXB1fZQoaAZoCWgPQwgk7xzKUGdgwJSGlFKUaBVLZmgWR0AlCTakAPupdX2UKGgGaAloD0MIjgJEwQzyasCUhpRSlGgVS2loFkdAJQ4SQHRkVnV9lChoBmgJaA9DCKVMamhD74DAlIaUUpRoFUuDaBZHQCUeRDCxeLN1fZQoaAZoCWgPQwhPWOIBZYdrwJSGlFKUaBVLfWgWR0AlHjBl+VkddX2UKGgGaAloD0MInE8dq5QRZsCUhpRSlGgVS4poFkdAJSJ4SpR4yHV9lChoBmgJaA9DCLfRAN4CDVbAlIaUUpRoFUtTaBZHQCUuRV6u4gB1fZQoaAZoCWgPQwhzDwnf+5VbwJSGlFKUaBVLZmgWR0AlM0tyxRl6dX2UKGgGaAloD0MI9bwbCwp2XsCUhpRSlGgVS1xoFkdAJTRoZhrnDHV9lChoBmgJaA9DCGixFMlX61XAlIaUUpRoFUtNaBZHQCU5pvgm7at1fZQoaAZoCWgPQwjLD1zlCdtcwJSGlFKUaBVLW2gWR0AlOozeoDPodX2UKGgGaAloD0MICW6kbJGVXsCUhpRSlGgVS3BoFkdAJUEhzNliB3V9lChoBmgJaA9DCEG62LRSzGLAlIaUUpRoFUtiaBZHQCVN/4Irvst1fZQoaAZoCWgPQwi9HeG04PppwJSGlFKUaBVLhmgWR0AlTiF0xM37dX2UKGgGaAloD0MI746M1eZ3Z8CUhpRSlGgVS15oFkdAJVZuZTho/XV9lChoBmgJaA9DCNrKS/4ndzlAlIaUUpRoFUuFaBZHQCVXfwZwXIl1fZQoaAZoCWgPQwjgSnZsBBZawJSGlFKUaBVLXGgWR0AlWe/5+H8CdX2UKGgGaAloD0MIBvaYSGlkTsCUhpRSlGgVS0ZoFkdAJVxvegte2XV9lChoBmgJaA9DCFngK7r1/VrAlIaUUpRoFUtPaBZHQCVfXTVlPJt1fZQoaAZoCWgPQwhBgAwdO11XwJSGlFKUaBVLQWgWR0AlaHBUJfICdX2UKGgGaAloD0MIWIy61l7BbcCUhpRSlGgVS4VoFkdAJWwSSNfgJnV9lChoBmgJaA9DCPXZAdcVIVPAlIaUUpRoFUtQaBZHQCVvuZ1FH8V1fZQoaAZoCWgPQwgPe6GAbWdqwJSGlFKUaBVLp2gWR0AlfE3sHB1tdX2UKGgGaAloD0MIlUkNbQAnWcCUhpRSlGgVS3VoFkdAJX1hLGrCFnV9lChoBmgJaA9DCNY1Wg70wVXAlIaUUpRoFUtSaBZHQCV9Xo1UEPl1fZQoaAZoCWgPQwhfs1w2OgldwJSGlFKUaBVLTmgWR0AlgL6UJOWTdX2UKGgGaAloD0MI/FBpxMw6Q8CUhpRSlGgVS0FoFkdAJYJLVWjoIXV9lChoBmgJaA9DCO2A64oZeGfAlIaUUpRoFUtoaBZHQCWINkOI68x1fZQoaAZoCWgPQwgtQUZAhdtTwJSGlFKUaBVLZ2gWR0Ali/HHWBjGdX2UKGgGaAloD0MIBhIUP8apVMCUhpRSlGgVS0doFkdAJY5/kNnXd3V9lChoBmgJaA9DCBN/FHXmbF3AlIaUUpRoFUtJaBZHQCWPHzYmLLp1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 16,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4110b4221621b1a5a327977719a5d55b72d612a584ba7e47cb5b124a2a8f951
|
3 |
+
size 87545
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5a970aec6cbcbe9d94ce6c14f7d1ed94c710c57e3af9807c598842f3af2e951
|
3 |
+
size 43073
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000
|
2 |
+
Python: 3.10.6
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.4
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -189.66 +/- 26.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x165282200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x165282290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x165282320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1652823b0>", "_build": "<function ActorCriticPolicy._build at 0x165282440>", "forward": "<function ActorCriticPolicy.forward at 0x1652824d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x165282560>", "_predict": "<function ActorCriticPolicy._predict at 0x1652825f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x165282680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x165282710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1652827a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x165284f40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668526154349070000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPd/T2Ar3M/kpePPrMRX78aWkc+20xUPgAAAAAAAAAAZp36PjtYSj/+6Ao/x2Juv3fWTD/ldm4+AAAAAAAAAADaaPk9LZVhPwOlQj383kS/jgxcPp4jGT4AAAAAAAAAAM9NBb+ITsM9u7fZvuMtur8nXw2/bmravgAAAAAAAAAAnuGOvobngj/WGZE9Uc9Xv1hrgL9YVTm+AAAAAAAAAACGIzi+sSO0P1k9E7+xyYG+JUVMPc0hab4AAAAAAAAAAFoWAz/rOlQ/qjilPu/7hL+xdj0/iK20PQAAAAAAAAAAkKJSvoCLoT+ycrS+A+L4vg7CC77GNmO+AAAAAAAAAAA2iIc+waDMP4LTBD9qYrO9zR1TPv6SgD4AAAAAAAAAABrmQL7jTqc/AYgwv82K576AWO87MkQwOwAAAAAAAAAAeginvlv2Az9L0TO/L4OAv1HuHj5aoJk6AAAAAAAAAABD8CQ/etcNPnhMOz5fU4+/kxZoP/b2aj4AAAAAAAAAAFqTiL5beyg/KgijPWGGer/hToC/iSS2vgAAAAAAAAAAGlSnvTdirD9aJ+C9DfgJv2E34r7Vkna9AAAAAAAAAACAJAC9LeiHP7VRLL6H2jS/Y7wDPkoTOj4AAAAAAAAAAAAXUD321pE/9cXWPdUbI78ivx49NhmrvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi6iJPh9KVsCUhpRSlIwBbJRLXIwBdJRHQCPCTyJ9Aop1fZQoaAZoCWgPQwhTsMbZdDBhwJSGlFKUaBVLd2gWR0Ajxq0MPSUkdX2UKGgGaAloD0MIPxnjw+yWW8CUhpRSlGgVS1RoFkdAI8m5+YtxuXV9lChoBmgJaA9DCC3RWWYRjVLAlIaUUpRoFUuJaBZHQCPO1F6Rhc91fZQoaAZoCWgPQwgeNLvurSNRwJSGlFKUaBVLQ2gWR0Aj0aAnUlRhdX2UKGgGaAloD0MIAW4WL9ZcccCUhpRSlGgVS3xoFkdAI9T987ZFonV9lChoBmgJaA9DCESKARJNj1jAlIaUUpRoFUtsaBZHQCPZAprk8zR1fZQoaAZoCWgPQwhRTUnWYZFnwJSGlFKUaBVLX2gWR0Aj2jKxLTQWdX2UKGgGaAloD0MIbqRskTT1ZcCUhpRSlGgVS2toFkdAI9wNsnAqNXV9lChoBmgJaA9DCPAxWHGqjGLAlIaUUpRoFUtXaBZHQCPjiS7oSth1fZQoaAZoCWgPQwjFG5lH/pZYwJSGlFKUaBVLhWgWR0Aj8AskIHC5dX2UKGgGaAloD0MIPZzAdFpOXMCUhpRSlGgVS2NoFkdAI/JqIrOJL3V9lChoBmgJaA9DCGkAb4GEzWDAlIaUUpRoFUtWaBZHQCP5CIDYAbR1fZQoaAZoCWgPQwgaTpmb72VqwJSGlFKUaBVLdWgWR0Aj+iEg4ffXdX2UKGgGaAloD0MIiEhNu5gTW8CUhpRSlGgVS0RoFkdAJACSaEzwdHV9lChoBmgJaA9DCK4s0VlmD1fAlIaUUpRoFUtXaBZHQCQE3Kji4rl1fZQoaAZoCWgPQwhRweEFERdPwJSGlFKUaBVLR2gWR0AkEUmD15B1dX2UKGgGaAloD0MILc4Y5kTwcsCUhpRSlGgVS11oFkdAJBJGOMl1KXV9lChoBmgJaA9DCJzFi4UhjkbAlIaUUpRoFUtOaBZHQCQY176YVqN1fZQoaAZoCWgPQwidvMgE/AhiwJSGlFKUaBVLaWgWR0AkGPpY9xIbdX2UKGgGaAloD0MIs+xJYHPrXsCUhpRSlGgVS3xoFkdAJBwqRU3n6nV9lChoBmgJaA9DCCmxa3u7bVnAlIaUUpRoFUtgaBZHQCQjj5sTFl11fZQoaAZoCWgPQwjReCKI8wNQwJSGlFKUaBVLWmgWR0AkJagVXV9XdX2UKGgGaAloD0MIDYy8rInhU8CUhpRSlGgVS2hoFkdAJCcD0UXYUXV9lChoBmgJaA9DCAKdSZuqUFrAlIaUUpRoFUtXaBZHQCQryDqW1MN1fZQoaAZoCWgPQwhftp22RjBCwJSGlFKUaBVLR2gWR0AkK/SH/LkkdX2UKGgGaAloD0MIZw+0AkOPWcCUhpRSlGgVS3JoFkdAJC0EX+ERJ3V9lChoBmgJaA9DCPJfIAgQ+WDAlIaUUpRoFUtdaBZHQCRFF2FFlTZ1fZQoaAZoCWgPQwjowHKEDJ1WwJSGlFKUaBVLU2gWR0AkSVdHDrJKdX2UKGgGaAloD0MI7Sk5J/ZGWcCUhpRSlGgVS0ZoFkdAJFWDg62fCnV9lChoBmgJaA9DCHkgskiT42bAlIaUUpRoFUt4aBZHQCRVqUNayKN1fZQoaAZoCWgPQwibG9MTlkNTwJSGlFKUaBVLcGgWR0AkVs/IKc/ddX2UKGgGaAloD0MIzZGVXwZtWcCUhpRSlGgVS0JoFkdAJFyQPqcEvHV9lChoBmgJaA9DCBWqm4u/kmPAlIaUUpRoFUtaaBZHQCRcZ9/jKgZ1fZQoaAZoCWgPQwgQW3o01YNVwJSGlFKUaBVLXWgWR0AkX3Hq/ub7dX2UKGgGaAloD0MIz4dnCTJEUsCUhpRSlGgVS0poFkdAJGHJT2nKn3V9lChoBmgJaA9DCD1EozuIcG3AlIaUUpRoFUt6aBZHQCRlr9ETg2t1fZQoaAZoCWgPQwghBrr2BbJawJSGlFKUaBVLSmgWR0AkaLP2PDHfdX2UKGgGaAloD0MIiNaKNsf0VcCUhpRSlGgVS01oFkdAJGo7eVLSNXV9lChoBmgJaA9DCIuk3ehjNmHAlIaUUpRoFUttaBZHQCRxiqhlDnh1fZQoaAZoCWgPQwgIHt/eNfZpwJSGlFKUaBVLYWgWR0AkcbGWD6FedX2UKGgGaAloD0MIqMXgYdpKZcCUhpRSlGgVS3RoFkdAJHZmRNh3JXV9lChoBmgJaA9DCOiGpux0LWDAlIaUUpRoFUtnaBZHQCR8LncL0Bh1fZQoaAZoCWgPQwjaVx6kpy1gwJSGlFKUaBVLXmgWR0AknqfOD8LsdX2UKGgGaAloD0MIb2WJzrLVYsCUhpRSlGgVS3RoFkdAJKc14xDb8HV9lChoBmgJaA9DCFhTWRR2glLAlIaUUpRoFUtnaBZHQCSpkqc3EQ51fZQoaAZoCWgPQwgKndfYpWltwJSGlFKUaBVLWmgWR0AkrtCRfWtmdX2UKGgGaAloD0MIHQHcLF7QW8CUhpRSlGgVS2VoFkdAJK7qyGBWgnV9lChoBmgJaA9DCKZHUz2ZLlfAlIaUUpRoFUttaBZHQCSu1IAfdRB1fZQoaAZoCWgPQwjUKCSZ1fVQwJSGlFKUaBVLTGgWR0AksQjD8+A3dX2UKGgGaAloD0MILLr1mh6ZWcCUhpRSlGgVS2NoFkdAJLD7Q9ic5XV9lChoBmgJaA9DCPX3UnjQNl/AlIaUUpRoFUtkaBZHQCS0auOjqOd1fZQoaAZoCWgPQwhPWyOCceVbwJSGlFKUaBVLYGgWR0Akt876pHZsdX2UKGgGaAloD0MIBYcXRKRJXsCUhpRSlGgVS1ZoFkdAJLmRNh3JP3V9lChoBmgJaA9DCFewjXiyiUbAlIaUUpRoFUtRaBZHQCS7CiyprDZ1fZQoaAZoCWgPQwh6GjBI+uwyQJSGlFKUaBVLdmgWR0AkvOzIFNcodX2UKGgGaAloD0MIR5IgXAF7UcCUhpRSlGgVS05oFkdAJL8mKIi1RnV9lChoBmgJaA9DCNLlzeFa8FfAlIaUUpRoFUuUaBZHQCS/PTodMkB1fZQoaAZoCWgPQwhuh4bFKG5vwJSGlFKUaBVLcWgWR0AkxMHKOktVdX2UKGgGaAloD0MIdAmH3uI6UMCUhpRSlGgVS0NoFkdAJOF9jPOY6XV9lChoBmgJaA9DCL5Nf/YjilfAlIaUUpRoFUtUaBZHQCThVMmF8G91fZQoaAZoCWgPQwjEzalkALJVwJSGlFKUaBVLUWgWR0Ak5yBkI5YHdX2UKGgGaAloD0MI1SKimLz1RsCUhpRSlGgVS1BoFkdAJOrf1pTMq3V9lChoBmgJaA9DCLiTiPAvm1TAlIaUUpRoFUtHaBZHQCTroUzsQd11fZQoaAZoCWgPQwjowd1ZuxdawJSGlFKUaBVLUmgWR0Ak7LzwtrbhdX2UKGgGaAloD0MIbAiOy/i8dcCUhpRSlGgVS2BoFkdAJPGa6STyKHV9lChoBmgJaA9DCHO6LCY2KG/AlIaUUpRoFUtYaBZHQCT1hJAdGRV1fZQoaAZoCWgPQwhDVrd6zqxqwJSGlFKUaBVLZmgWR0Ak+/fO2RaHdX2UKGgGaAloD0MIdNAlHHq9UMCUhpRSlGgVS0xoFkdAJP6F/QSi/XV9lChoBmgJaA9DCIbnpWJj5mHAlIaUUpRoFUtqaBZHQCUA0waisXB1fZQoaAZoCWgPQwgk7xzKUGdgwJSGlFKUaBVLZmgWR0AlCTakAPupdX2UKGgGaAloD0MIjgJEwQzyasCUhpRSlGgVS2loFkdAJQ4SQHRkVnV9lChoBmgJaA9DCKVMamhD74DAlIaUUpRoFUuDaBZHQCUeRDCxeLN1fZQoaAZoCWgPQwhPWOIBZYdrwJSGlFKUaBVLfWgWR0AlHjBl+VkddX2UKGgGaAloD0MInE8dq5QRZsCUhpRSlGgVS4poFkdAJSJ4SpR4yHV9lChoBmgJaA9DCLfRAN4CDVbAlIaUUpRoFUtTaBZHQCUuRV6u4gB1fZQoaAZoCWgPQwhzDwnf+5VbwJSGlFKUaBVLZmgWR0AlM0tyxRl6dX2UKGgGaAloD0MI9bwbCwp2XsCUhpRSlGgVS1xoFkdAJTRoZhrnDHV9lChoBmgJaA9DCGixFMlX61XAlIaUUpRoFUtNaBZHQCU5pvgm7at1fZQoaAZoCWgPQwjLD1zlCdtcwJSGlFKUaBVLW2gWR0AlOozeoDPodX2UKGgGaAloD0MICW6kbJGVXsCUhpRSlGgVS3BoFkdAJUEhzNliB3V9lChoBmgJaA9DCEG62LRSzGLAlIaUUpRoFUtiaBZHQCVN/4Irvst1fZQoaAZoCWgPQwi9HeG04PppwJSGlFKUaBVLhmgWR0AlTiF0xM37dX2UKGgGaAloD0MI746M1eZ3Z8CUhpRSlGgVS15oFkdAJVZuZTho/XV9lChoBmgJaA9DCNrKS/4ndzlAlIaUUpRoFUuFaBZHQCVXfwZwXIl1fZQoaAZoCWgPQwjgSnZsBBZawJSGlFKUaBVLXGgWR0AlWe/5+H8CdX2UKGgGaAloD0MIBvaYSGlkTsCUhpRSlGgVS0ZoFkdAJVxvegte2XV9lChoBmgJaA9DCFngK7r1/VrAlIaUUpRoFUtPaBZHQCVfXTVlPJt1fZQoaAZoCWgPQwhBgAwdO11XwJSGlFKUaBVLQWgWR0AlaHBUJfICdX2UKGgGaAloD0MIWIy61l7BbcCUhpRSlGgVS4VoFkdAJWwSSNfgJnV9lChoBmgJaA9DCPXZAdcVIVPAlIaUUpRoFUtQaBZHQCVvuZ1FH8V1fZQoaAZoCWgPQwgPe6GAbWdqwJSGlFKUaBVLp2gWR0AlfE3sHB1tdX2UKGgGaAloD0MIlUkNbQAnWcCUhpRSlGgVS3VoFkdAJX1hLGrCFnV9lChoBmgJaA9DCNY1Wg70wVXAlIaUUpRoFUtSaBZHQCV9Xo1UEPl1fZQoaAZoCWgPQwhfs1w2OgldwJSGlFKUaBVLTmgWR0AlgL6UJOWTdX2UKGgGaAloD0MI/FBpxMw6Q8CUhpRSlGgVS0FoFkdAJYJLVWjoIXV9lChoBmgJaA9DCO2A64oZeGfAlIaUUpRoFUtoaBZHQCWINkOI68x1fZQoaAZoCWgPQwgtQUZAhdtTwJSGlFKUaBVLZ2gWR0Ali/HHWBjGdX2UKGgGaAloD0MIBhIUP8apVMCUhpRSlGgVS0doFkdAJY5/kNnXd3V9lChoBmgJaA9DCBN/FHXmbF3AlIaUUpRoFUtJaBZHQCWPHzYmLLp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (457 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -189.65617973801855, "std_reward": 26.696594165748227, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T09:29:32.790859"}
|