pgwi commited on
Commit
b712493
1 Parent(s): 70ddb16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +213 -5
README.md CHANGED
@@ -1,9 +1,217 @@
1
  ---
2
- license: cc-by-4.0
3
  language:
4
- - tr
5
- datasets:
6
- - common_voice
7
  library_name: nemo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
- Try to fine tune the model with Turkish and Portuguese
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  language:
3
+ - en
 
 
4
  library_name: nemo
5
+ datasets:
6
+ - common-voice
7
+ thumbnail: null
8
+ tags:
9
+ - speaker
10
+ - speech
11
+ - audio
12
+ - speaker-verification
13
+ - speaker-recognition
14
+ - speaker-diarization
15
+ - titanet
16
+ - NeMo
17
+ - pytorch
18
+ license: cc-by-4.0
19
+ widget:
20
+ - src: https://huggingface.co/nvidia/speakerverification_en_titanet_large/resolve/main/an255-fash-b.wav
21
+ example_title: Speech sample 1
22
+ - src: https://huggingface.co/nvidia/speakerverification_en_titanet_large/resolve/main/cen7-fash-b.wav
23
+ example_title: Speech sample 2
24
+ model-index:
25
+ - name: speakerverification_en_titanet_large
26
+ results:
27
+ - task:
28
+ name: Speaker Verification
29
+ type: speaker-verification
30
+ dataset:
31
+ name: voxceleb1
32
+ type: voxceleb1-O
33
+ config: clean
34
+ split: test
35
+ args:
36
+ language: en
37
+ metrics:
38
+ - name: Test EER
39
+ type: eer
40
+ value: 0.66
41
+ - task:
42
+ type: Speaker Diarization
43
+ name: speaker-diarization
44
+ dataset:
45
+ name: ami-mixheadset
46
+ type: ami_diarization
47
+ config: oracle-vad-known-number-of-speakers
48
+ split: test
49
+ args:
50
+ language: en
51
+ metrics:
52
+ - name: Test DER
53
+ type: der
54
+ value: 1.73
55
+ - task:
56
+ type: Speaker Diarization
57
+ name: speaker-diarization
58
+ dataset:
59
+ name: ami-lapel
60
+ type: ami_diarization
61
+ config: oracle-vad-known-number-of-speakers
62
+ split: test
63
+ args:
64
+ language: en
65
+ metrics:
66
+ - name: Test DER
67
+ type: der
68
+ value: 2.03
69
+ - task:
70
+ type: Speaker Diarization
71
+ name: speaker-diarization
72
+ dataset:
73
+ name: ch109
74
+ type: callhome_diarization
75
+ config: oracle-vad-known-number-of-speakers
76
+ split: test
77
+ args:
78
+ language: en
79
+ metrics:
80
+ - name: Test DER
81
+ type: der
82
+ value: 1.19
83
+ - task:
84
+ type: Speaker Diarization
85
+ name: speaker-diarization
86
+ dataset:
87
+ name: nist-sre-2000
88
+ type: nist-sre_diarization
89
+ config: oracle-vad-known-number-of-speakers
90
+ split: test
91
+ args:
92
+ language: en
93
+ metrics:
94
+ - name: Test DER
95
+ type: der
96
+ value: 6.73
97
  ---
98
+
99
+ # NVIDIA TitaNet-Large (TR)
100
+
101
+ <style>
102
+ img {
103
+ display: inline;
104
+ }
105
+ </style>
106
+
107
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-TitaNet--Large-lightgrey#model-badge)](#model-architecture)
108
+ | [![Model size](https://img.shields.io/badge/Params-23M-lightgrey#model-badge)](#model-architecture)
109
+ | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
110
+
111
+
112
+ This model extracts speaker embeddings from given speech, which is the backbone for speaker verification and diarization tasks.
113
+ It is a "large" version of TitaNet (around 23M parameters) models.
114
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_recognition/models.html#titanet) for complete architecture details.
115
+
116
+ ## NVIDIA NeMo: Training
117
+
118
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed the latest Pytorch version.
119
+ ```
120
+ pip install nemo_toolkit['all']
121
+ ```
122
+
123
+ ## How to Use this Model
124
+
125
+ The model is available for use in the NeMo toolkit [3] and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
126
+
127
+ ### Automatically instantiate the model
128
+
129
+ ```python
130
+ import nemo.collections.asr as nemo_asr
131
+ speaker_model = nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained("nvidia/speakerverification_en_titanet_large")
132
+ ```
133
+
134
+ ### Embedding Extraction
135
+
136
+ Using
137
+
138
+ ```python
139
+ emb = speaker_model.get_embedding("an255-fash-b.wav")
140
+ ```
141
+
142
+ ### Verifying two utterances (Speaker Verification)
143
+
144
+ Now to check if two audio files are from the same speaker or not, simply do:
145
+
146
+ ```python
147
+ speaker_model.verify_speakers("an255-fash-b.wav","cen7-fash-b.wav")
148
+ ```
149
+
150
+ ### Extracting Embeddings for more audio files
151
+
152
+ To extract embeddings from a bunch of audio files:
153
+
154
+ Write audio files to a `manifest.json` file with lines as in format:
155
+
156
+ ```json
157
+ {"audio_filepath": "<absolute path to dataset>/audio_file.wav", "duration": "duration of file in sec", "label": "speaker_id"}
158
+ ```
159
+
160
+ Then running following script will extract embeddings and writes to current working directory:
161
+ ```shell
162
+ python <NeMo_root>/examples/speaker_tasks/recognition/extract_speaker_embeddings.py --manifest=manifest.json
163
+ ```
164
+
165
+ ### Input
166
+
167
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
168
+
169
+ ### Output
170
+
171
+ This model provides speaker embeddings for an audio file.
172
+
173
+ ## Model Architecture
174
+
175
+ TitaNet model is a depth-wise separable conv1D model [1] for Speaker Verification and diarization tasks. You may find more info on the detail of this model here: [TitaNet-Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_recognition/models.html).
176
+
177
+ ## Training
178
+
179
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/recognition/speaker_reco.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/recognition/conf/titanet-large.yaml).
180
+
181
+ ### Datasets
182
+
183
+ All the models in this collection are trained on a composite dataset comprising several thousand hours of English speech:
184
+
185
+ - common voice (tr)
186
+
187
+ ## Performance
188
+
189
+ Performances of the these models are reported in terms of Equal Error Rate (EER%) on speaker verification evaluation trial files and as Diarization Error Rate (DER%) on diarization test sessions.
190
+
191
+ * Speaker Verification (EER%)
192
+ | Version | Model | Model Size | Common Voice(Turkish) |
193
+ |---------|--------------|-----|---------------|
194
+ | 1.10.0 | TitaNet-Large | 90M | 0.66 |
195
+
196
+ ## Limitations
197
+ This model is trained on both telephonic and non-telephonic speech from voxceleb datasets, Fisher and switch board. If your domain of data differs from trained data or doesnot show relatively good performance consider finetuning for that speech domain.
198
+
199
+ ## NVIDIA Riva: Deployment
200
+
201
+ [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
202
+ Additionally, Riva provides:
203
+
204
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
205
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
206
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
207
+
208
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
209
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
210
+
211
+ ## References
212
+ [1] [TitaNet: Neural Model for Speaker Representation with 1D Depth-wise Separable convolutions and global context](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9746806)
213
+ [2] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
214
+
215
+ ## Licence
216
+
217
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.