Upload 2 files
Browse files- .gitattributes +1 -0
- fine_tune_tianet_tr.ipynb +544 -0
- titanet_finetune_tr.nemo +3 -0
.gitattributes
CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
36 |
data/cv-corpus-15.0-2023-09-08/pt/times.txt filter=lfs diff=lfs merge=lfs -text
|
37 |
data/cv-corpus-15.0-2023-09-08/pt/validated.tsv filter=lfs diff=lfs merge=lfs -text
|
38 |
data/cv-corpus-15.0-2023-09-08/tr/validated.tsv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
36 |
data/cv-corpus-15.0-2023-09-08/pt/times.txt filter=lfs diff=lfs merge=lfs -text
|
37 |
data/cv-corpus-15.0-2023-09-08/pt/validated.tsv filter=lfs diff=lfs merge=lfs -text
|
38 |
data/cv-corpus-15.0-2023-09-08/tr/validated.tsv filter=lfs diff=lfs merge=lfs -text
|
39 |
+
titanet_finetune_tr.nemo filter=lfs diff=lfs merge=lfs -text
|
fine_tune_tianet_tr.ipynb
ADDED
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {},
|
8 |
+
"colab_type": "code",
|
9 |
+
"id": "vnrUh3vuDSRN"
|
10 |
+
},
|
11 |
+
"outputs": [
|
12 |
+
{
|
13 |
+
"name": "stdout",
|
14 |
+
"output_type": "stream",
|
15 |
+
"text": [
|
16 |
+
"The history saving thread hit an unexpected error (DatabaseError('database disk image is malformed')).History will not be written to the database.\n"
|
17 |
+
]
|
18 |
+
}
|
19 |
+
],
|
20 |
+
"source": [
|
21 |
+
"import pandas as pd\n",
|
22 |
+
"import os\n",
|
23 |
+
"# prepare the train, dev, test dataset for Turkish language\n",
|
24 |
+
"tr_duration_df = pd.read_csv('data/tr/clip_durations.tsv', sep='\\t')\n",
|
25 |
+
"tr_train_df = pd.read_csv('data/tr/train.tsv', sep='\\t')\n",
|
26 |
+
"tr_dev_df = pd.read_csv('data/tr/dev.tsv', sep='\\t')\n",
|
27 |
+
"tr_test_df = pd.read_csv('data/tr/test.tsv', sep='\\t')\n",
|
28 |
+
"\n",
|
29 |
+
"merged_tr_train_df = pd.merge(tr_train_df, tr_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})\n",
|
30 |
+
"merged_tr_dev_df = pd.merge(tr_dev_df, tr_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})\n",
|
31 |
+
"merged_tr_test_df = pd.merge(tr_test_df, tr_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 2,
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [
|
39 |
+
{
|
40 |
+
"name": "stderr",
|
41 |
+
"output_type": "stream",
|
42 |
+
"text": [
|
43 |
+
"<ipython-input-2-d0e6b5d0e689>:5: FutureWarning: The default value of regex will change from True to False in a future version.\n",
|
44 |
+
" merged_tr_train_df[\"audio_filepath\"] = merged_tr_train_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
45 |
+
"<ipython-input-2-d0e6b5d0e689>:6: FutureWarning: The default value of regex will change from True to False in a future version.\n",
|
46 |
+
" merged_tr_dev_df[\"audio_filepath\"] = merged_tr_dev_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
47 |
+
"<ipython-input-2-d0e6b5d0e689>:7: FutureWarning: The default value of regex will change from True to False in a future version.\n",
|
48 |
+
" merged_tr_test_df[\"audio_filepath\"] = merged_tr_test_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n"
|
49 |
+
]
|
50 |
+
}
|
51 |
+
],
|
52 |
+
"source": [
|
53 |
+
"merged_tr_train_df['audio_filepath'] = merged_tr_train_df['path'].apply(lambda x: os.path.join('/User/en_tr_titanet_large/data/tr/clips', x))\n",
|
54 |
+
"merged_tr_dev_df['audio_filepath'] = merged_tr_dev_df['path'].apply(lambda x: os.path.join('/User/en_tr_titanet_large/data/tr/clips', x))\n",
|
55 |
+
"merged_tr_test_df['audio_filepath'] = merged_tr_test_df['path'].apply(lambda x: os.path.join('/User/en_tr_titanet_large/data/tr/clips', x))\n",
|
56 |
+
"\n",
|
57 |
+
"merged_tr_train_df[\"audio_filepath\"] = merged_tr_train_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
58 |
+
"merged_tr_dev_df[\"audio_filepath\"] = merged_tr_dev_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
59 |
+
"merged_tr_test_df[\"audio_filepath\"] = merged_tr_test_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
60 |
+
"\n",
|
61 |
+
"merged_tr_train_df['duration'] = merged_tr_train_df['duration'].apply(lambda x: x / 1000)\n",
|
62 |
+
"merged_tr_dev_df['duration'] = merged_tr_dev_df['duration'].apply(lambda x: x / 1000)\n",
|
63 |
+
"merged_tr_test_df['duration'] = merged_tr_test_df['duration'].apply(lambda x: x / 1000)\n",
|
64 |
+
"\n",
|
65 |
+
"merged_tr_train_df = merged_tr_train_df[['audio_filepath', 'duration', 'label']]\n",
|
66 |
+
"merged_tr_dev_df = merged_tr_dev_df[['audio_filepath', 'duration', 'label']]\n",
|
67 |
+
"merged_tr_test_df = merged_tr_test_df[['audio_filepath', 'duration', 'label']]\n",
|
68 |
+
"\n"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 3,
|
74 |
+
"metadata": {},
|
75 |
+
"outputs": [],
|
76 |
+
"source": [
|
77 |
+
"all_data = pd.concat([merged_tr_train_df, merged_tr_dev_df, merged_tr_test_df])"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": 4,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"unique_labels = all_data[\"label\"].unique()\n",
|
87 |
+
"train_rows = []\n",
|
88 |
+
"dev_rows = []\n",
|
89 |
+
"test_rows = []\n",
|
90 |
+
"for val in unique_labels:\n",
|
91 |
+
" subset = all_data[all_data['label'] == val].sample(frac=1).reset_index(drop=True) # Shuffle rows for the value\n",
|
92 |
+
" n = len(subset)\n",
|
93 |
+
" \n",
|
94 |
+
" train_end = int(0.8 * n)\n",
|
95 |
+
" dev_end = train_end + int(0.1 * n)\n",
|
96 |
+
" \n",
|
97 |
+
" train_rows.append(subset.iloc[:train_end])\n",
|
98 |
+
" dev_rows.append(subset.iloc[train_end:dev_end])\n",
|
99 |
+
" test_rows.append(subset.iloc[dev_end:])\n",
|
100 |
+
" \n",
|
101 |
+
"# Create the train_df first\n",
|
102 |
+
"train_df = pd.concat(train_rows, ignore_index=True)\n",
|
103 |
+
"dev_df = pd.concat(dev_rows, ignore_index=True)\n",
|
104 |
+
"test_df = pd.concat(test_rows, ignore_index=True)\n",
|
105 |
+
"test_df = test_df[test_df['label'].isin(train_df['label'].unique())]\n"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": 5,
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"train_df.to_json('data/tr/train.json', orient='records', lines=True)\n",
|
115 |
+
"dev_df.to_json('data/tr/dev.json', orient='records', lines=True)\n",
|
116 |
+
"test_df.to_json('data/tr/test.json', orient='records', lines=True)\n"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "code",
|
121 |
+
"execution_count": null,
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [
|
124 |
+
{
|
125 |
+
"name": "stdout",
|
126 |
+
"output_type": "stream",
|
127 |
+
"text": [
|
128 |
+
"devices: 1\n",
|
129 |
+
"accelerator: cpu\n",
|
130 |
+
"max_epochs: 10\n",
|
131 |
+
"max_steps: -1\n",
|
132 |
+
"num_nodes: 1\n",
|
133 |
+
"accumulate_grad_batches: 1\n",
|
134 |
+
"enable_checkpointing: false\n",
|
135 |
+
"logger: false\n",
|
136 |
+
"log_every_n_steps: 1\n",
|
137 |
+
"val_check_interval: 1.0\n",
|
138 |
+
"\n"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"name": "stderr",
|
143 |
+
"output_type": "stream",
|
144 |
+
"text": [
|
145 |
+
"GPU available: False, used: False\n",
|
146 |
+
"TPU available: False, using: 0 TPU cores\n",
|
147 |
+
"IPU available: False, using: 0 IPUs\n",
|
148 |
+
"HPU available: False, using: 0 HPUs\n",
|
149 |
+
"`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..\n"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"name": "stdout",
|
154 |
+
"output_type": "stream",
|
155 |
+
"text": [
|
156 |
+
"[NeMo I 2023-09-29 17:44:57 exp_manager:381] Experiments will be logged at /v3io/users/User/en_tr_titanet_large/tb/TitaNet-Finetune/2023-09-29_17-44-57\n",
|
157 |
+
"[NeMo I 2023-09-29 17:44:57 exp_manager:815] TensorboardLogger has been set up\n",
|
158 |
+
"[NeMo I 2023-09-29 17:44:58 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
159 |
+
"[NeMo I 2023-09-29 17:44:58 collections:302] Dataset loaded with 41559 items, total duration of 41.01 hours.\n",
|
160 |
+
"[NeMo I 2023-09-29 17:44:58 collections:304] # 41559 files loaded accounting to # 1328 labels\n"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"name": "stderr",
|
165 |
+
"output_type": "stream",
|
166 |
+
"text": [
|
167 |
+
"[NeMo W 2023-09-29 17:44:58 label_models:187] Total number of 1328 found in all the manifest files.\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"name": "stdout",
|
172 |
+
"output_type": "stream",
|
173 |
+
"text": [
|
174 |
+
"[NeMo I 2023-09-29 17:44:58 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
175 |
+
"[NeMo I 2023-09-29 17:44:58 collections:302] Dataset loaded with 41559 items, total duration of 41.01 hours.\n",
|
176 |
+
"[NeMo I 2023-09-29 17:44:58 collections:304] # 41559 files loaded accounting to # 1328 labels\n",
|
177 |
+
"[NeMo I 2023-09-29 17:44:59 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
178 |
+
"[NeMo I 2023-09-29 17:44:59 collections:302] Dataset loaded with 4651 items, total duration of 4.47 hours.\n",
|
179 |
+
"[NeMo I 2023-09-29 17:44:59 collections:304] # 4651 files loaded accounting to # 482 labels\n",
|
180 |
+
"[NeMo I 2023-09-29 17:44:59 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
181 |
+
"[NeMo I 2023-09-29 17:44:59 collections:302] Dataset loaded with 6198 items, total duration of 6.29 hours.\n",
|
182 |
+
"[NeMo I 2023-09-29 17:44:59 collections:304] # 6198 files loaded accounting to # 1328 labels\n",
|
183 |
+
"[NeMo I 2023-09-29 17:44:59 features:289] PADDING: 16\n",
|
184 |
+
"[NeMo I 2023-09-29 17:44:59 cloud:58] Found existing object /User/.cache/torch/NeMo/NeMo_1.21.0rc0/titanet-l/11ba0924fdf87c049e339adbf6899d48/titanet-l.nemo.\n",
|
185 |
+
"[NeMo I 2023-09-29 17:44:59 cloud:64] Re-using file from: /User/.cache/torch/NeMo/NeMo_1.21.0rc0/titanet-l/11ba0924fdf87c049e339adbf6899d48/titanet-l.nemo\n",
|
186 |
+
"[NeMo I 2023-09-29 17:44:59 common:913] Instantiating model from pre-trained checkpoint\n"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"name": "stderr",
|
191 |
+
"output_type": "stream",
|
192 |
+
"text": [
|
193 |
+
"[NeMo W 2023-09-29 17:45:00 modelPT:161] If you intend to do training or fine-tuning, please call the ModelPT.setup_training_data() method and provide a valid configuration file to setup the train data loader.\n",
|
194 |
+
" Train config : \n",
|
195 |
+
" manifest_filepath: /manifests/combined_fisher_swbd_voxceleb12_librispeech/train.json\n",
|
196 |
+
" sample_rate: 16000\n",
|
197 |
+
" labels: null\n",
|
198 |
+
" batch_size: 64\n",
|
199 |
+
" shuffle: true\n",
|
200 |
+
" is_tarred: false\n",
|
201 |
+
" tarred_audio_filepaths: null\n",
|
202 |
+
" tarred_shard_strategy: scatter\n",
|
203 |
+
" augmentor:\n",
|
204 |
+
" noise:\n",
|
205 |
+
" manifest_path: /manifests/noise/rir_noise_manifest.json\n",
|
206 |
+
" prob: 0.5\n",
|
207 |
+
" min_snr_db: 0\n",
|
208 |
+
" max_snr_db: 15\n",
|
209 |
+
" speed:\n",
|
210 |
+
" prob: 0.5\n",
|
211 |
+
" sr: 16000\n",
|
212 |
+
" resample_type: kaiser_fast\n",
|
213 |
+
" min_speed_rate: 0.95\n",
|
214 |
+
" max_speed_rate: 1.05\n",
|
215 |
+
" num_workers: 15\n",
|
216 |
+
" pin_memory: true\n",
|
217 |
+
" \n",
|
218 |
+
"[NeMo W 2023-09-29 17:45:00 modelPT:168] If you intend to do validation, please call the ModelPT.setup_validation_data() or ModelPT.setup_multiple_validation_data() method and provide a valid configuration file to setup the validation data loader(s). \n",
|
219 |
+
" Validation config : \n",
|
220 |
+
" manifest_filepath: /manifests/combined_fisher_swbd_voxceleb12_librispeech/dev.json\n",
|
221 |
+
" sample_rate: 16000\n",
|
222 |
+
" labels: null\n",
|
223 |
+
" batch_size: 128\n",
|
224 |
+
" shuffle: false\n",
|
225 |
+
" num_workers: 15\n",
|
226 |
+
" pin_memory: true\n",
|
227 |
+
" \n"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"name": "stdout",
|
232 |
+
"output_type": "stream",
|
233 |
+
"text": [
|
234 |
+
"[NeMo I 2023-09-29 17:45:00 features:289] PADDING: 16\n",
|
235 |
+
"[NeMo I 2023-09-29 17:45:00 save_restore_connector:249] Model EncDecSpeakerLabelModel was successfully restored from /User/.cache/torch/NeMo/NeMo_1.21.0rc0/titanet-l/11ba0924fdf87c049e339adbf6899d48/titanet-l.nemo.\n",
|
236 |
+
"[NeMo I 2023-09-29 17:45:00 modelPT:1151] Model checkpoint partially restored from pretrained checkpoint with name `titanet_large`\n",
|
237 |
+
"[NeMo I 2023-09-29 17:45:00 modelPT:1153] The following parameters were excluded when loading from pretrained checkpoint with name `titanet_large` : ['decoder.final.weight']\n",
|
238 |
+
"[NeMo I 2023-09-29 17:45:00 modelPT:1156] Make sure that this is what you wanted!\n",
|
239 |
+
"[NeMo I 2023-09-29 17:45:01 modelPT:735] Optimizer config = AdamW (\n",
|
240 |
+
" Parameter Group 0\n",
|
241 |
+
" amsgrad: False\n",
|
242 |
+
" betas: (0.9, 0.999)\n",
|
243 |
+
" capturable: False\n",
|
244 |
+
" eps: 1e-08\n",
|
245 |
+
" foreach: None\n",
|
246 |
+
" lr: 0.0001\n",
|
247 |
+
" maximize: False\n",
|
248 |
+
" weight_decay: 0.0002\n",
|
249 |
+
" \n",
|
250 |
+
" Parameter Group 1\n",
|
251 |
+
" amsgrad: False\n",
|
252 |
+
" betas: (0.9, 0.999)\n",
|
253 |
+
" capturable: False\n",
|
254 |
+
" eps: 1e-08\n",
|
255 |
+
" foreach: None\n",
|
256 |
+
" lr: 0.001\n",
|
257 |
+
" maximize: False\n",
|
258 |
+
" weight_decay: 0.0002\n",
|
259 |
+
" )\n",
|
260 |
+
"[NeMo I 2023-09-29 17:45:01 lr_scheduler:910] Scheduler \"<nemo.core.optim.lr_scheduler.CosineAnnealing object at 0x7fe14b339850>\" \n",
|
261 |
+
" will be used during training (effective maximum steps = 41560) - \n",
|
262 |
+
" Parameters : \n",
|
263 |
+
" (warmup_ratio: 0.1\n",
|
264 |
+
" min_lr: 0.0\n",
|
265 |
+
" max_steps: 41560\n",
|
266 |
+
" )\n"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"name": "stderr",
|
271 |
+
"output_type": "stream",
|
272 |
+
"text": [
|
273 |
+
"\n",
|
274 |
+
" | Name | Type | Params\n",
|
275 |
+
"----------------------------------------------------------------------\n",
|
276 |
+
"0 | loss | AngularSoftmaxLoss | 0 \n",
|
277 |
+
"1 | eval_loss | AngularSoftmaxLoss | 0 \n",
|
278 |
+
"2 | _accuracy | TopKClassificationAccuracy | 0 \n",
|
279 |
+
"3 | preprocessor | AudioToMelSpectrogramPreprocessor | 0 \n",
|
280 |
+
"4 | encoder | ConvASREncoder | 19.4 M\n",
|
281 |
+
"5 | decoder | SpeakerDecoder | 3.0 M \n",
|
282 |
+
"6 | _macro_accuracy | MulticlassAccuracy | 0 \n",
|
283 |
+
"----------------------------------------------------------------------\n",
|
284 |
+
"22.4 M Trainable params\n",
|
285 |
+
"0 Non-trainable params\n",
|
286 |
+
"22.4 M Total params\n",
|
287 |
+
"89.509 Total estimated model params size (MB)\n"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"data": {
|
292 |
+
"application/vnd.jupyter.widget-view+json": {
|
293 |
+
"model_id": "",
|
294 |
+
"version_major": 2,
|
295 |
+
"version_minor": 0
|
296 |
+
},
|
297 |
+
"text/plain": [
|
298 |
+
"Sanity Checking: 0it [00:00, ?it/s]"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
"metadata": {},
|
302 |
+
"output_type": "display_data"
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"name": "stderr",
|
306 |
+
"output_type": "stream",
|
307 |
+
"text": [
|
308 |
+
"[NeMo W 2023-09-29 17:45:01 nemo_logging:349] /User/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:438: PossibleUserWarning: The dataloader, val_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 16 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
|
309 |
+
" rank_zero_warn(\n",
|
310 |
+
" \n",
|
311 |
+
"[NeMo W 2023-09-29 17:45:22 nemo_logging:349] /User/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:438: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 16 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
|
312 |
+
" rank_zero_warn(\n",
|
313 |
+
" \n"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"data": {
|
318 |
+
"application/vnd.jupyter.widget-view+json": {
|
319 |
+
"model_id": "45d1cf72025742e884ba3ff4a6b8e7eb",
|
320 |
+
"version_major": 2,
|
321 |
+
"version_minor": 0
|
322 |
+
},
|
323 |
+
"text/plain": [
|
324 |
+
"Training: 0it [00:00, ?it/s]"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
"metadata": {},
|
328 |
+
"output_type": "display_data"
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"name": "stderr",
|
332 |
+
"output_type": "stream",
|
333 |
+
"text": [
|
334 |
+
"[NeMo W 2023-09-29 17:45:40 nemo_logging:349] /User/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/logger_connector/result.py:212: UserWarning: You called `self.log('global_step', ...)` in your `training_step` but the value needs to be floating point. Converting it to torch.float32.\n",
|
335 |
+
" warning_cache.warn(\n",
|
336 |
+
" \n"
|
337 |
+
]
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"data": {
|
341 |
+
"application/vnd.jupyter.widget-view+json": {
|
342 |
+
"model_id": "",
|
343 |
+
"version_major": 2,
|
344 |
+
"version_minor": 0
|
345 |
+
},
|
346 |
+
"text/plain": [
|
347 |
+
"Validation: 0it [00:00, ?it/s]"
|
348 |
+
]
|
349 |
+
},
|
350 |
+
"metadata": {},
|
351 |
+
"output_type": "display_data"
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"data": {
|
355 |
+
"application/vnd.jupyter.widget-view+json": {
|
356 |
+
"model_id": "",
|
357 |
+
"version_major": 2,
|
358 |
+
"version_minor": 0
|
359 |
+
},
|
360 |
+
"text/plain": [
|
361 |
+
"Validation: 0it [00:00, ?it/s]"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
"metadata": {},
|
365 |
+
"output_type": "display_data"
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"data": {
|
369 |
+
"application/vnd.jupyter.widget-view+json": {
|
370 |
+
"model_id": "",
|
371 |
+
"version_major": 2,
|
372 |
+
"version_minor": 0
|
373 |
+
},
|
374 |
+
"text/plain": [
|
375 |
+
"Validation: 0it [00:00, ?it/s]"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
"metadata": {},
|
379 |
+
"output_type": "display_data"
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"data": {
|
383 |
+
"application/vnd.jupyter.widget-view+json": {
|
384 |
+
"model_id": "",
|
385 |
+
"version_major": 2,
|
386 |
+
"version_minor": 0
|
387 |
+
},
|
388 |
+
"text/plain": [
|
389 |
+
"Validation: 0it [00:00, ?it/s]"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
"metadata": {},
|
393 |
+
"output_type": "display_data"
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"data": {
|
397 |
+
"application/vnd.jupyter.widget-view+json": {
|
398 |
+
"model_id": "",
|
399 |
+
"version_major": 2,
|
400 |
+
"version_minor": 0
|
401 |
+
},
|
402 |
+
"text/plain": [
|
403 |
+
"Validation: 0it [00:00, ?it/s]"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
"metadata": {},
|
407 |
+
"output_type": "display_data"
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"data": {
|
411 |
+
"application/vnd.jupyter.widget-view+json": {
|
412 |
+
"model_id": "",
|
413 |
+
"version_major": 2,
|
414 |
+
"version_minor": 0
|
415 |
+
},
|
416 |
+
"text/plain": [
|
417 |
+
"Validation: 0it [00:00, ?it/s]"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
"metadata": {},
|
421 |
+
"output_type": "display_data"
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"data": {
|
425 |
+
"application/vnd.jupyter.widget-view+json": {
|
426 |
+
"model_id": "",
|
427 |
+
"version_major": 2,
|
428 |
+
"version_minor": 0
|
429 |
+
},
|
430 |
+
"text/plain": [
|
431 |
+
"Validation: 0it [00:00, ?it/s]"
|
432 |
+
]
|
433 |
+
},
|
434 |
+
"metadata": {},
|
435 |
+
"output_type": "display_data"
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"data": {
|
439 |
+
"application/vnd.jupyter.widget-view+json": {
|
440 |
+
"model_id": "f692ed8064c443afb82ad1e965778fd2",
|
441 |
+
"version_major": 2,
|
442 |
+
"version_minor": 0
|
443 |
+
},
|
444 |
+
"text/plain": [
|
445 |
+
"Validation: 0it [00:00, ?it/s]"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
"metadata": {},
|
449 |
+
"output_type": "display_data"
|
450 |
+
}
|
451 |
+
],
|
452 |
+
"source": [
|
453 |
+
"# Fine-tune the model with Portuguese language\n",
|
454 |
+
"\n",
|
455 |
+
"import torch\n",
|
456 |
+
"import pytorch_lightning as pl\n",
|
457 |
+
"import nemo\n",
|
458 |
+
"import nemo.collections.asr as nemo_asr\n",
|
459 |
+
"from omegaconf import OmegaConf\n",
|
460 |
+
"from nemo.utils.exp_manager import exp_manager\n",
|
461 |
+
"\n",
|
462 |
+
"# Fine-tune the model with Turkish language\n",
|
463 |
+
"tr_config = OmegaConf.load(\"conf/titanet-finetune.yaml\")\n",
|
464 |
+
"## set up the trainer\n",
|
465 |
+
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
|
466 |
+
"\n",
|
467 |
+
"tr_trainer_config = OmegaConf.create(dict(\n",
|
468 |
+
" devices=1,\n",
|
469 |
+
" accelerator=accelerator,\n",
|
470 |
+
" #num_sanity_val_steps=0,\n",
|
471 |
+
" max_epochs=10,\n",
|
472 |
+
" max_steps=-1, # computed at runtime if not set\n",
|
473 |
+
" num_nodes=1,\n",
|
474 |
+
" \n",
|
475 |
+
" accumulate_grad_batches=1,\n",
|
476 |
+
" enable_checkpointing=False, # Provided by exp_manager\n",
|
477 |
+
" logger=False, # Provided by exp_manager\n",
|
478 |
+
" log_every_n_steps=1, # Interval of logging.\n",
|
479 |
+
" val_check_interval=1.0, # Set to 0.25 to check 4 times per epoch, or an int for number of iterations\n",
|
480 |
+
"))\n",
|
481 |
+
"print(OmegaConf.to_yaml(tr_trainer_config))\n",
|
482 |
+
"\n",
|
483 |
+
"tr_trainer_finetune = pl.Trainer(**tr_trainer_config)\n",
|
484 |
+
"\n",
|
485 |
+
"\n",
|
486 |
+
"#set up the nemo experiment for logging and monitoring purpose\n",
|
487 |
+
"log_dir_finetune = exp_manager(tr_trainer_finetune, tr_config.get(\"exp_manager\", None))\n",
|
488 |
+
"\n",
|
489 |
+
"\n",
|
490 |
+
"# set up the manifest file for Turkish language\n",
|
491 |
+
"tr_config.model.train_ds.manifest_filepath = 'data/tr/train.json'\n",
|
492 |
+
"tr_config.model.validation_ds.manifest_filepath = 'data/tr/dev.json'\n",
|
493 |
+
"tr_config.model.test_ds.manifest_filepath = 'data/tr/test.json'\n",
|
494 |
+
"tr_config.model.decoder.num_classes = train_df['label'].nunique()\n",
|
495 |
+
"\n",
|
496 |
+
"\n",
|
497 |
+
"# set up the model for Turkish language and train the model\n",
|
498 |
+
"speaker_model = nemo_asr.models.EncDecSpeakerLabelModel(cfg=tr_config.model, trainer=tr_trainer_finetune)\n",
|
499 |
+
"speaker_model.maybe_init_from_pretrained_checkpoint(tr_config)\n",
|
500 |
+
"tr_trainer_finetune.fit(speaker_model)\n",
|
501 |
+
"#tr_trainer_finetune.test(speaker_model)\n",
|
502 |
+
"\n",
|
503 |
+
"# Save the model after fine-tuning with Turkish language\n",
|
504 |
+
"\n",
|
505 |
+
"speaker_model.save_to('titanet_finetune_tr.nemo')"
|
506 |
+
]
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"cell_type": "code",
|
510 |
+
"execution_count": null,
|
511 |
+
"metadata": {},
|
512 |
+
"outputs": [],
|
513 |
+
"source": []
|
514 |
+
}
|
515 |
+
],
|
516 |
+
"metadata": {
|
517 |
+
"accelerator": "GPU",
|
518 |
+
"colab": {
|
519 |
+
"collapsed_sections": [],
|
520 |
+
"name": "Speaker_Recogniton_Verification.ipynb",
|
521 |
+
"provenance": [],
|
522 |
+
"toc_visible": true
|
523 |
+
},
|
524 |
+
"kernelspec": {
|
525 |
+
"display_name": "transcribe",
|
526 |
+
"language": "python",
|
527 |
+
"name": "conda-env-.conda-transcribe-py"
|
528 |
+
},
|
529 |
+
"language_info": {
|
530 |
+
"codemirror_mode": {
|
531 |
+
"name": "ipython",
|
532 |
+
"version": 3
|
533 |
+
},
|
534 |
+
"file_extension": ".py",
|
535 |
+
"mimetype": "text/x-python",
|
536 |
+
"name": "python",
|
537 |
+
"nbconvert_exporter": "python",
|
538 |
+
"pygments_lexer": "ipython3",
|
539 |
+
"version": "3.9.16"
|
540 |
+
}
|
541 |
+
},
|
542 |
+
"nbformat": 4,
|
543 |
+
"nbformat_minor": 4
|
544 |
+
}
|
titanet_finetune_tr.nemo
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d79e9798aa0ad30e888db59cc61efe5f506d8936226af4734be63674382d8d6b
|
3 |
+
size 90009600
|