GenerRNA / train.py
MasaakiKotera's picture
Upload train.py with huggingface_hub
b612eb3 verified
"""
To train a GPT from sratch
"""
import argparse
import os
import time
import math
import pickle
from contextlib import nullcontext
import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel
from torch.distributed import init_process_group, destroy_process_group
import pynvml
from model import GPTConfig, GPT
parser = argparse.ArgumentParser(description="Load configuration file")
parser.add_argument('--config', type=str, required=True, help='Path to the configuration file')
args = parser.parse_args()
config_path = args.config
exec(open(config_path).read())
# -----Load all global variables for logging--------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
# exec(open(config_path).read()) # overrides from command line or config file
config = {k: globals()[k] for k in config_keys}
# -----------------------------------------------------------------------------
def log_and_write(filename, message):
with open(filename, 'a') as f:
f.write(message + "\n")
print(message)
log_and_write(log_dir,f'gradient_accumulation_steps: {gradient_accumulation_steps}, batch_size: {batch_size}, \nblock_size: {block_size}, \nn_layer: {n_layer}, n_head: {n_head}, n_embd: {n_embd}, dropout: {dropout}, bias: {bias}, \nlearning_rate: {learning_rate}, max_iters: {max_iters}, \nweight_decay: {weight_decay}, beta1: {beta1}, beta2: {beta2}, grad_clip: {grad_clip}, decay_lr: {decay_lr}, \nwarmup_iters: {warmup_iters}, lr_decay_iters: {lr_decay_iters}, \nmin_lr: {min_lr}, backend: {backend}, device: {device},\n dtype: {dtype}, compile: {compile}')
log_and_write(log_dir, f'meta_vocab_size: {meta_vocab_size}')
log_and_write(log_dir, f'training data: {data_dir}')
# -----------------------------------------------------------------------------
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
init_process_group(backend=backend)
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
seed_offset = ddp_rank
assert gradient_accumulation_steps % ddp_world_size == 0
gradient_accumulation_steps //= ddp_world_size
else:
master_process = True
seed_offset = 0
ddp_world_size = 1
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
print('ddp_world_size:',ddp_world_size)
print(f"tokens per iteration will be: {tokens_per_iter:,}")
pynvml.nvmlInit()
def print_gpu_memory_usage():
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
info = pynvml.nvmlDeviceGetMemoryInfo(handle)
print(f"Used: {info.used / 1024**2:.2f}MB/{info.total / 1024**2:.2f}MB ({info.used / info.total * 100:.2f}%)")
if master_process:
os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# data loader
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
if device_type == 'cuda':
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
else:
x, y = x.to(device), y.to(device)
return x, y
iter_num = 0
best_val_loss = 1e9
# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.pkl')
if os.path.exists(meta_path):
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
meta_vocab_size = meta['vocab_size']
print(f"found vocab_size = {meta_vocab_size}")
# model init
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
if init_from == 'scratch':
# init a new model from scratch
print("Initializing a new model from scratch")
# determine the vocab size we'll use for from-scratch training
if meta_vocab_size is None:
print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
elif init_from == 'resume':
print(f"Resuming training from {out_dir}")
# resume training from a checkpoint.
checkpoint = torch.load(ckpt_path, map_location=device)
checkpoint_model_args = checkpoint['model_args']
# force these config attributes to be equal otherwise we can't even resume training
# the rest of the attributes (e.g. dropout) can stay as desired from command line
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
model_args[k] = checkpoint_model_args[k]
# create the model
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
iter_num = checkpoint['iter_num']
best_val_loss = checkpoint['best_val_loss']
# crop down the model block size if desired, using model surgery
if block_size < model.config.block_size:
model.crop_block_size(block_size)
model_args['block_size'] = block_size # so that the checkpoint will have the right value
model.to(device)
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float32'))
# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
if init_from == 'resume':
optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None # free up memory
# compile the model
if compile:
print("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model) # requires PyTorch 2.0
# wrap model into DDP container
if ddp:
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
out = {}
perplexities = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
total_loss = 0
for k in range(eval_iters):
X, Y = get_batch(split)
with ctx:
logits, loss = model(X, Y)
losses[k] = loss.item()
total_loss += loss.item()
avg_loss = losses.mean()
out[split] = avg_loss
perplexities[split] = torch.exp(avg_loss)
model.train()
return out, perplexities
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
# training loop
X, Y = get_batch('train') # fetch the very first batch
t0 = time.time()
local_iter_num = 0 # number of iterations in the lifetime of this process
raw_model = model.module if ddp else model # unwrap DDP container if needed
running_mfu = -1.0
while True:
# determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# evaluate the loss on train/val sets and write checkpoints
if iter_num % eval_interval == 0 and master_process:
losses, perplexities = estimate_loss()
log_and_write(log_dir, f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f},train perplexity: {perplexities['train']:.4f}, val perplexity: {perplexities['val']:.4f}")
if iter_num % 200 == 0:
print_gpu_memory_usage()
if always_save_checkpoint:
if losses['val'] < best_val_loss or always_save_checkpoint:
best_val_loss = losses['val']
if iter_num > 0:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': model_args,
'iter_num': iter_num,
'best_val_loss': best_val_loss,
'config': config,
}
log_and_write(log_dir, f"saving checkpoint to {out_dir}")
torch.save(checkpoint, os.path.join(out_dir, f'ckpt_{iter_num}.pt'))
if iter_num == 0 and eval_only:
break
# forward backward update, with optional gradient accumulation to simulate larger batch size
# and using the GradScaler if data type is float16
for micro_step in range(gradient_accumulation_steps):
if ddp:
# in DDP training we only need to sync gradients at the last micro step.
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
with ctx:
logits, loss = model(X, Y)
loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
# immediately async prefetch next batch while model is doing the forward pass on the GPU
X, Y = get_batch('train')
# backward pass, with gradient scaling if training in fp16
scaler.scale(loss).backward()
# clip the gradient
if grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)
# timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % log_interval == 0 and master_process:
# get loss as float. note: this is a CPU-GPU sync point
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
lossf = loss.item() * gradient_accumulation_steps
if local_iter_num >= 5: # let the training loop settle a bit
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
log_and_write(log_dir, f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, lr {lr}, mfu {running_mfu*100:.2f}%")
iter_num += 1
local_iter_num += 1
# termination conditions
if iter_num > max_iters:
break
if ddp:
destroy_process_group()
pynvml.nvmlShutdown()