|
import math |
|
import inspect |
|
from dataclasses import dataclass |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, ndim, bias): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(ndim)) |
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None |
|
|
|
def forward(self, input): |
|
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) |
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') |
|
if not self.flash: |
|
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") |
|
|
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size)) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
if self.flash: |
|
|
|
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) |
|
else: |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class MLP(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) |
|
self.gelu = nn.GELU() |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
@dataclass |
|
class GPTConfig: |
|
block_size: int = 1024 |
|
vocab_size: int = 50304 |
|
n_layer: int = 12 |
|
n_head: int = 12 |
|
n_embd: int = 768 |
|
dropout: float = 0.0 |
|
bias: bool = True |
|
|
|
class GPT(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.vocab_size is not None |
|
assert config.block_size is not None |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
drop = nn.Dropout(config.dropout), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = LayerNorm(config.n_embd, bias=config.bias), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) |
|
|
|
|
|
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) |
|
|
|
def get_num_params(self, non_embedding=True): |
|
""" |
|
Return the number of parameters in the model. |
|
For non-embedding count (default), the position embeddings get subtracted. |
|
The token embeddings would too, except due to the parameter sharing these |
|
params are actually used as weights in the final layer, so we include them. |
|
""" |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding: |
|
n_params -= self.transformer.wpe.weight.numel() |
|
return n_params |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.kaiming_normal_(module.weight, a=0, mode='fan_in', nonlinearity='relu') |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
device = idx.device |
|
b, t = idx.size() |
|
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
|
pos = torch.arange(0, t, dtype=torch.long, device=device) |
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
pos_emb = self.transformer.wpe(pos) |
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
|
|
if targets is not None: |
|
|
|
logits = self.lm_head(x) |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
else: |
|
|
|
logits = self.lm_head(x[:, [-1], :]) |
|
loss = None |
|
|
|
return logits, loss |
|
|
|
def crop_block_size(self, block_size): |
|
|
|
|
|
|
|
assert block_size <= self.config.block_size |
|
self.config.block_size = block_size |
|
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) |
|
for block in self.transformer.h: |
|
if hasattr(block.attn, 'bias'): |
|
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_type, override_args=None): |
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
override_args = override_args or {} |
|
|
|
assert all(k == 'dropout' for k in override_args) |
|
from transformers import GPT2LMHeadModel |
|
print("loading weights from pretrained gpt: %s" % model_type) |
|
|
|
|
|
config_args = { |
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), |
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), |
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), |
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), |
|
}[model_type] |
|
print("forcing vocab_size=50257, block_size=1024, bias=True") |
|
config_args['vocab_size'] = 50257 |
|
config_args['block_size'] = 1024 |
|
config_args['bias'] = True |
|
|
|
if 'dropout' in override_args: |
|
print(f"overriding dropout rate to {override_args['dropout']}") |
|
config_args['dropout'] = override_args['dropout'] |
|
|
|
config = GPTConfig(**config_args) |
|
model = GPT(config) |
|
sd = model.state_dict() |
|
sd_keys = sd.keys() |
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] |
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
sd_hf = model_hf.state_dict() |
|
|
|
|
|
sd_keys_hf = sd_hf.keys() |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] |
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
|
|
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" |
|
for k in sd_keys_hf: |
|
if any(k.endswith(w) for w in transposed): |
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].t()) |
|
else: |
|
|
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
|
|
return model |
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): |
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()} |
|
|
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} |
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] |
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] |
|
optim_groups = [ |
|
{'params': decay_params, 'weight_decay': weight_decay}, |
|
{'params': nodecay_params, 'weight_decay': 0.0} |
|
] |
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") |
|
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") |
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
use_fused = fused_available and device_type == 'cuda' |
|
extra_args = dict(fused=True) if use_fused else dict() |
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) |
|
print(f"using fused AdamW: {use_fused}") |
|
|
|
return optimizer |
|
|
|
def estimate_mfu(self, fwdbwd_per_iter, dt): |
|
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ |
|
|
|
|
|
N = self.get_num_params() |
|
cfg = self.config |
|
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size |
|
flops_per_token = 6*N + 12*L*H*Q*T |
|
flops_per_fwdbwd = flops_per_token * T |
|
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter |
|
|
|
flops_achieved = flops_per_iter * (1.0/dt) |
|
flops_promised = 312e12 |
|
mfu = flops_achieved / flops_promised |
|
return mfu |
|
|
|
@torch.no_grad() |
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None, strategy='sampling', beam_size=3, eos_token_id=0, repetition_penalty=1.0): |
|
assert strategy in ['greedy_search', 'sampling', 'top_k', 'beam_search'] |
|
|
|
batch_size = idx.size(0) |
|
if strategy == 'beam_search': |
|
|
|
beam_seqs = [idx.clone() for _ in range(beam_size)] |
|
beam_scores = torch.zeros((batch_size, beam_size), device=idx.device) |
|
completed_seqs = [] |
|
|
|
for _ in range(max_new_tokens): |
|
all_candidates = [] |
|
for i in range(beam_size): |
|
idx_cond = beam_seqs[i] if beam_seqs[i].size(1) <= self.config.block_size else beam_seqs[i][:, -self.config.block_size:] |
|
logits, _ = self(idx_cond) |
|
logits = logits[:, -1, :] / temperature |
|
if repetition_penalty != 1.0: |
|
for j in range(idx_cond.size(1)): |
|
logits[:, idx_cond[:, j]] /= repetition_penalty |
|
probs = F.log_softmax(logits, dim=-1) |
|
scores, indices = torch.topk(probs, beam_size, dim=-1) |
|
|
|
for j in range(beam_size): |
|
candidate_seq = torch.cat([beam_seqs[i], indices[:, j:j+1]], dim=1) |
|
candidate_score = beam_scores[:, i] + scores[:, j] |
|
if indices[0, j] == eos_token_id: |
|
completed_seqs.append((candidate_score, candidate_seq)) |
|
else: |
|
all_candidates.append((candidate_score, candidate_seq)) |
|
|
|
|
|
all_candidates.sort(key=lambda x: x[0].mean().item() + torch.rand(1).item() * 5e-1, reverse=True) |
|
|
|
beam_seqs = [all_candidates[i][1] for i in range(min(beam_size, len(all_candidates)))] |
|
beam_scores = torch.stack([all_candidates[i][0] for i in range(min(beam_size, len(all_candidates)))], dim=1) |
|
if len(completed_seqs) >= beam_size: |
|
break |
|
|
|
if not completed_seqs: |
|
completed_seqs = [(beam_scores[:, i], beam_seqs[i]) for i in range(beam_size)] |
|
|
|
completed_seqs.sort(key=lambda x: x[0].mean().item(), reverse=True) |
|
return completed_seqs[0][1] |
|
|
|
|
|
else: |
|
for _ in range(max_new_tokens): |
|
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] |
|
logits, _ = self(idx_cond) |
|
logits = logits[:, -1, :] / temperature |
|
|
|
if repetition_penalty != 1.0: |
|
for i in range(idx.size(0)): |
|
for j in range(idx.size(1)): |
|
logits[i, idx[i, j]] /= repetition_penalty |
|
|
|
if strategy == 'greedy_search': |
|
idx_next = torch.argmax(logits, dim=-1, keepdim=True) |
|
|
|
elif strategy == 'sampling': |
|
probs = F.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
elif strategy == 'top_k': |
|
if top_k is not None: |
|
logits, indices = torch.topk(logits, min(top_k, logits.size(-1))) |
|
probs = F.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
idx_next = torch.gather(indices, dim=-1, index=idx_next) |
|
|
|
if idx_next == eos_token_id: |
|
break |
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx if idx[0][0] != eos_token_id else idx[:, 1:] |
|
|