pesi
/

Luigi commited on
Commit
92676db
1 Parent(s): 57a8c6b

Add script used to convert ONNX to fp32/fp16/int8/mixed engine

Browse files
Files changed (1) hide show
  1. onnx_to_engine.py +145 -0
onnx_to_engine.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ #
3
+ # SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ #
18
+
19
+ """
20
+ This script demonstrates how to use the Calibrator API provided by Polygraphy
21
+ to calibrate a TensorRT engine to run in INT8 precision.
22
+ """
23
+ import numpy as np
24
+ from polygraphy.backend.trt import Calibrator, CreateConfig, EngineFromNetwork, NetworkFromOnnxPath, TrtRunner, save_engine, load_plugins, Profile
25
+ from termcolor import cprint
26
+ load_plugins(plugins=['libmmdeploy_tensorrt_ops.so'])
27
+ import cv2
28
+ import argparse
29
+
30
+ PREVIEW_CALIBRATOR_OUTPUT = True
31
+
32
+ def calib_data_from_video():
33
+
34
+ # image preproc3ssing taken from rtmlib
35
+ def preprocess(img: np.ndarray):
36
+ """Do preprocessing for RTMPose model inference.
37
+
38
+ Args:
39
+ img (np.ndarray): Input image in shape.
40
+
41
+ Returns:
42
+ tuple:
43
+ - resized_img (np.ndarray): Preprocessed image.
44
+ - center (np.ndarray): Center of image.
45
+ - scale (np.ndarray): Scale of image.
46
+ """
47
+ if len(img.shape) == 3:
48
+ padded_img = np.ones(
49
+ (MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1], 3),
50
+ dtype=np.uint8) * 114
51
+ else:
52
+ padded_img = np.ones(MODEL_INPUT_SIZE, dtype=np.uint8) * 114
53
+
54
+ ratio = min(MODEL_INPUT_SIZE[0] / img.shape[0],
55
+ MODEL_INPUT_SIZE[1] / img.shape[1])
56
+ resized_img = cv2.resize(
57
+ img,
58
+ (int(img.shape[1] * ratio), int(img.shape[0] * ratio)),
59
+ interpolation=cv2.INTER_LINEAR,
60
+ ).astype(np.uint8)
61
+ padded_shape = (int(img.shape[0] * ratio), int(img.shape[1] * ratio))
62
+ padded_img[:padded_shape[0], :padded_shape[1]] = resized_img
63
+
64
+ return padded_img, ratio
65
+
66
+ cap = cv2.VideoCapture(filename=VIDEO_PATH)
67
+ while cap.isOpened():
68
+
69
+ success, frame = cap.read()
70
+ batch_id=0
71
+ if success:
72
+ img, ratio = preprocess(frame) # pad & resize
73
+ img = img.transpose(2, 0, 1) # transpose to 1,3,416,416
74
+ img = np.ascontiguousarray(img, dtype=np.float32) # to f32
75
+ #print(img.shape)
76
+ img = img[None, :, :, :] # add batch dim
77
+
78
+ # # Yield a dictionary mapping the input name of your model to the generated data
79
+ yield {"input": img}
80
+ else:
81
+ break
82
+
83
+ cap.release()
84
+
85
+ def main(onnx_path, engine_path, batch_size):
86
+
87
+ # We can provide a path or file-like object if we want to cache calibration data.
88
+ # This lets us avoid running calibration the next time we build the engine.
89
+ #
90
+ # TIP: You can use this calibrator with TensorRT APIs directly (e.g. config.int8_calibrator).
91
+ # You don't have to use it with Polygraphy loaders if you don't want to.
92
+ calibrator = Calibrator(data_loader=calib_data_from_video(), cache=f"{onnx_path}-calib.cache")
93
+
94
+
95
+ profiles = [
96
+ # The low-latency case. For best performance, min == opt == max.
97
+ Profile().add("input",
98
+ min=(1, 3, MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1]),
99
+ opt=(4, 3, MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1]),
100
+ max=(9, 3, MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1])),
101
+ ]
102
+
103
+ # We must enable int8 mode in addition to providing the calibrator.
104
+ build_engine = EngineFromNetwork(
105
+ NetworkFromOnnxPath(f"{onnx_path}"), config=CreateConfig(
106
+ use_dla=False,
107
+ tf32=True,
108
+ fp16=True,
109
+ int8=True,
110
+ obey_precision_constraints=False,
111
+ sparse_weights=True,
112
+ calibrator=calibrator,
113
+ profiles=profiles,
114
+ max_workspace_size = 2 * 1024 * 1024 * 1024,
115
+ allow_gpu_fallback=True
116
+ )
117
+ )
118
+
119
+ # When we activate our runner, it will calibrate and build the engine. If we want to
120
+ # see the logging output from TensorRT, we can temporarily increase logging verbosity:
121
+ save_engine(build_engine, f'{engine_path}')
122
+
123
+ if __name__ == "__main__":
124
+
125
+ parser = argparse.ArgumentParser(description="Process a video file.")
126
+ parser.add_argument("video_path", type=str, help="The path to the video file used to calibrate int8 engine")
127
+ parser.add_argument("onnx_path", type=str, help="The path to the input ONNX model file")
128
+ parser.add_argument("engine_path", type=str, help="The path to the exported TensorRT Engine model file")
129
+ parser.add_argument("--batch_size", type=int, default=1, help="Input batch size")
130
+ args = parser.parse_args()
131
+ VIDEO_PATH = args.video_path
132
+ MODEL_INPUT_SIZE=(416,416) if 'rtmo-t' in args.onnx_path else (640,640)
133
+
134
+ if PREVIEW_CALIBRATOR_OUTPUT:
135
+ cprint('You are previwing video used to calibrate TensorRT int8 engine model ...', 'yellow')
136
+ for output_dict in calib_data_from_video():
137
+ if output_dict:
138
+ image = output_dict['input'] # get frame
139
+ image_to_show = image.squeeze(0).transpose(1, 2, 0) / 255.0 # to-uint8 transpose remove batch dim
140
+ cv2.imshow(VIDEO_PATH,image_to_show)
141
+ if cv2.waitKey(1) & 0xFF == ord('q'): # Exit loop if 'q' is pressed
142
+ break
143
+ cv2.destroyAllWindows() # Close all OpenCV windows
144
+
145
+ main(args.onnx_path, args.engine_path, args.batch_size)