|
import os |
|
import numpy as np |
|
from typing import List, Tuple, Union |
|
import onnxruntime as ort |
|
import cv2 |
|
from queue import Queue |
|
|
|
PLUGIN_LIB_PATHS='libmmdeploy_tensorrt_ops.so' |
|
os.environ['ORT_TENSORRT_EXTRA_PLUGIN_LIB_PATHS']=PLUGIN_LIB_PATHS |
|
TRT_BACKEND='POLYGRAPHY' |
|
DEBUG=False |
|
|
|
|
|
coco17 = dict(name='coco17', |
|
keypoint_info={ |
|
0: |
|
dict(name='nose', id=0, color=[51, 153, 255], swap=''), |
|
1: |
|
dict(name='left_eye', |
|
id=1, |
|
color=[51, 153, 255], |
|
swap='right_eye'), |
|
2: |
|
dict(name='right_eye', |
|
id=2, |
|
color=[51, 153, 255], |
|
swap='left_eye'), |
|
3: |
|
dict(name='left_ear', |
|
id=3, |
|
color=[51, 153, 255], |
|
swap='right_ear'), |
|
4: |
|
dict(name='right_ear', |
|
id=4, |
|
color=[51, 153, 255], |
|
swap='left_ear'), |
|
5: |
|
dict(name='left_shoulder', |
|
id=5, |
|
color=[0, 255, 0], |
|
swap='right_shoulder'), |
|
6: |
|
dict(name='right_shoulder', |
|
id=6, |
|
color=[255, 128, 0], |
|
swap='left_shoulder'), |
|
7: |
|
dict(name='left_elbow', |
|
id=7, |
|
color=[0, 255, 0], |
|
swap='right_elbow'), |
|
8: |
|
dict(name='right_elbow', |
|
id=8, |
|
color=[255, 128, 0], |
|
swap='left_elbow'), |
|
9: |
|
dict(name='left_wrist', |
|
id=9, |
|
color=[0, 255, 0], |
|
swap='right_wrist'), |
|
10: |
|
dict(name='right_wrist', |
|
id=10, |
|
color=[255, 128, 0], |
|
swap='left_wrist'), |
|
11: |
|
dict(name='left_hip', |
|
id=11, |
|
color=[0, 255, 0], |
|
swap='right_hip'), |
|
12: |
|
dict(name='right_hip', |
|
id=12, |
|
color=[255, 128, 0], |
|
swap='left_hip'), |
|
13: |
|
dict(name='left_knee', |
|
id=13, |
|
color=[0, 255, 0], |
|
swap='right_knee'), |
|
14: |
|
dict(name='right_knee', |
|
id=14, |
|
color=[255, 128, 0], |
|
swap='left_knee'), |
|
15: |
|
dict(name='left_ankle', |
|
id=15, |
|
color=[0, 255, 0], |
|
swap='right_ankle'), |
|
16: |
|
dict(name='right_ankle', |
|
id=16, |
|
color=[255, 128, 0], |
|
swap='left_ankle') |
|
}, |
|
skeleton_info={ |
|
0: |
|
dict(link=('left_ankle', 'left_knee'), |
|
id=0, |
|
color=[0, 255, 0]), |
|
1: |
|
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, |
|
0]), |
|
2: |
|
dict(link=('right_ankle', 'right_knee'), |
|
id=2, |
|
color=[255, 128, 0]), |
|
3: |
|
dict(link=('right_knee', 'right_hip'), |
|
id=3, |
|
color=[255, 128, 0]), |
|
4: |
|
dict(link=('left_hip', 'right_hip'), |
|
id=4, |
|
color=[51, 153, 255]), |
|
5: |
|
dict(link=('left_shoulder', 'left_hip'), |
|
id=5, |
|
color=[51, 153, 255]), |
|
6: |
|
dict(link=('right_shoulder', 'right_hip'), |
|
id=6, |
|
color=[51, 153, 255]), |
|
7: |
|
dict(link=('left_shoulder', 'right_shoulder'), |
|
id=7, |
|
color=[51, 153, 255]), |
|
8: |
|
dict(link=('left_shoulder', 'left_elbow'), |
|
id=8, |
|
color=[0, 255, 0]), |
|
9: |
|
dict(link=('right_shoulder', 'right_elbow'), |
|
id=9, |
|
color=[255, 128, 0]), |
|
10: |
|
dict(link=('left_elbow', 'left_wrist'), |
|
id=10, |
|
color=[0, 255, 0]), |
|
11: |
|
dict(link=('right_elbow', 'right_wrist'), |
|
id=11, |
|
color=[255, 128, 0]), |
|
12: |
|
dict(link=('left_eye', 'right_eye'), |
|
id=12, |
|
color=[51, 153, 255]), |
|
13: |
|
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), |
|
14: |
|
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, |
|
255]), |
|
15: |
|
dict(link=('left_eye', 'left_ear'), |
|
id=15, |
|
color=[51, 153, 255]), |
|
16: |
|
dict(link=('right_eye', 'right_ear'), |
|
id=16, |
|
color=[51, 153, 255]), |
|
17: |
|
dict(link=('left_ear', 'left_shoulder'), |
|
id=17, |
|
color=[51, 153, 255]), |
|
18: |
|
dict(link=('right_ear', 'right_shoulder'), |
|
id=18, |
|
color=[51, 153, 255]) |
|
}) |
|
|
|
|
|
def draw_mmpose(img, |
|
keypoints, |
|
scores, |
|
keypoint_info, |
|
skeleton_info, |
|
kpt_thr=0.5, |
|
radius=2, |
|
line_width=2): |
|
assert len(keypoints.shape) == 2 |
|
|
|
vis_kpt = [s >= kpt_thr for s in scores] |
|
|
|
link_dict = {} |
|
for i, kpt_info in keypoint_info.items(): |
|
kpt_color = tuple(kpt_info['color']) |
|
link_dict[kpt_info['name']] = kpt_info['id'] |
|
|
|
kpt = keypoints[i] |
|
|
|
if vis_kpt[i]: |
|
img = cv2.circle(img, (int(kpt[0]), int(kpt[1])), int(radius), |
|
kpt_color, -1) |
|
|
|
for i, ske_info in skeleton_info.items(): |
|
link = ske_info['link'] |
|
pt0, pt1 = link_dict[link[0]], link_dict[link[1]] |
|
|
|
if vis_kpt[pt0] and vis_kpt[pt1]: |
|
link_color = ske_info['color'] |
|
kpt0 = keypoints[pt0] |
|
kpt1 = keypoints[pt1] |
|
|
|
img = cv2.line(img, (int(kpt0[0]), int(kpt0[1])), |
|
(int(kpt1[0]), int(kpt1[1])), |
|
link_color, |
|
thickness=line_width) |
|
|
|
return img |
|
|
|
def draw_bbox(img, bboxes, bboxes_scores=None, color=None, person_id_list=None, line_width=2): |
|
green = (0, 255, 0) |
|
for i, bbox in enumerate(bboxes): |
|
|
|
if color is None and bboxes_scores is not None: |
|
|
|
score = bboxes_scores[i] |
|
start_color = np.array([128,128,128],dtype=np.uint8) |
|
end_color = np.array([128,255,128],dtype=np.uint8) |
|
box_color = (1 - score) * start_color + score * end_color |
|
else: |
|
box_color = color if color is not None else end_color |
|
|
|
|
|
img = cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), |
|
(int(bbox[2]), int(bbox[3])), box_color, line_width) |
|
|
|
green_color = (0,255,0) |
|
|
|
if bboxes_scores is not None: |
|
score_text = f'{bboxes_scores[i]:.2f}' |
|
text_size, _ = cv2.getTextSize(score_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
|
text_x = int(bbox[2]) - text_size[0] |
|
text_y = int(bbox[1]) + text_size[1] |
|
img = cv2.putText(img, score_text, (text_x, text_y), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 1, cv2.LINE_AA) |
|
|
|
|
|
if person_id_list is not None: |
|
person_id_text = str(person_id_list[i]) |
|
text_size, _ = cv2.getTextSize(person_id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2) |
|
text_x = int(bbox[2]) - text_size[0] |
|
text_y = int(bbox[1]) - text_size[1] |
|
img = cv2.putText(img, person_id_text, (text_x, text_y), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2, cv2.LINE_AA) |
|
return img |
|
|
|
|
|
def draw_skeleton(img, |
|
keypoints, |
|
scores, |
|
kpt_thr=0.5, |
|
radius=1, |
|
line_width=2): |
|
num_keypoints = keypoints.shape[1] |
|
|
|
if num_keypoints == 17: |
|
skeleton = 'coco17' |
|
else: |
|
raise NotImplementedError |
|
|
|
skeleton_dict = eval(f'{skeleton}') |
|
keypoint_info = skeleton_dict['keypoint_info'] |
|
skeleton_info = skeleton_dict['skeleton_info'] |
|
|
|
if len(keypoints.shape) == 2: |
|
keypoints = keypoints[None, :, :] |
|
scores = scores[None, :, :] |
|
|
|
num_instance = keypoints.shape[0] |
|
if skeleton in ['coco17']: |
|
for i in range(num_instance): |
|
img = draw_mmpose(img, keypoints[i], scores[i], keypoint_info, |
|
skeleton_info, kpt_thr, radius, line_width) |
|
else: |
|
raise NotImplementedError |
|
return img |
|
|
|
def is_onnx_model(model_path): |
|
try: |
|
ort.InferenceSession(model_path, providers=["CPUExecutionProvider"]) |
|
return True |
|
except Exception as e: |
|
return False |
|
|
|
def is_trt_engine(model_path): |
|
try: |
|
from polygraphy.backend.common import BytesFromPath |
|
from polygraphy.backend.trt import EngineFromBytes |
|
engine = EngineFromBytes(BytesFromPath(model_path)) |
|
return engine is not None |
|
except Exception: |
|
return False |
|
|
|
def get_onnx_input_shapes(model_path): |
|
from polygraphy.backend.onnx.loader import OnnxFromPath |
|
from polygraphy.backend.onnx import infer_shapes |
|
model = OnnxFromPath(model_path)() |
|
model = infer_shapes(model) |
|
input_shapes = {inp.name: inp.type.tensor_type.shape for inp in model.graph.input} |
|
return {name: [dim.dim_value if dim.dim_value > 0 else 'Dynamic' for dim in shape_proto.dim] |
|
for name, shape_proto in input_shapes.items()} |
|
|
|
def get_trt_input_shapes(model_path): |
|
input_shapes = {} |
|
import tensorrt as trt |
|
with open(model_path, "rb") as f, trt.Runtime(trt.Logger(trt.Logger.WARNING)) as runtime: |
|
engine = runtime.deserialize_cuda_engine(f.read()) |
|
for binding in engine: |
|
if engine.binding_is_input(binding): |
|
input_shapes[binding] = engine.get_binding_shape(binding) |
|
return input_shapes |
|
|
|
def get_model_format_and_input_shape(model): |
|
if is_onnx_model(model): |
|
model_format = 'onnx' |
|
input_shape = get_onnx_input_shapes(model)['input'] |
|
elif is_trt_engine(model): |
|
model_format = 'engine' |
|
from polygraphy.backend.trt import load_plugins |
|
load_plugins(plugins=[PLUGIN_LIB_PATHS]) |
|
input_shape = get_trt_input_shapes(model)['input'] |
|
else: |
|
raise TypeError("Your model is neither ONNX nor Engine !") |
|
return model_format, input_shape |
|
|
|
class RTMO_GPU(object): |
|
|
|
def preprocess(self, img: np.ndarray): |
|
"""Do preprocessing for RTMPose model inference. |
|
Args: |
|
img (np.ndarray): Input image in shape. |
|
Returns: |
|
tuple: |
|
- resized_img (np.ndarray): Preprocessed image. |
|
- center (np.ndarray): Center of image. |
|
- scale (np.ndarray): Scale of image. |
|
""" |
|
if len(img.shape) == 3: |
|
padded_img = np.ones( |
|
(self.model_input_size[0], self.model_input_size[1], 3), |
|
dtype=np.uint8) * 114 |
|
else: |
|
padded_img = np.ones(self.model_input_size, dtype=np.uint8) * 114 |
|
|
|
ratio = min(self.model_input_size[0] / img.shape[0], |
|
self.model_input_size[1] / img.shape[1]) |
|
resized_img = cv2.resize( |
|
img, |
|
(int(img.shape[1] * ratio), int(img.shape[0] * ratio)), |
|
interpolation=cv2.INTER_LINEAR, |
|
).astype(np.uint8) |
|
padded_shape = (int(img.shape[0] * ratio), int(img.shape[1] * ratio)) |
|
padded_img[:padded_shape[0], :padded_shape[1]] = resized_img |
|
|
|
|
|
if self.mean is not None: |
|
self.mean = np.array(self.mean) |
|
self.std = np.array(self.std) |
|
padded_img = (padded_img - self.mean) / self.std |
|
|
|
return padded_img, ratio |
|
|
|
def postprocess( |
|
self, |
|
outputs: List[np.ndarray], |
|
ratio: float = 1., |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
"""Do postprocessing for RTMO model inference. |
|
Args: |
|
outputs (List[np.ndarray]): Outputs of RTMO model. |
|
ratio (float): Ratio of preprocessing. |
|
Returns: |
|
tuple: |
|
- final_boxes (np.ndarray): Final bounding boxes. |
|
- final_scores (np.ndarray): Final scores. |
|
""" |
|
|
|
if not self.is_yolo_nas_pose: |
|
|
|
det_outputs, pose_outputs = outputs |
|
|
|
|
|
pack_dets = (det_outputs[0, :, :4], det_outputs[0, :, 4]) |
|
final_boxes, final_scores = pack_dets |
|
final_boxes /= ratio |
|
isscore = final_scores > 0.3 |
|
isbbox = [i for i in isscore] |
|
final_boxes = final_boxes[isbbox] |
|
final_boxes_scores = final_scores[isbbox] |
|
|
|
|
|
keypoints, scores = pose_outputs[0, :, :, :2], pose_outputs[0, :, :, 2] |
|
keypoints = keypoints / ratio |
|
|
|
keypoints = keypoints[isbbox] |
|
scores = scores[isbbox] |
|
else: |
|
|
|
flat_predictions = outputs[0] |
|
if flat_predictions.shape[0] > 0: |
|
mask = flat_predictions[:, 0] == 0 |
|
final_boxes = flat_predictions[mask, 1:5] |
|
final_boxes_scores = flat_predictions[mask, 5] |
|
pred_joints = flat_predictions[mask, 6:].reshape((len(final_boxes), -1, 3)) |
|
keypoints, scores = pred_joints[:,:,:2], pred_joints[:,:,-1] |
|
keypoints = keypoints / ratio |
|
final_boxes = final_boxes / ratio |
|
else: |
|
final_boxes, final_boxes_scores, keypoints, scores = np.zeros((0, 4)),np.zeros((0, 1)),np.zeros((0, 17, 2)), np.zeros((0, 17)) |
|
|
|
return final_boxes, final_boxes_scores, keypoints, scores |
|
|
|
def inference(self, img: np.ndarray): |
|
"""Inference model. |
|
Args: |
|
img (np.ndarray): Input image in shape. |
|
Returns: |
|
outputs (np.ndarray): Output of RTMPose model. |
|
""" |
|
|
|
|
|
img = img.transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img, dtype=np.float32 if not self.is_yolo_nas_pose else np.uint8) |
|
input = img[None, :, :, :] |
|
|
|
if self.model_format == 'onnx': |
|
|
|
|
|
io_binding = self.session.io_binding() |
|
|
|
if not self.is_yolo_nas_pose: |
|
|
|
io_binding.bind_input(name='input', device_type='cpu', device_id=0, element_type=np.float32, shape=input.shape, buffer_ptr=input.ctypes.data) |
|
io_binding.bind_output(name='dets') |
|
io_binding.bind_output(name='keypoints') |
|
else: |
|
|
|
io_binding.bind_input(name='input', device_type='cpu', device_id=0, element_type=np.uint8, shape=input.shape, buffer_ptr=input.ctypes.data) |
|
io_binding.bind_output(name='graph2_flat_predictions') |
|
|
|
|
|
self.session.run_with_iobinding(io_binding) |
|
|
|
|
|
outputs = [output.numpy() for output in io_binding.get_outputs()] |
|
|
|
else: |
|
if TRT_BACKEND == 'POLYGRAPHY': |
|
if not self.session.is_active: |
|
self.session.activate() |
|
|
|
outputs = self.session.infer(feed_dict={'input': input}, check_inputs=False) |
|
outputs = [output for output in outputs.values()] |
|
else: |
|
import pycuda.driver as cuda |
|
|
|
input_shape = input.shape |
|
self.context.set_binding_shape(0, input_shape) |
|
|
|
|
|
np.copyto(self.inputs[0]['host'], input.ravel()) |
|
cuda.memcpy_htod_async(self.inputs[0]['device'], self.inputs[0]['host'], self.stream) |
|
|
|
|
|
self.context.execute_async_v2(bindings=self.bindings, stream_handle=self.stream.handle) |
|
|
|
|
|
for output in self.outputs: |
|
cuda.memcpy_dtoh_async(output['host'], output['device'], self.stream) |
|
|
|
|
|
self.stream.synchronize() |
|
|
|
|
|
outputs = [out['host'].reshape(out['shape']) for out in self.outputs] |
|
|
|
return outputs |
|
|
|
def __exit__(self): |
|
if self.model_format == 'engine' and TRT_BACKEND == 'POLYGRAPHY': |
|
if self.session.is_active: |
|
self.session.deactivate() |
|
|
|
def __call__(self, image: np.ndarray): |
|
image, ratio = self.preprocess(image) |
|
|
|
|
|
outputs = self.inference(image) |
|
|
|
bboxes, bboxes_scores, keypoints, scores = self.postprocess(outputs, ratio) |
|
|
|
return bboxes, bboxes_scores, keypoints, scores |
|
|
|
def __init__(self, |
|
model: str = None, |
|
mean: tuple = None, |
|
std: tuple = None, |
|
device: str = 'cuda', |
|
is_yolo_nas_pose = False, |
|
batch_size = 1, |
|
plugin_path = PLUGIN_LIB_PATHS): |
|
|
|
self.batch_size = batch_size |
|
|
|
if not os.path.exists(model): |
|
|
|
raise FileNotFoundError(f"The specified ONNX model file was not found: {model}") |
|
|
|
self.model = model |
|
self.model_format, self.input_shape = get_model_format_and_input_shape(self.model) |
|
|
|
if self.model_format == 'onnx': |
|
|
|
providers = {'cpu': 'CPUExecutionProvider', |
|
'cuda': [ |
|
|
|
|
|
|
|
|
|
('CUDAExecutionProvider', { |
|
'cudnn_conv_algo_search': 'DEFAULT', |
|
'cudnn_conv_use_max_workspace': True |
|
}), |
|
'OpenVINOExecutionProvider', |
|
'CPUExecutionProvider']} |
|
|
|
self.session = ort.InferenceSession(path_or_bytes=model, |
|
providers=providers[device]) |
|
|
|
else: |
|
if TRT_BACKEND == 'POLYGRAPHY': |
|
from polygraphy.backend.common import BytesFromPath |
|
from polygraphy.backend.trt import EngineFromBytes, TrtRunner |
|
engine = EngineFromBytes(BytesFromPath(model)) |
|
self.session = TrtRunner(engine) |
|
else: |
|
import tensorrt as trt |
|
import ctypes |
|
import pycuda.autoinit |
|
import pycuda.driver as cuda |
|
self.TRT_LOGGER = trt.Logger(trt.Logger.WARNING) |
|
self.trt_model_path = model |
|
self.plugin_path = plugin_path |
|
|
|
|
|
ctypes.CDLL(self.plugin_path) |
|
|
|
|
|
with open(self.trt_model_path, 'rb') as f: |
|
engine_data = f.read() |
|
|
|
self.runtime = trt.Runtime(self.TRT_LOGGER) |
|
self.engine = self.runtime.deserialize_cuda_engine(engine_data) |
|
|
|
if self.engine is None: |
|
raise RuntimeError("Failed to load the engine.") |
|
|
|
self.context = self.engine.create_execution_context() |
|
|
|
self.inputs = [] |
|
self.outputs = [] |
|
self.bindings = [] |
|
self.stream = cuda.Stream() |
|
|
|
|
|
for binding in self.engine: |
|
binding_index = self.engine.get_binding_index(binding) |
|
shape = self.engine.get_binding_shape(binding_index) |
|
if shape[0] == -1: |
|
|
|
shape[0] = self.batch_size |
|
size = trt.volume(shape) |
|
dtype = trt.nptype(self.engine.get_binding_dtype(binding)) |
|
|
|
|
|
host_mem = cuda.pagelocked_empty(size, dtype) |
|
device_mem = cuda.mem_alloc(host_mem.nbytes) |
|
|
|
|
|
self.bindings.append(int(device_mem)) |
|
|
|
|
|
if self.engine.binding_is_input(binding): |
|
self.inputs.append({'host': host_mem, 'device': device_mem, 'shape': shape}) |
|
else: |
|
self.outputs.append({'host': host_mem, 'device': device_mem, 'shape': shape}) |
|
|
|
self.model_input_size = self.input_shape[2:4] |
|
self.mean = mean |
|
self.std = std |
|
self.device = device |
|
self.is_yolo_nas_pose = is_yolo_nas_pose |
|
|
|
print(f'[I] Detected \'{self.model_format.upper()}\' model', end='') |
|
print(f', \'{TRT_BACKEND.upper()}\' backend is chosen for inference' if self.model_format == 'engine' else '') |
|
|
|
class RTMO_GPU_Batch(RTMO_GPU): |
|
def preprocess_batch(self, imgs: List[np.ndarray]) -> Tuple[np.ndarray, List[float]]: |
|
"""Process a batch of images for RTMPose model inference. |
|
Args: |
|
imgs (List[np.ndarray]): List of input images. |
|
Returns: |
|
tuple: |
|
- batch_img (np.ndarray): Batch of preprocessed images. |
|
- ratios (List[float]): Ratios used for preprocessing each image. |
|
""" |
|
batch_img = [] |
|
ratios = [] |
|
|
|
for img in imgs: |
|
preprocessed_img, ratio = super().preprocess(img) |
|
batch_img.append(preprocessed_img) |
|
ratios.append(ratio) |
|
|
|
|
|
batch_img = np.stack(batch_img, axis=0) |
|
|
|
return batch_img, ratios |
|
|
|
def inference(self, batch_img: np.ndarray): |
|
"""Override to handle batch inference. |
|
Args: |
|
batch_img (np.ndarray): Batch of preprocessed images. |
|
Returns: |
|
outputs (List[np.ndarray]): Outputs of RTMPose model for each image. |
|
""" |
|
batch_img = batch_img.transpose(0, 3, 1, 2) |
|
batch_img = np.ascontiguousarray(batch_img, dtype=np.float32) |
|
|
|
input = batch_img |
|
|
|
if self.model_format == 'onnx': |
|
|
|
|
|
io_binding = self.session.io_binding() |
|
|
|
if not self.is_yolo_nas_pose: |
|
|
|
io_binding.bind_input(name='input', device_type='cpu', device_id=0, element_type=np.float32, shape=input.shape, buffer_ptr=input.ctypes.data) |
|
io_binding.bind_output(name='dets') |
|
io_binding.bind_output(name='keypoints') |
|
else: |
|
|
|
io_binding.bind_input(name='input', device_type='cpu', device_id=0, element_type=np.uint8, shape=input.shape, buffer_ptr=input.ctypes.data) |
|
io_binding.bind_output(name='graph2_flat_predictions') |
|
|
|
|
|
self.session.run_with_iobinding(io_binding) |
|
|
|
|
|
outputs = [output.numpy() for output in io_binding.get_outputs()] |
|
|
|
else: |
|
if TRT_BACKEND == 'POLYGRAPHY': |
|
if not self.session.is_active: |
|
self.session.activate() |
|
|
|
outputs = self.session.infer(feed_dict={'input': input}, check_inputs=False) |
|
outputs = [output for output in outputs.values()] |
|
else: |
|
import pycuda.driver as cuda |
|
|
|
input_shape = input.shape |
|
self.context.set_binding_shape(0, input_shape) |
|
|
|
|
|
np.copyto(self.inputs[0]['host'], input.ravel()) |
|
cuda.memcpy_htod_async(self.inputs[0]['device'], self.inputs[0]['host'], self.stream) |
|
|
|
|
|
self.context.execute_async_v2(bindings=self.bindings, stream_handle=self.stream.handle) |
|
|
|
|
|
for output in self.outputs: |
|
cuda.memcpy_dtoh_async(output['host'], output['device'], self.stream) |
|
|
|
|
|
self.stream.synchronize() |
|
|
|
|
|
outputs = [out['host'].reshape(out['shape']) for out in self.outputs] |
|
|
|
return outputs |
|
|
|
def postprocess_batch( |
|
self, |
|
outputs: List[np.ndarray], |
|
ratios: List[float] |
|
) -> Tuple[List[np.ndarray], List[np.ndarray]]: |
|
"""Process outputs for a batch of images. |
|
Args: |
|
outputs (List[np.ndarray]): Outputs from the model for each image. |
|
ratios (List[float]): Ratios used for preprocessing each image. |
|
Returns: |
|
List[Tuple[np.ndarray, np.ndarray]]: keypoints and scores for each image. |
|
""" |
|
batch_keypoints = [] |
|
batch_scores = [] |
|
batch_bboxes = [] |
|
batch_bboxes_scores = [] |
|
|
|
b_dets, b_keypoints = outputs |
|
for i, ratio in enumerate(ratios): |
|
output = [np.expand_dims(b_dets[i], axis=0), np.expand_dims(b_keypoints[i],axis=0)] |
|
bboxes, bboxes_scores, keypoints, scores = super().postprocess(output, ratio) |
|
batch_keypoints.append(keypoints) |
|
batch_scores.append(scores) |
|
batch_bboxes.append(bboxes) |
|
batch_bboxes_scores.append(bboxes_scores) |
|
|
|
return batch_bboxes, batch_bboxes_scores, batch_keypoints, batch_scores |
|
|
|
def __batch_call__(self, images: List[np.ndarray]): |
|
batch_img, ratios = self.preprocess_batch(images) |
|
outputs = self.inference(batch_img) |
|
bboxes, bboxes_scores, keypoints, scores = self.postprocess_batch(outputs, ratios) |
|
return bboxes, bboxes_scores, keypoints, scores |
|
|
|
def free_unused_buffers(self, activate_cameras_ids: List): |
|
for camera_id in list(self.buffers.keys()): |
|
if camera_id not in activate_cameras_ids: |
|
del self.buffers[camera_id] |
|
del self.in_queues[camera_id] |
|
del self.out_queues[camera_id] |
|
if DEBUG: |
|
print(f'RTMO buffers to camera "{camera_id}" got freed.', flush=True) |
|
|
|
def __call__(self, image: np.array, camera_id = 0): |
|
|
|
|
|
if camera_id not in self.buffers: |
|
self.buffers[camera_id] = [] |
|
self.in_queues[camera_id] = Queue(maxsize=self.batch_size) |
|
self.out_queues[camera_id] = Queue(maxsize=self.batch_size) |
|
if DEBUG: |
|
print(f'RTMO buffers to camera "{camera_id}" are created.', flush=True) |
|
|
|
|
|
in_queue = self.in_queues[camera_id] |
|
out_queue = self.out_queues[camera_id] |
|
self.buffers[camera_id].append(image) |
|
in_queue.put(image) |
|
|
|
if len(self.buffers[camera_id]) == self.batch_size: |
|
b_bboxes, b_bboxes_scores, b_keypoints, b_scores = self.__batch_call__(self.buffers[camera_id]) |
|
for i, (keypoints, scores) in enumerate(zip(b_keypoints, b_scores)): |
|
bboxes = b_bboxes[i] |
|
bboxes_scores = b_bboxes_scores[i] |
|
out_queue.put((bboxes, bboxes_scores, keypoints, scores)) |
|
self.buffers[camera_id] = [] |
|
|
|
frame, bboxes, bboxes_scores, keypoints, scores = None, None, None, None, None |
|
if not out_queue.empty(): |
|
bboxes, bboxes_scores, keypoints, scores = out_queue.get() |
|
frame = in_queue.get() |
|
|
|
return frame, bboxes, bboxes_scores, keypoints, scores |
|
|
|
|
|
def __init__(self, |
|
model: str = None, |
|
mean: tuple = None, |
|
std: tuple = None, |
|
device: str = 'cuda', |
|
is_yolo_nas_pose = False, |
|
plugin_path = PLUGIN_LIB_PATHS, |
|
batch_size: int = 1): |
|
super().__init__(model, |
|
mean, |
|
std, |
|
device, |
|
is_yolo_nas_pose, |
|
batch_size, |
|
plugin_path) |
|
|
|
self.in_queues = dict() |
|
self.out_queues = dict() |
|
self.buffers = dict() |
|
|
|
def resize_to_fit_screen(image, screen_width, screen_height): |
|
|
|
h, w = image.shape[:2] |
|
|
|
|
|
aspect_ratio = w / h |
|
|
|
|
|
scale = min(screen_width / w, screen_height / h) |
|
|
|
|
|
new_width = int(w * scale) |
|
new_height = int(h * scale) |
|
|
|
|
|
resized_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) |
|
|
|
return resized_image |
|
|