perezhogin
commited on
Commit
•
8ac6d20
1
Parent(s):
192fb95
My LunarLander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 264.70 +/- 14.03
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a609ccb6b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a609ccb6c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a609ccb6cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a609ccb6d40>", "_build": "<function ActorCriticPolicy._build at 0x7a609ccb6dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7a609ccb6e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a609ccb6ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a609ccb6f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7a609ccb7010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a609ccb70a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a609ccb7130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a609ccb71c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a609ce54400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719501174676283132, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaWLb7LIbc9T/DHPRfnQL7AlkG8s5lhPQAAAAAAAAAAbXuVPnEGVDxWiIW9ntvWPB1jdj796Nm9AACAPwAAgD/a6bQ+uK2eu3VPKrsMt6A6gUplvbzpsToAAIA/AACAPxPgMT70zIS8JgAhuhJkdDgycu+9/blTOQAAgD8AAIA/WjaEPWlbAT5CVUG8/eOcvi+jqDwyoZg8AAAAAAAAAABTmAO+cfhZu4Kf6zIiiY0yWRWfPE+UE7QAAIA/AACAPy33BT6UNeA7PijOvVv2hbyt8HY9tet3vQAAgD8AAIA/rSEpvs8JbLwAjpc6MvIcOXpG0j2FyPC5AACAPwAAgD+aYng+9iArvEJGZbuthS05eXujvfpqiToAAIA/AACAP4CXdL0p1B66voZVswuP+C8hjwy76qK+MwAAgD8AAIA/mkYJPbw8Sj3NZZq8gmhyvvQ3WbwhJ8m8AAAAAAAAAADNNdS8c8b+PqpGWrsyd9C+A6XiPF05gTwAAAAAAAAAACb3tb32ZGu6leOJOcSzDbPqf5q6A0ieuAAAgD8AAAAApg3lPRfJiT9P77A+OcYVv3PnEj5GnoA9AAAAAAAAAACNWTE+lOWDvDIFZTsh0pa5/Lrfva8IlLoAAIA/AACAPzPzXD1xDXi5YGSIs5uxpqxCR8U7LKunMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFjuWrwOSMAWyUS+CMAXSUR0Cn4Xul41P4dX2UKGgGR0Bw0kZMtbs4aAdL12gIR0Cn4X/r8iwCdX2UKGgGR0Bt3HKOktVaaAdNAwFoCEdAp+GzrX18LXV9lChoBkdAb6GfFJg9eWgHS9BoCEdAp+G65Xlr/XV9lChoBkdAcWy+36Q/5mgHTXIBaAhHQKfhxKzRhMJ1fZQoaAZHQHLKQ6+36RBoB00PAWgIR0Cn4cgGKQ7tdX2UKGgGR0BvZJsTFl06aAdLzWgIR0Cn4jM5XEIgdX2UKGgGR0BviA5PuXu3aAdL9WgIR0Cn4mMglnh9dX2UKGgGR0BuS36O5rgwaAdL1mgIR0Cn4oUdaMaTdX2UKGgGR0Bu/aCxu89PaAdL82gIR0Cn4tpEhJRPdX2UKGgGR0ByprYoRZlnaAdLyGgIR0Cn41i0OVgQdX2UKGgGR0Bwdhv3rUsnaAdNOAFoCEdAp+OuOQyRCHV9lChoBkdAb/gzch1TzmgHS95oCEdAp+RDQNTcZnV9lChoBkdAcBYZnL7oCGgHS+JoCEdAp+RR9LHuJHV9lChoBkdAcBjAeaKDTWgHS9xoCEdAp+SDo2XLNnV9lChoBkdAcUtKtxMnJGgHS9FoCEdAp+SlZDArQXV9lChoBkdAcABpH7P6bmgHS9loCEdAp+TFk8Rtg3V9lChoBkdAcYPaRp1zQ2gHS/BoCEdAp+TY8yN4q3V9lChoBkdAcBIJ8fFJhGgHS+RoCEdAp+Td/z8P4HV9lChoBkdAb43XZoPCmGgHS+5oCEdAp+UHxFy7w3V9lChoBkdAcS52mpEQXmgHS+ZoCEdAp+WJaPjn3nV9lChoBkdAcnuTnq3VkWgHS9NoCEdAp+WilchTwXV9lChoBkdAbuiB8QZn+WgHS+NoCEdAp+W4hbGFSXV9lChoBkdAcTAurIYFaGgHS/RoCEdAp+Zzt9hJAnV9lChoBkdAb3SguAZsK2gHS8xoCEdAp+ayHwgDBHV9lChoBkdAcRvuZ1FH8WgHS9RoCEdAp+eTHfdhzHV9lChoBkdAbm7nied072gHS9VoCEdAp+fRzaK1onV9lChoBkdAcQzf5ULlWGgHTdQBaAhHQKfoOVJtix51fZQoaAZHQG2jA3cYZVJoB0vmaAhHQKfobj7Q9id1fZQoaAZHQHDnadxyXD5oB00OAWgIR0Cn6Hakyk9EdX2UKGgGR0BxWOBWgezVaAdLxGgIR0Cn6MNJvo/zdX2UKGgGR0Bw7q7QLNOeaAdL32gIR0Cn6QIa1kUcdX2UKGgGR0BxuTOmixmkaAdNEwFoCEdAp+ki7yxzJnV9lChoBkdAcvI+CsfaH2gHTSMBaAhHQKfpK1rIo3J1fZQoaAZHQHDccVHnU2FoB00qAWgIR0Cn6cNZV4ordX2UKGgGR0BvY2gHu7YkaAdL0GgIR0Cn6e39aUzLdX2UKGgGR0BvA+Af+0gKaAdL0GgIR0Cn64PxhDw6dX2UKGgGR0BwPlP69CeFaAdNBQFoCEdAp+uLsniNsHV9lChoBkdActdxDb8FZGgHTWMBaAhHQKfr9JwsGxF1fZQoaAZHQHAMjrE9+w1oB0vUaAhHQKfsy9RJmNB1fZQoaAZHQHApwnUlRgtoB0vraAhHQKftDKbrkbR1fZQoaAZHQG/rkoWpIc1oB0vVaAhHQKftf1SwW311fZQoaAZHQG4/IWgvlEJoB0vPaAhHQKftxF3IMjN1fZQoaAZHQG990KArhBJoB0vWaAhHQKfuLXDm8ul1fZQoaAZHQHCNSsOoYN1oB00eAWgIR0Cn7shLwnYydX2UKGgGR0BwqxWBBiTdaAdL+WgIR0Cn7vGlQ/HHdX2UKGgGR0Bmd6u6mO2iaAdN6ANoCEdAp+84DYAbQ3V9lChoBkdAcHgI68xsVWgHS/JoCEdAp+9tYyO7x3V9lChoBkdANnXqVyFPBWgHS7BoCEdAp++X6j323HV9lChoBkdAcI/Ek0JnhGgHS+ZoCEdAp/DYhQm/nHV9lChoBkdAcFAl0o0ALmgHS9VoCEdAp/F5N21Ul3V9lChoBkdAcT26NVBD5WgHS8BoCEdAp/GGW6bvw3V9lChoBkdAcAQa/yoXK2gHS+NoCEdAp/GRLdvbXnV9lChoBkdAb3S9Iwudw2gHS/BoCEdAp/LHKdQO4HV9lChoBkdAbgC90Rvm5mgHS9poCEdAp/LiQA+6iHV9lChoBkdAcCZs+3YthGgHS9xoCEdAp/OCji4rjHV9lChoBkdAcA8h+vyLAGgHTb4BaAhHQKfzjdxAB1d1fZQoaAZHQHIBu1WsA/9oB0v+aAhHQKfz3Td+G491fZQoaAZHQHB16ZUkv9NoB0vvaAhHQKf0O/X5FgF1fZQoaAZHQG7ldvjwQUZoB00CAWgIR0Cn9Gr+YMOPdX2UKGgGR0BxTNRm9QGfaAdL02gIR0Cn9RFSjxkNdX2UKGgGR0BvDTcRDkU9aAdLxmgIR0Cn9XeANG3GdX2UKGgGR0Bxq+cqe9SNaAdLy2gIR0Cn9YssQNCrdX2UKGgGR0BuPju+h4+saAdL52gIR0Cn9iPpQk5ZdX2UKGgGR0BkR/DvVmSRaAdN6ANoCEdAp/Y0ngHeJ3V9lChoBkdAcaQX6qKgqWgHS8BoCEdAp/agyfthNXV9lChoBkdAPlksSTQmeGgHS/RoCEdAp/eJMDfWMHV9lChoBkdAcRq7IDHOr2gHS9poCEdAp/eoVCXyAnV9lChoBkdAYhyu3+dbxGgHTegDaAhHQKf37/NJOFh1fZQoaAZHQHCSsTviLl5oB0vJaAhHQKf4M7dSEUV1fZQoaAZHQG/k4HPeHi5oB0vUaAhHQKf4N3iaRZF1fZQoaAZHQHG1XRXwLE1oB00KAWgIR0Cn+HxEv0yydX2UKGgGR0BtVzG96C17aAdNWQNoCEdAp/jF8w5/9nV9lChoBkdAcgpE2Hck+2gHTRgBaAhHQKf49cnmaH91fZQoaAZHQG/8Ce/YapBoB0vUaAhHQKf5ONYKYzB1fZQoaAZHQHAdPGVAzHloB0vqaAhHQKf5PpmmLtN1fZQoaAZHQHE2nAqNIbxoB0v4aAhHQKf5xs0pEx91fZQoaAZHQHB/+dsi0OVoB0vkaAhHQKf6YttALRd1fZQoaAZHQG7KdGy5Zr5oB0vHaAhHQKf7AjQAuI11fZQoaAZHQG5bJWeYlY5oB0vKaAhHQKf7YSL61st1fZQoaAZHQHB2zo6jnFJoB0vWaAhHQKf7+T9sJpp1fZQoaAZHQHFDhXr+o99oB00CAWgIR0Cn/HVJDmbLdX2UKGgGR0Bt+xF/hESeaAdL3mgIR0Cn/Q4Gt6omdX2UKGgGR0BwtG7BfrrxaAdL/mgIR0Cn/U13t8eCdX2UKGgGR0BBDyv1UVBVaAdLoWgIR0Cn/VUHIIWydX2UKGgGR0BwnN5VwPy1aAdL8GgIR0Cn/g1aGHpKdX2UKGgGR0BwO9EUj9n9aAdNIwFoCEdAp/5iEpRXOnV9lChoBkdAYj8/QjUutmgHTegDaAhHQKf+rchTwUh1fZQoaAZHQHLn30Cih39oB0vTaAhHQKf/WkyDZlF1fZQoaAZHQHBVv9xZMcpoB0u5aAhHQKf/dlQuVX51fZQoaAZHQGIH4dQwbl1oB03oA2gIR0CoAB9Wp6yCdX2UKGgGR0Bxfpj2Bas7aAdNGAFoCEdAqABGfVZs9HV9lChoBkdAb18XsPatcWgHS9poCEdAqAB+MfigkHV9lChoBkdAb4ICOFQEZGgHS9VoCEdAqADopSaVlnV9lChoBkdAcZO003wTd2gHS+poCEdAqAGFivxH5XV9lChoBkdAcBMjynUDuGgHS9BoCEdAqAG7U/fO2XV9lChoBkdAcTdTVUdaMmgHS/5oCEdAqAHfNorWiHV9lChoBkdAcGTsbNr0rmgHS+BoCEdAqAJND+irUHV9lChoBkdAcmaJKraM72gHS85oCEdAqAMPT7VJ+XV9lChoBkdAcNDUkfLcK2gHS+NoCEdAqAS1vbXYlXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb5e3bdcafb7820f371498402a13e20615810cc10e1cb27c0b7b2d7976195b4a
|
3 |
+
size 147987
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a609ccb6b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a609ccb6c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a609ccb6cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a609ccb6d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a609ccb6dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a609ccb6e60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a609ccb6ef0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a609ccb6f80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a609ccb7010>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a609ccb70a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a609ccb7130>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a609ccb71c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a609ce54400>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1719501174676283132,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaWLb7LIbc9T/DHPRfnQL7AlkG8s5lhPQAAAAAAAAAAbXuVPnEGVDxWiIW9ntvWPB1jdj796Nm9AACAPwAAgD/a6bQ+uK2eu3VPKrsMt6A6gUplvbzpsToAAIA/AACAPxPgMT70zIS8JgAhuhJkdDgycu+9/blTOQAAgD8AAIA/WjaEPWlbAT5CVUG8/eOcvi+jqDwyoZg8AAAAAAAAAABTmAO+cfhZu4Kf6zIiiY0yWRWfPE+UE7QAAIA/AACAPy33BT6UNeA7PijOvVv2hbyt8HY9tet3vQAAgD8AAIA/rSEpvs8JbLwAjpc6MvIcOXpG0j2FyPC5AACAPwAAgD+aYng+9iArvEJGZbuthS05eXujvfpqiToAAIA/AACAP4CXdL0p1B66voZVswuP+C8hjwy76qK+MwAAgD8AAIA/mkYJPbw8Sj3NZZq8gmhyvvQ3WbwhJ8m8AAAAAAAAAADNNdS8c8b+PqpGWrsyd9C+A6XiPF05gTwAAAAAAAAAACb3tb32ZGu6leOJOcSzDbPqf5q6A0ieuAAAgD8AAAAApg3lPRfJiT9P77A+OcYVv3PnEj5GnoA9AAAAAAAAAACNWTE+lOWDvDIFZTsh0pa5/Lrfva8IlLoAAIA/AACAPzPzXD1xDXi5YGSIs5uxpqxCR8U7LKunMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFjuWrwOSMAWyUS+CMAXSUR0Cn4Xul41P4dX2UKGgGR0Bw0kZMtbs4aAdL12gIR0Cn4X/r8iwCdX2UKGgGR0Bt3HKOktVaaAdNAwFoCEdAp+GzrX18LXV9lChoBkdAb6GfFJg9eWgHS9BoCEdAp+G65Xlr/XV9lChoBkdAcWy+36Q/5mgHTXIBaAhHQKfhxKzRhMJ1fZQoaAZHQHLKQ6+36RBoB00PAWgIR0Cn4cgGKQ7tdX2UKGgGR0BvZJsTFl06aAdLzWgIR0Cn4jM5XEIgdX2UKGgGR0BviA5PuXu3aAdL9WgIR0Cn4mMglnh9dX2UKGgGR0BuS36O5rgwaAdL1mgIR0Cn4oUdaMaTdX2UKGgGR0Bu/aCxu89PaAdL82gIR0Cn4tpEhJRPdX2UKGgGR0ByprYoRZlnaAdLyGgIR0Cn41i0OVgQdX2UKGgGR0Bwdhv3rUsnaAdNOAFoCEdAp+OuOQyRCHV9lChoBkdAb/gzch1TzmgHS95oCEdAp+RDQNTcZnV9lChoBkdAcBYZnL7oCGgHS+JoCEdAp+RR9LHuJHV9lChoBkdAcBjAeaKDTWgHS9xoCEdAp+SDo2XLNnV9lChoBkdAcUtKtxMnJGgHS9FoCEdAp+SlZDArQXV9lChoBkdAcABpH7P6bmgHS9loCEdAp+TFk8Rtg3V9lChoBkdAcYPaRp1zQ2gHS/BoCEdAp+TY8yN4q3V9lChoBkdAcBIJ8fFJhGgHS+RoCEdAp+Td/z8P4HV9lChoBkdAb43XZoPCmGgHS+5oCEdAp+UHxFy7w3V9lChoBkdAcS52mpEQXmgHS+ZoCEdAp+WJaPjn3nV9lChoBkdAcnuTnq3VkWgHS9NoCEdAp+WilchTwXV9lChoBkdAbuiB8QZn+WgHS+NoCEdAp+W4hbGFSXV9lChoBkdAcTAurIYFaGgHS/RoCEdAp+Zzt9hJAnV9lChoBkdAb3SguAZsK2gHS8xoCEdAp+ayHwgDBHV9lChoBkdAcRvuZ1FH8WgHS9RoCEdAp+eTHfdhzHV9lChoBkdAbm7nied072gHS9VoCEdAp+fRzaK1onV9lChoBkdAcQzf5ULlWGgHTdQBaAhHQKfoOVJtix51fZQoaAZHQG2jA3cYZVJoB0vmaAhHQKfobj7Q9id1fZQoaAZHQHDnadxyXD5oB00OAWgIR0Cn6Hakyk9EdX2UKGgGR0BxWOBWgezVaAdLxGgIR0Cn6MNJvo/zdX2UKGgGR0Bw7q7QLNOeaAdL32gIR0Cn6QIa1kUcdX2UKGgGR0BxuTOmixmkaAdNEwFoCEdAp+ki7yxzJnV9lChoBkdAcvI+CsfaH2gHTSMBaAhHQKfpK1rIo3J1fZQoaAZHQHDccVHnU2FoB00qAWgIR0Cn6cNZV4ordX2UKGgGR0BvY2gHu7YkaAdL0GgIR0Cn6e39aUzLdX2UKGgGR0BvA+Af+0gKaAdL0GgIR0Cn64PxhDw6dX2UKGgGR0BwPlP69CeFaAdNBQFoCEdAp+uLsniNsHV9lChoBkdActdxDb8FZGgHTWMBaAhHQKfr9JwsGxF1fZQoaAZHQHAMjrE9+w1oB0vUaAhHQKfsy9RJmNB1fZQoaAZHQHApwnUlRgtoB0vraAhHQKftDKbrkbR1fZQoaAZHQG/rkoWpIc1oB0vVaAhHQKftf1SwW311fZQoaAZHQG4/IWgvlEJoB0vPaAhHQKftxF3IMjN1fZQoaAZHQG990KArhBJoB0vWaAhHQKfuLXDm8ul1fZQoaAZHQHCNSsOoYN1oB00eAWgIR0Cn7shLwnYydX2UKGgGR0BwqxWBBiTdaAdL+WgIR0Cn7vGlQ/HHdX2UKGgGR0Bmd6u6mO2iaAdN6ANoCEdAp+84DYAbQ3V9lChoBkdAcHgI68xsVWgHS/JoCEdAp+9tYyO7x3V9lChoBkdANnXqVyFPBWgHS7BoCEdAp++X6j323HV9lChoBkdAcI/Ek0JnhGgHS+ZoCEdAp/DYhQm/nHV9lChoBkdAcFAl0o0ALmgHS9VoCEdAp/F5N21Ul3V9lChoBkdAcT26NVBD5WgHS8BoCEdAp/GGW6bvw3V9lChoBkdAcAQa/yoXK2gHS+NoCEdAp/GRLdvbXnV9lChoBkdAb3S9Iwudw2gHS/BoCEdAp/LHKdQO4HV9lChoBkdAbgC90Rvm5mgHS9poCEdAp/LiQA+6iHV9lChoBkdAcCZs+3YthGgHS9xoCEdAp/OCji4rjHV9lChoBkdAcA8h+vyLAGgHTb4BaAhHQKfzjdxAB1d1fZQoaAZHQHIBu1WsA/9oB0v+aAhHQKfz3Td+G491fZQoaAZHQHB16ZUkv9NoB0vvaAhHQKf0O/X5FgF1fZQoaAZHQG7ldvjwQUZoB00CAWgIR0Cn9Gr+YMOPdX2UKGgGR0BxTNRm9QGfaAdL02gIR0Cn9RFSjxkNdX2UKGgGR0BvDTcRDkU9aAdLxmgIR0Cn9XeANG3GdX2UKGgGR0Bxq+cqe9SNaAdLy2gIR0Cn9YssQNCrdX2UKGgGR0BuPju+h4+saAdL52gIR0Cn9iPpQk5ZdX2UKGgGR0BkR/DvVmSRaAdN6ANoCEdAp/Y0ngHeJ3V9lChoBkdAcaQX6qKgqWgHS8BoCEdAp/agyfthNXV9lChoBkdAPlksSTQmeGgHS/RoCEdAp/eJMDfWMHV9lChoBkdAcRq7IDHOr2gHS9poCEdAp/eoVCXyAnV9lChoBkdAYhyu3+dbxGgHTegDaAhHQKf37/NJOFh1fZQoaAZHQHCSsTviLl5oB0vJaAhHQKf4M7dSEUV1fZQoaAZHQG/k4HPeHi5oB0vUaAhHQKf4N3iaRZF1fZQoaAZHQHG1XRXwLE1oB00KAWgIR0Cn+HxEv0yydX2UKGgGR0BtVzG96C17aAdNWQNoCEdAp/jF8w5/9nV9lChoBkdAcgpE2Hck+2gHTRgBaAhHQKf49cnmaH91fZQoaAZHQG/8Ce/YapBoB0vUaAhHQKf5ONYKYzB1fZQoaAZHQHAdPGVAzHloB0vqaAhHQKf5PpmmLtN1fZQoaAZHQHE2nAqNIbxoB0v4aAhHQKf5xs0pEx91fZQoaAZHQHB/+dsi0OVoB0vkaAhHQKf6YttALRd1fZQoaAZHQG7KdGy5Zr5oB0vHaAhHQKf7AjQAuI11fZQoaAZHQG5bJWeYlY5oB0vKaAhHQKf7YSL61st1fZQoaAZHQHB2zo6jnFJoB0vWaAhHQKf7+T9sJpp1fZQoaAZHQHFDhXr+o99oB00CAWgIR0Cn/HVJDmbLdX2UKGgGR0Bt+xF/hESeaAdL3mgIR0Cn/Q4Gt6omdX2UKGgGR0BwtG7BfrrxaAdL/mgIR0Cn/U13t8eCdX2UKGgGR0BBDyv1UVBVaAdLoWgIR0Cn/VUHIIWydX2UKGgGR0BwnN5VwPy1aAdL8GgIR0Cn/g1aGHpKdX2UKGgGR0BwO9EUj9n9aAdNIwFoCEdAp/5iEpRXOnV9lChoBkdAYj8/QjUutmgHTegDaAhHQKf+rchTwUh1fZQoaAZHQHLn30Cih39oB0vTaAhHQKf/WkyDZlF1fZQoaAZHQHBVv9xZMcpoB0u5aAhHQKf/dlQuVX51fZQoaAZHQGIH4dQwbl1oB03oA2gIR0CoAB9Wp6yCdX2UKGgGR0Bxfpj2Bas7aAdNGAFoCEdAqABGfVZs9HV9lChoBkdAb18XsPatcWgHS9poCEdAqAB+MfigkHV9lChoBkdAb4ICOFQEZGgHS9VoCEdAqADopSaVlnV9lChoBkdAcZO003wTd2gHS+poCEdAqAGFivxH5XV9lChoBkdAcBMjynUDuGgHS9BoCEdAqAG7U/fO2XV9lChoBkdAcTdTVUdaMmgHS/5oCEdAqAHfNorWiHV9lChoBkdAcGTsbNr0rmgHS+BoCEdAqAJND+irUHV9lChoBkdAcmaJKraM72gHS85oCEdAqAMPT7VJ+XV9lChoBkdAcNDUkfLcK2gHS+NoCEdAqAS1vbXYlXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c37e2acbc5b6b71b559099327abb11329aa8b2a1c4b4791d8a19e4dae6a58504
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e87a3adac8532615ccb394b7bef9fe2a7f222603110d57e1e7b61f17bc0b7801
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (165 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.70355170000005, "std_reward": 14.0269300310602, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-27T16:42:44.191407"}
|