perezhogin commited on
Commit
8ac6d20
1 Parent(s): 192fb95

My LunarLander-v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.70 +/- 14.03
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a609ccb6b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a609ccb6c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a609ccb6cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a609ccb6d40>", "_build": "<function ActorCriticPolicy._build at 0x7a609ccb6dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7a609ccb6e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a609ccb6ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a609ccb6f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7a609ccb7010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a609ccb70a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a609ccb7130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a609ccb71c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a609ce54400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719501174676283132, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaWLb7LIbc9T/DHPRfnQL7AlkG8s5lhPQAAAAAAAAAAbXuVPnEGVDxWiIW9ntvWPB1jdj796Nm9AACAPwAAgD/a6bQ+uK2eu3VPKrsMt6A6gUplvbzpsToAAIA/AACAPxPgMT70zIS8JgAhuhJkdDgycu+9/blTOQAAgD8AAIA/WjaEPWlbAT5CVUG8/eOcvi+jqDwyoZg8AAAAAAAAAABTmAO+cfhZu4Kf6zIiiY0yWRWfPE+UE7QAAIA/AACAPy33BT6UNeA7PijOvVv2hbyt8HY9tet3vQAAgD8AAIA/rSEpvs8JbLwAjpc6MvIcOXpG0j2FyPC5AACAPwAAgD+aYng+9iArvEJGZbuthS05eXujvfpqiToAAIA/AACAP4CXdL0p1B66voZVswuP+C8hjwy76qK+MwAAgD8AAIA/mkYJPbw8Sj3NZZq8gmhyvvQ3WbwhJ8m8AAAAAAAAAADNNdS8c8b+PqpGWrsyd9C+A6XiPF05gTwAAAAAAAAAACb3tb32ZGu6leOJOcSzDbPqf5q6A0ieuAAAgD8AAAAApg3lPRfJiT9P77A+OcYVv3PnEj5GnoA9AAAAAAAAAACNWTE+lOWDvDIFZTsh0pa5/Lrfva8IlLoAAIA/AACAPzPzXD1xDXi5YGSIs5uxpqxCR8U7LKunMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFjuWrwOSMAWyUS+CMAXSUR0Cn4Xul41P4dX2UKGgGR0Bw0kZMtbs4aAdL12gIR0Cn4X/r8iwCdX2UKGgGR0Bt3HKOktVaaAdNAwFoCEdAp+GzrX18LXV9lChoBkdAb6GfFJg9eWgHS9BoCEdAp+G65Xlr/XV9lChoBkdAcWy+36Q/5mgHTXIBaAhHQKfhxKzRhMJ1fZQoaAZHQHLKQ6+36RBoB00PAWgIR0Cn4cgGKQ7tdX2UKGgGR0BvZJsTFl06aAdLzWgIR0Cn4jM5XEIgdX2UKGgGR0BviA5PuXu3aAdL9WgIR0Cn4mMglnh9dX2UKGgGR0BuS36O5rgwaAdL1mgIR0Cn4oUdaMaTdX2UKGgGR0Bu/aCxu89PaAdL82gIR0Cn4tpEhJRPdX2UKGgGR0ByprYoRZlnaAdLyGgIR0Cn41i0OVgQdX2UKGgGR0Bwdhv3rUsnaAdNOAFoCEdAp+OuOQyRCHV9lChoBkdAb/gzch1TzmgHS95oCEdAp+RDQNTcZnV9lChoBkdAcBYZnL7oCGgHS+JoCEdAp+RR9LHuJHV9lChoBkdAcBjAeaKDTWgHS9xoCEdAp+SDo2XLNnV9lChoBkdAcUtKtxMnJGgHS9FoCEdAp+SlZDArQXV9lChoBkdAcABpH7P6bmgHS9loCEdAp+TFk8Rtg3V9lChoBkdAcYPaRp1zQ2gHS/BoCEdAp+TY8yN4q3V9lChoBkdAcBIJ8fFJhGgHS+RoCEdAp+Td/z8P4HV9lChoBkdAb43XZoPCmGgHS+5oCEdAp+UHxFy7w3V9lChoBkdAcS52mpEQXmgHS+ZoCEdAp+WJaPjn3nV9lChoBkdAcnuTnq3VkWgHS9NoCEdAp+WilchTwXV9lChoBkdAbuiB8QZn+WgHS+NoCEdAp+W4hbGFSXV9lChoBkdAcTAurIYFaGgHS/RoCEdAp+Zzt9hJAnV9lChoBkdAb3SguAZsK2gHS8xoCEdAp+ayHwgDBHV9lChoBkdAcRvuZ1FH8WgHS9RoCEdAp+eTHfdhzHV9lChoBkdAbm7nied072gHS9VoCEdAp+fRzaK1onV9lChoBkdAcQzf5ULlWGgHTdQBaAhHQKfoOVJtix51fZQoaAZHQG2jA3cYZVJoB0vmaAhHQKfobj7Q9id1fZQoaAZHQHDnadxyXD5oB00OAWgIR0Cn6Hakyk9EdX2UKGgGR0BxWOBWgezVaAdLxGgIR0Cn6MNJvo/zdX2UKGgGR0Bw7q7QLNOeaAdL32gIR0Cn6QIa1kUcdX2UKGgGR0BxuTOmixmkaAdNEwFoCEdAp+ki7yxzJnV9lChoBkdAcvI+CsfaH2gHTSMBaAhHQKfpK1rIo3J1fZQoaAZHQHDccVHnU2FoB00qAWgIR0Cn6cNZV4ordX2UKGgGR0BvY2gHu7YkaAdL0GgIR0Cn6e39aUzLdX2UKGgGR0BvA+Af+0gKaAdL0GgIR0Cn64PxhDw6dX2UKGgGR0BwPlP69CeFaAdNBQFoCEdAp+uLsniNsHV9lChoBkdActdxDb8FZGgHTWMBaAhHQKfr9JwsGxF1fZQoaAZHQHAMjrE9+w1oB0vUaAhHQKfsy9RJmNB1fZQoaAZHQHApwnUlRgtoB0vraAhHQKftDKbrkbR1fZQoaAZHQG/rkoWpIc1oB0vVaAhHQKftf1SwW311fZQoaAZHQG4/IWgvlEJoB0vPaAhHQKftxF3IMjN1fZQoaAZHQG990KArhBJoB0vWaAhHQKfuLXDm8ul1fZQoaAZHQHCNSsOoYN1oB00eAWgIR0Cn7shLwnYydX2UKGgGR0BwqxWBBiTdaAdL+WgIR0Cn7vGlQ/HHdX2UKGgGR0Bmd6u6mO2iaAdN6ANoCEdAp+84DYAbQ3V9lChoBkdAcHgI68xsVWgHS/JoCEdAp+9tYyO7x3V9lChoBkdANnXqVyFPBWgHS7BoCEdAp++X6j323HV9lChoBkdAcI/Ek0JnhGgHS+ZoCEdAp/DYhQm/nHV9lChoBkdAcFAl0o0ALmgHS9VoCEdAp/F5N21Ul3V9lChoBkdAcT26NVBD5WgHS8BoCEdAp/GGW6bvw3V9lChoBkdAcAQa/yoXK2gHS+NoCEdAp/GRLdvbXnV9lChoBkdAb3S9Iwudw2gHS/BoCEdAp/LHKdQO4HV9lChoBkdAbgC90Rvm5mgHS9poCEdAp/LiQA+6iHV9lChoBkdAcCZs+3YthGgHS9xoCEdAp/OCji4rjHV9lChoBkdAcA8h+vyLAGgHTb4BaAhHQKfzjdxAB1d1fZQoaAZHQHIBu1WsA/9oB0v+aAhHQKfz3Td+G491fZQoaAZHQHB16ZUkv9NoB0vvaAhHQKf0O/X5FgF1fZQoaAZHQG7ldvjwQUZoB00CAWgIR0Cn9Gr+YMOPdX2UKGgGR0BxTNRm9QGfaAdL02gIR0Cn9RFSjxkNdX2UKGgGR0BvDTcRDkU9aAdLxmgIR0Cn9XeANG3GdX2UKGgGR0Bxq+cqe9SNaAdLy2gIR0Cn9YssQNCrdX2UKGgGR0BuPju+h4+saAdL52gIR0Cn9iPpQk5ZdX2UKGgGR0BkR/DvVmSRaAdN6ANoCEdAp/Y0ngHeJ3V9lChoBkdAcaQX6qKgqWgHS8BoCEdAp/agyfthNXV9lChoBkdAPlksSTQmeGgHS/RoCEdAp/eJMDfWMHV9lChoBkdAcRq7IDHOr2gHS9poCEdAp/eoVCXyAnV9lChoBkdAYhyu3+dbxGgHTegDaAhHQKf37/NJOFh1fZQoaAZHQHCSsTviLl5oB0vJaAhHQKf4M7dSEUV1fZQoaAZHQG/k4HPeHi5oB0vUaAhHQKf4N3iaRZF1fZQoaAZHQHG1XRXwLE1oB00KAWgIR0Cn+HxEv0yydX2UKGgGR0BtVzG96C17aAdNWQNoCEdAp/jF8w5/9nV9lChoBkdAcgpE2Hck+2gHTRgBaAhHQKf49cnmaH91fZQoaAZHQG/8Ce/YapBoB0vUaAhHQKf5ONYKYzB1fZQoaAZHQHAdPGVAzHloB0vqaAhHQKf5PpmmLtN1fZQoaAZHQHE2nAqNIbxoB0v4aAhHQKf5xs0pEx91fZQoaAZHQHB/+dsi0OVoB0vkaAhHQKf6YttALRd1fZQoaAZHQG7KdGy5Zr5oB0vHaAhHQKf7AjQAuI11fZQoaAZHQG5bJWeYlY5oB0vKaAhHQKf7YSL61st1fZQoaAZHQHB2zo6jnFJoB0vWaAhHQKf7+T9sJpp1fZQoaAZHQHFDhXr+o99oB00CAWgIR0Cn/HVJDmbLdX2UKGgGR0Bt+xF/hESeaAdL3mgIR0Cn/Q4Gt6omdX2UKGgGR0BwtG7BfrrxaAdL/mgIR0Cn/U13t8eCdX2UKGgGR0BBDyv1UVBVaAdLoWgIR0Cn/VUHIIWydX2UKGgGR0BwnN5VwPy1aAdL8GgIR0Cn/g1aGHpKdX2UKGgGR0BwO9EUj9n9aAdNIwFoCEdAp/5iEpRXOnV9lChoBkdAYj8/QjUutmgHTegDaAhHQKf+rchTwUh1fZQoaAZHQHLn30Cih39oB0vTaAhHQKf/WkyDZlF1fZQoaAZHQHBVv9xZMcpoB0u5aAhHQKf/dlQuVX51fZQoaAZHQGIH4dQwbl1oB03oA2gIR0CoAB9Wp6yCdX2UKGgGR0Bxfpj2Bas7aAdNGAFoCEdAqABGfVZs9HV9lChoBkdAb18XsPatcWgHS9poCEdAqAB+MfigkHV9lChoBkdAb4ICOFQEZGgHS9VoCEdAqADopSaVlnV9lChoBkdAcZO003wTd2gHS+poCEdAqAGFivxH5XV9lChoBkdAcBMjynUDuGgHS9BoCEdAqAG7U/fO2XV9lChoBkdAcTdTVUdaMmgHS/5oCEdAqAHfNorWiHV9lChoBkdAcGTsbNr0rmgHS+BoCEdAqAJND+irUHV9lChoBkdAcmaJKraM72gHS85oCEdAqAMPT7VJ+XV9lChoBkdAcNDUkfLcK2gHS+NoCEdAqAS1vbXYlXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb5e3bdcafb7820f371498402a13e20615810cc10e1cb27c0b7b2d7976195b4a
3
+ size 147987
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a609ccb6b90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a609ccb6c20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a609ccb6cb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a609ccb6d40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a609ccb6dd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a609ccb6e60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a609ccb6ef0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a609ccb6f80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a609ccb7010>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a609ccb70a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a609ccb7130>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a609ccb71c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a609ce54400>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1719501174676283132,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaWLb7LIbc9T/DHPRfnQL7AlkG8s5lhPQAAAAAAAAAAbXuVPnEGVDxWiIW9ntvWPB1jdj796Nm9AACAPwAAgD/a6bQ+uK2eu3VPKrsMt6A6gUplvbzpsToAAIA/AACAPxPgMT70zIS8JgAhuhJkdDgycu+9/blTOQAAgD8AAIA/WjaEPWlbAT5CVUG8/eOcvi+jqDwyoZg8AAAAAAAAAABTmAO+cfhZu4Kf6zIiiY0yWRWfPE+UE7QAAIA/AACAPy33BT6UNeA7PijOvVv2hbyt8HY9tet3vQAAgD8AAIA/rSEpvs8JbLwAjpc6MvIcOXpG0j2FyPC5AACAPwAAgD+aYng+9iArvEJGZbuthS05eXujvfpqiToAAIA/AACAP4CXdL0p1B66voZVswuP+C8hjwy76qK+MwAAgD8AAIA/mkYJPbw8Sj3NZZq8gmhyvvQ3WbwhJ8m8AAAAAAAAAADNNdS8c8b+PqpGWrsyd9C+A6XiPF05gTwAAAAAAAAAACb3tb32ZGu6leOJOcSzDbPqf5q6A0ieuAAAgD8AAAAApg3lPRfJiT9P77A+OcYVv3PnEj5GnoA9AAAAAAAAAACNWTE+lOWDvDIFZTsh0pa5/Lrfva8IlLoAAIA/AACAPzPzXD1xDXi5YGSIs5uxpqxCR8U7LKunMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFjuWrwOSMAWyUS+CMAXSUR0Cn4Xul41P4dX2UKGgGR0Bw0kZMtbs4aAdL12gIR0Cn4X/r8iwCdX2UKGgGR0Bt3HKOktVaaAdNAwFoCEdAp+GzrX18LXV9lChoBkdAb6GfFJg9eWgHS9BoCEdAp+G65Xlr/XV9lChoBkdAcWy+36Q/5mgHTXIBaAhHQKfhxKzRhMJ1fZQoaAZHQHLKQ6+36RBoB00PAWgIR0Cn4cgGKQ7tdX2UKGgGR0BvZJsTFl06aAdLzWgIR0Cn4jM5XEIgdX2UKGgGR0BviA5PuXu3aAdL9WgIR0Cn4mMglnh9dX2UKGgGR0BuS36O5rgwaAdL1mgIR0Cn4oUdaMaTdX2UKGgGR0Bu/aCxu89PaAdL82gIR0Cn4tpEhJRPdX2UKGgGR0ByprYoRZlnaAdLyGgIR0Cn41i0OVgQdX2UKGgGR0Bwdhv3rUsnaAdNOAFoCEdAp+OuOQyRCHV9lChoBkdAb/gzch1TzmgHS95oCEdAp+RDQNTcZnV9lChoBkdAcBYZnL7oCGgHS+JoCEdAp+RR9LHuJHV9lChoBkdAcBjAeaKDTWgHS9xoCEdAp+SDo2XLNnV9lChoBkdAcUtKtxMnJGgHS9FoCEdAp+SlZDArQXV9lChoBkdAcABpH7P6bmgHS9loCEdAp+TFk8Rtg3V9lChoBkdAcYPaRp1zQ2gHS/BoCEdAp+TY8yN4q3V9lChoBkdAcBIJ8fFJhGgHS+RoCEdAp+Td/z8P4HV9lChoBkdAb43XZoPCmGgHS+5oCEdAp+UHxFy7w3V9lChoBkdAcS52mpEQXmgHS+ZoCEdAp+WJaPjn3nV9lChoBkdAcnuTnq3VkWgHS9NoCEdAp+WilchTwXV9lChoBkdAbuiB8QZn+WgHS+NoCEdAp+W4hbGFSXV9lChoBkdAcTAurIYFaGgHS/RoCEdAp+Zzt9hJAnV9lChoBkdAb3SguAZsK2gHS8xoCEdAp+ayHwgDBHV9lChoBkdAcRvuZ1FH8WgHS9RoCEdAp+eTHfdhzHV9lChoBkdAbm7nied072gHS9VoCEdAp+fRzaK1onV9lChoBkdAcQzf5ULlWGgHTdQBaAhHQKfoOVJtix51fZQoaAZHQG2jA3cYZVJoB0vmaAhHQKfobj7Q9id1fZQoaAZHQHDnadxyXD5oB00OAWgIR0Cn6Hakyk9EdX2UKGgGR0BxWOBWgezVaAdLxGgIR0Cn6MNJvo/zdX2UKGgGR0Bw7q7QLNOeaAdL32gIR0Cn6QIa1kUcdX2UKGgGR0BxuTOmixmkaAdNEwFoCEdAp+ki7yxzJnV9lChoBkdAcvI+CsfaH2gHTSMBaAhHQKfpK1rIo3J1fZQoaAZHQHDccVHnU2FoB00qAWgIR0Cn6cNZV4ordX2UKGgGR0BvY2gHu7YkaAdL0GgIR0Cn6e39aUzLdX2UKGgGR0BvA+Af+0gKaAdL0GgIR0Cn64PxhDw6dX2UKGgGR0BwPlP69CeFaAdNBQFoCEdAp+uLsniNsHV9lChoBkdActdxDb8FZGgHTWMBaAhHQKfr9JwsGxF1fZQoaAZHQHAMjrE9+w1oB0vUaAhHQKfsy9RJmNB1fZQoaAZHQHApwnUlRgtoB0vraAhHQKftDKbrkbR1fZQoaAZHQG/rkoWpIc1oB0vVaAhHQKftf1SwW311fZQoaAZHQG4/IWgvlEJoB0vPaAhHQKftxF3IMjN1fZQoaAZHQG990KArhBJoB0vWaAhHQKfuLXDm8ul1fZQoaAZHQHCNSsOoYN1oB00eAWgIR0Cn7shLwnYydX2UKGgGR0BwqxWBBiTdaAdL+WgIR0Cn7vGlQ/HHdX2UKGgGR0Bmd6u6mO2iaAdN6ANoCEdAp+84DYAbQ3V9lChoBkdAcHgI68xsVWgHS/JoCEdAp+9tYyO7x3V9lChoBkdANnXqVyFPBWgHS7BoCEdAp++X6j323HV9lChoBkdAcI/Ek0JnhGgHS+ZoCEdAp/DYhQm/nHV9lChoBkdAcFAl0o0ALmgHS9VoCEdAp/F5N21Ul3V9lChoBkdAcT26NVBD5WgHS8BoCEdAp/GGW6bvw3V9lChoBkdAcAQa/yoXK2gHS+NoCEdAp/GRLdvbXnV9lChoBkdAb3S9Iwudw2gHS/BoCEdAp/LHKdQO4HV9lChoBkdAbgC90Rvm5mgHS9poCEdAp/LiQA+6iHV9lChoBkdAcCZs+3YthGgHS9xoCEdAp/OCji4rjHV9lChoBkdAcA8h+vyLAGgHTb4BaAhHQKfzjdxAB1d1fZQoaAZHQHIBu1WsA/9oB0v+aAhHQKfz3Td+G491fZQoaAZHQHB16ZUkv9NoB0vvaAhHQKf0O/X5FgF1fZQoaAZHQG7ldvjwQUZoB00CAWgIR0Cn9Gr+YMOPdX2UKGgGR0BxTNRm9QGfaAdL02gIR0Cn9RFSjxkNdX2UKGgGR0BvDTcRDkU9aAdLxmgIR0Cn9XeANG3GdX2UKGgGR0Bxq+cqe9SNaAdLy2gIR0Cn9YssQNCrdX2UKGgGR0BuPju+h4+saAdL52gIR0Cn9iPpQk5ZdX2UKGgGR0BkR/DvVmSRaAdN6ANoCEdAp/Y0ngHeJ3V9lChoBkdAcaQX6qKgqWgHS8BoCEdAp/agyfthNXV9lChoBkdAPlksSTQmeGgHS/RoCEdAp/eJMDfWMHV9lChoBkdAcRq7IDHOr2gHS9poCEdAp/eoVCXyAnV9lChoBkdAYhyu3+dbxGgHTegDaAhHQKf37/NJOFh1fZQoaAZHQHCSsTviLl5oB0vJaAhHQKf4M7dSEUV1fZQoaAZHQG/k4HPeHi5oB0vUaAhHQKf4N3iaRZF1fZQoaAZHQHG1XRXwLE1oB00KAWgIR0Cn+HxEv0yydX2UKGgGR0BtVzG96C17aAdNWQNoCEdAp/jF8w5/9nV9lChoBkdAcgpE2Hck+2gHTRgBaAhHQKf49cnmaH91fZQoaAZHQG/8Ce/YapBoB0vUaAhHQKf5ONYKYzB1fZQoaAZHQHAdPGVAzHloB0vqaAhHQKf5PpmmLtN1fZQoaAZHQHE2nAqNIbxoB0v4aAhHQKf5xs0pEx91fZQoaAZHQHB/+dsi0OVoB0vkaAhHQKf6YttALRd1fZQoaAZHQG7KdGy5Zr5oB0vHaAhHQKf7AjQAuI11fZQoaAZHQG5bJWeYlY5oB0vKaAhHQKf7YSL61st1fZQoaAZHQHB2zo6jnFJoB0vWaAhHQKf7+T9sJpp1fZQoaAZHQHFDhXr+o99oB00CAWgIR0Cn/HVJDmbLdX2UKGgGR0Bt+xF/hESeaAdL3mgIR0Cn/Q4Gt6omdX2UKGgGR0BwtG7BfrrxaAdL/mgIR0Cn/U13t8eCdX2UKGgGR0BBDyv1UVBVaAdLoWgIR0Cn/VUHIIWydX2UKGgGR0BwnN5VwPy1aAdL8GgIR0Cn/g1aGHpKdX2UKGgGR0BwO9EUj9n9aAdNIwFoCEdAp/5iEpRXOnV9lChoBkdAYj8/QjUutmgHTegDaAhHQKf+rchTwUh1fZQoaAZHQHLn30Cih39oB0vTaAhHQKf/WkyDZlF1fZQoaAZHQHBVv9xZMcpoB0u5aAhHQKf/dlQuVX51fZQoaAZHQGIH4dQwbl1oB03oA2gIR0CoAB9Wp6yCdX2UKGgGR0Bxfpj2Bas7aAdNGAFoCEdAqABGfVZs9HV9lChoBkdAb18XsPatcWgHS9poCEdAqAB+MfigkHV9lChoBkdAb4ICOFQEZGgHS9VoCEdAqADopSaVlnV9lChoBkdAcZO003wTd2gHS+poCEdAqAGFivxH5XV9lChoBkdAcBMjynUDuGgHS9BoCEdAqAG7U/fO2XV9lChoBkdAcTdTVUdaMmgHS/5oCEdAqAHfNorWiHV9lChoBkdAcGTsbNr0rmgHS+BoCEdAqAJND+irUHV9lChoBkdAcmaJKraM72gHS85oCEdAqAMPT7VJ+XV9lChoBkdAcNDUkfLcK2gHS+NoCEdAqAS1vbXYlXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c37e2acbc5b6b71b559099327abb11329aa8b2a1c4b4791d8a19e4dae6a58504
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87a3adac8532615ccb394b7bef9fe2a7f222603110d57e1e7b61f17bc0b7801
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (165 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.70355170000005, "std_reward": 14.0269300310602, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-27T16:42:44.191407"}