speedtest
Browse files
norwegian_byt5_speedtest_1part_base.gin
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include 't5x/examples/t5/byt5/base.gin'
|
2 |
+
include 'pretrain_cont.gin'
|
3 |
+
#include 't5x/configs/runs/pretrain.gin'
|
4 |
+
#iinclude 't5x/configs/runs/finetune.gin'
|
5 |
+
|
6 |
+
|
7 |
+
# Register necessary SeqIO Tasks/Mixtures.
|
8 |
+
import t5.data.mixtures
|
9 |
+
import tasks
|
10 |
+
|
11 |
+
MIXTURE_OR_TASK_NAME = "byt5_ncc_english_span_corruption_stream"
|
12 |
+
TASK_FEATURE_LENGTHS = {"inputs": 512, "targets": 512}
|
13 |
+
TRAIN_STEPS = 1_500_000
|
14 |
+
DROPOUT_RATE = 0.0 # Changed from the default since T5-1.1 recomments this.
|
15 |
+
INITIAL_CHECKPOINT_PATH = "gs://t5-data/pretrained_models/byt5/base/model.ckpt-1000000"
|
16 |
+
PjitPartitioner.num_partitions = 1
|
17 |
+
|
18 |
+
# `LOSS_NORMALIZING_FACTOR`: When fine-tuning a model that was pre-trained
|
19 |
+
# # using Mesh Tensorflow (e.g. the public T5 / mT5 / ByT5 models), this should be
|
20 |
+
# # set to `pretraining batch_size` * `target_token_length`. For T5 and T5.1.1:
|
21 |
+
# # `2048 * 114`. For mT5: `1024 * 229`. For ByT5: `1024 * 189`.
|
22 |
+
|
23 |
+
# The instructions above is from T5X. We here have to convert the Mesh Tensorflow byt5-model, so this needs to be set
|
24 |
+
LOSS_NORMALIZING_FACTOR = 193536
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
train_byt5_speedtest_1part_base.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PROJECT_DIR=${HOME}"/models/pk-nb-t5x"
|
2 |
+
T5X_DIR="../../t5x" # directory where the t5x is cloned.
|
3 |
+
MODEL_DIR="gs://t5x-training/pretrained_models/speedtest_1part_byt5x_base"
|
4 |
+
export PYTHONPATH=${PROJECT_DIR}
|
5 |
+
|
6 |
+
python3 ${T5X_DIR}/t5x/train.py \
|
7 |
+
--gin_search_paths=${PROJECT_DIR} \
|
8 |
+
--gin_file="norwegian_byt5_speedtest_1part_base.gin" \
|
9 |
+
--gin.MODEL_DIR="'${MODEL_DIR}'" \
|