pere commited on
Commit
ce46510
1 Parent(s): 295e28a
events.out.tfevents.1626329334.t1v-n-e90463ba-w-0.338635.3.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d984e0814cbc870d079127870bed7c81ca8e4e28e76c49c8157db19334baf9c
3
+ size 40
events.out.tfevents.1626329700.t1v-n-e90463ba-w-0.340096.3.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97a2a83c1824b42add74b993453a60039c2da9d995bf9418867672d19f544271
3
+ size 40
run_t5_mlm_flax_streaming.py ADDED
@@ -0,0 +1,751 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Pretraining with T5-like span-masked language modeling on a streaming dataset.
18
+ Here is the full list of checkpoints on the hub that can be pretrained by this script:
19
+ https://huggingface.co/models?filter=t5
20
+ """
21
+ import logging
22
+ import os
23
+ import sys
24
+ import time
25
+ from collections import defaultdict
26
+ from dataclasses import dataclass, field
27
+ from pathlib import Path
28
+ from typing import Dict, Optional
29
+
30
+ import datasets
31
+ import numpy as np
32
+ from datasets import load_dataset
33
+ from tqdm import tqdm
34
+
35
+ import flax
36
+ import jax
37
+ import jax.numpy as jnp
38
+ import optax
39
+ from flax import jax_utils, traverse_util
40
+ from flax.training import train_state
41
+ from flax.training.common_utils import get_metrics, onehot, shard
42
+ from transformers import (
43
+ CONFIG_MAPPING,
44
+ FLAX_MODEL_FOR_MASKED_LM_MAPPING,
45
+ BatchEncoding,
46
+ FlaxT5ForConditionalGeneration,
47
+ HfArgumentParser,
48
+ PreTrainedTokenizerBase,
49
+ T5Config,
50
+ T5TokenizerFast,
51
+ TrainingArguments,
52
+ is_tensorboard_available,
53
+ set_seed,
54
+ )
55
+ from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
56
+
57
+ if datasets.__version__ <= "1.8.0":
58
+ raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
59
+
60
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
61
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
68
+ """
69
+
70
+ model_name_or_path: Optional[str] = field(
71
+ default=None,
72
+ metadata={
73
+ "help": "The model checkpoint for weights initialization."
74
+ "Don't set if you want to train a model from scratch."
75
+ },
76
+ )
77
+ model_type: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
80
+ )
81
+ config_name: Optional[str] = field(
82
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
83
+ )
84
+ tokenizer_name: Optional[str] = field(
85
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
86
+ )
87
+ cache_dir: Optional[str] = field(
88
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
89
+ )
90
+ use_fast_tokenizer: bool = field(
91
+ default=True,
92
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
93
+ )
94
+ dtype: Optional[str] = field(
95
+ default="float32",
96
+ metadata={
97
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
98
+ },
99
+ )
100
+ auth_token: Optional[str] = field(
101
+ default=None,
102
+ metadata={
103
+ "help": "Auth token for private repositories on the Huggingface Hub"
104
+ }
105
+ )
106
+
107
+
108
+ @dataclass
109
+ class DataTrainingArguments:
110
+ """
111
+ Arguments pertaining to what data we are going to input our model for training and eval.
112
+ """
113
+
114
+ dataset_name: Optional[str] = field(
115
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
116
+ )
117
+ dataset_config_name: Optional[str] = field(
118
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
119
+ )
120
+ max_seq_length: Optional[int] = field(
121
+ default=None,
122
+ metadata={
123
+ "help": "The maximum total input sequence length after tokenization and masking. Sequences longer than this will be truncated. Default to the max input length of the model."
124
+ },
125
+ )
126
+ preprocessing_num_workers: Optional[int] = field(
127
+ default=None,
128
+ metadata={"help": "The number of processes to use for the preprocessing."},
129
+ )
130
+ mlm_probability: float = field(
131
+ default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"}
132
+ )
133
+ mean_noise_span_length: float = field(
134
+ default=3.0,
135
+ metadata={"help": "Mean span length of masked tokens"},
136
+ )
137
+ text_column_name: str = field(
138
+ default="text", metadata={"help": "The name of the column to retrieve the training text."}
139
+ )
140
+ shuffle_buffer_size: int = field(
141
+ default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
142
+ )
143
+ num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
144
+ num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
145
+
146
+ def __post_init__(self):
147
+ if self.dataset_name is None:
148
+ raise ValueError("Need a dataset name for streaming.")
149
+
150
+
151
+ def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length):
152
+ """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ .
153
+ Training parameters to avoid padding with random_spans_noise_mask.
154
+ When training a model with random_spans_noise_mask, we would like to set the other
155
+ training hyperparmeters in a way that avoids padding.
156
+ This function helps us compute these hyperparameters.
157
+ We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens,
158
+ and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens.
159
+ This function tells us the required number of tokens in the raw example (for split_tokens())
160
+ as well as the length of the encoded targets. Note that this function assumes
161
+ the inputs and targets will have EOS appended and includes that in the reported length.
162
+ Args:
163
+ inputs_length: an integer - desired length of the tokenized inputs sequence
164
+ noise_density: a float
165
+ mean_noise_span_length: a float
166
+ Returns:
167
+ tokens_length: length of original text in tokens
168
+ targets_length: an integer - length in tokens of encoded targets sequence
169
+ """
170
+
171
+ def _tokens_length_to_inputs_length_targets_length(tokens_length):
172
+ num_noise_tokens = int(round(tokens_length * noise_density))
173
+ num_nonnoise_tokens = tokens_length - num_noise_tokens
174
+ num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
175
+ # inputs contain all nonnoise tokens, sentinels for all noise spans
176
+ # and one EOS token.
177
+ _input_length = num_nonnoise_tokens + num_noise_spans + 1
178
+ _output_length = num_noise_tokens + num_noise_spans + 1
179
+ return _input_length, _output_length
180
+
181
+ tokens_length = inputs_length
182
+
183
+ while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length:
184
+ tokens_length += 1
185
+
186
+ inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length)
187
+
188
+ # minor hack to get the targets length to be equal to inputs length
189
+ # which is more likely to have been set to a nice round number.
190
+ if noise_density == 0.5 and targets_length > inputs_length:
191
+ tokens_length -= 1
192
+ targets_length -= 1
193
+ return tokens_length, targets_length
194
+
195
+
196
+ @flax.struct.dataclass
197
+ class FlaxDataCollatorForT5MLM:
198
+ """
199
+ Data collator used for T5 span-masked language modeling.
200
+ It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length.
201
+ For more information on how T5 span-masked language modeling works, one can take a look
202
+ at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__
203
+ or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ .
204
+ Args:
205
+ tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
206
+ The tokenizer used for encoding the data.
207
+ noise_density (:obj:`float`):
208
+ The probability with which to (randomly) mask tokens in the input.
209
+ mean_noise_span_length (:obj:`float`):
210
+ The average span length of the masked tokens.
211
+ input_length (:obj:`int`):
212
+ The expected input length after masking.
213
+ target_length (:obj:`int`):
214
+ The expected target length after masking.
215
+ pad_token_id: (:obj:`int`):
216
+ The pad token id of the model
217
+ decoder_start_token_id: (:obj:`int):
218
+ The decoder start token id of the model
219
+ """
220
+
221
+ tokenizer: PreTrainedTokenizerBase
222
+ noise_density: float
223
+ mean_noise_span_length: float
224
+ input_length: int
225
+ target_length: int
226
+ pad_token_id: int
227
+ decoder_start_token_id: int
228
+
229
+ def __call__(self, examples: Dict[str, np.ndarray]) -> BatchEncoding:
230
+
231
+ batch = BatchEncoding(
232
+ {k: np.array(examples[k]) for k in examples.keys()}
233
+ )
234
+ input_ids = batch['input_ids']
235
+ batch_size, expandend_input_length = input_ids.shape
236
+
237
+ mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)])
238
+ labels_mask = ~mask_indices
239
+
240
+ input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8))
241
+ labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8))
242
+
243
+ batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel)
244
+ batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel)
245
+
246
+ if batch["input_ids"].shape[-1] != self.input_length:
247
+ raise ValueError(
248
+ f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but should be {self.target_length}."
249
+ )
250
+
251
+ if batch["labels"].shape[-1] != self.target_length:
252
+ raise ValueError(
253
+ f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be {self.target_length}."
254
+ )
255
+
256
+ # to check that tokens are correctly proprocessed, one can run `self.tokenizer.batch_decode(input_ids)` and `self.tokenizer.batch_decode(labels)` here...
257
+ batch["decoder_input_ids"] = shift_tokens_right(
258
+ batch["labels"], self.pad_token_id, self.decoder_start_token_id
259
+ )
260
+
261
+ return batch
262
+
263
+ def create_sentinel_ids(self, mask_indices):
264
+ """
265
+ Sentinel ids creation given the indices that should be masked.
266
+ The start indices of each mask are replaced by the sentinel ids in increasing
267
+ order. Consecutive mask indices to be deleted are replaced with `-1`.
268
+ """
269
+ start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices
270
+ start_indices[:, 0] = mask_indices[:, 0]
271
+
272
+ sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices)
273
+ sentinel_ids = np.where(sentinel_ids != 0, (sentinel_ids + self.tokenizer.vocab_size - 1), 0)
274
+ sentinel_ids -= mask_indices - start_indices
275
+
276
+ return sentinel_ids
277
+
278
+ def filter_input_ids(self, input_ids, sentinel_ids):
279
+ """
280
+ Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting.
281
+ This will reduce the sequence length from `expanded_inputs_length` to `input_length`.
282
+ """
283
+ batch_size = input_ids.shape[0]
284
+
285
+ input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids)
286
+ input_ids = input_ids_full[input_ids_full > 0].reshape((batch_size, -1))
287
+ input_ids = np.concatenate(
288
+ [input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1
289
+ )
290
+ return input_ids
291
+
292
+ def random_spans_noise_mask(self, length):
293
+
294
+ """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ .
295
+ Noise mask consisting of random spans of noise tokens.
296
+ The number of noise tokens and the number of noise spans and non-noise spans
297
+ are determined deterministically as follows:
298
+ num_noise_tokens = round(length * noise_density)
299
+ num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length)
300
+ Spans alternate between non-noise and noise, beginning with non-noise.
301
+ Subject to the above restrictions, all masks are equally likely.
302
+ Args:
303
+ length: an int32 scalar (length of the incoming token sequence)
304
+ noise_density: a float - approximate density of output mask
305
+ mean_noise_span_length: a number
306
+ Returns:
307
+ a boolean tensor with shape [length]
308
+ """
309
+
310
+ orig_length = length
311
+
312
+ num_noise_tokens = int(np.round(length * self.noise_density))
313
+ # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
314
+ num_noise_tokens = min(max(num_noise_tokens, 1), length - 1)
315
+ num_noise_spans = int(np.round(num_noise_tokens / self.mean_noise_span_length))
316
+
317
+ # avoid degeneracy by ensuring positive number of noise spans
318
+ num_noise_spans = max(num_noise_spans, 1)
319
+ num_nonnoise_tokens = length - num_noise_tokens
320
+
321
+ # pick the lengths of the noise spans and the non-noise spans
322
+ def _random_segmentation(num_items, num_segments):
323
+ """Partition a sequence of items randomly into non-empty segments.
324
+ Args:
325
+ num_items: an integer scalar > 0
326
+ num_segments: an integer scalar in [1, num_items]
327
+ Returns:
328
+ a Tensor with shape [num_segments] containing positive integers that add
329
+ up to num_items
330
+ """
331
+ mask_indices = np.arange(num_items - 1) < (num_segments - 1)
332
+ np.random.shuffle(mask_indices)
333
+ first_in_segment = np.pad(mask_indices, [[1, 0]])
334
+ segment_id = np.cumsum(first_in_segment)
335
+ segment_length = np.asarray(jax.ops.segment_sum(np.ones_like(segment_id), segment_id))
336
+ return segment_length
337
+
338
+ noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans)
339
+ nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans)
340
+
341
+ interleaved_span_lengths = np.reshape(
342
+ np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2]
343
+ )
344
+ span_starts = np.cumsum(interleaved_span_lengths)[:-1]
345
+ span_start_indicator = np.zeros((length,), dtype=np.int8)
346
+ span_start_indicator[span_starts] = True
347
+ span_num = np.cumsum(span_start_indicator)
348
+ is_noise = np.equal(span_num % 2, 1)
349
+
350
+ return is_noise[:orig_length]
351
+
352
+
353
+ def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
354
+ num_samples = len(samples_idx)
355
+ samples_to_remove = num_samples % batch_size
356
+
357
+ if samples_to_remove != 0:
358
+ samples_idx = samples_idx[:-samples_to_remove]
359
+ sections_split = num_samples // batch_size
360
+ batch_idx = np.split(samples_idx, sections_split)
361
+ return batch_idx
362
+
363
+
364
+ def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
365
+ """
366
+ The training iterator is advanced so that after groupifying the samples,
367
+ `num_samples` of length `max_seq_length` are returned.
368
+ """
369
+ num_total_tokens = max_seq_length * num_samples
370
+ samples = defaultdict(list)
371
+
372
+ i = 0
373
+ while i < num_total_tokens:
374
+ tokenized_samples = next(train_iterator)
375
+ i += len(tokenized_samples["input_ids"])
376
+
377
+ # concatenate tokenized samples to list
378
+ samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()}
379
+
380
+ # Concatenated tokens are split to lists of length `max_seq_length`.
381
+ # Note that remainedr of % max_seq_length are thrown away.
382
+ def group_texts(examples):
383
+ result = {
384
+ k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
385
+ for k, t in examples.items()
386
+ }
387
+ return result
388
+
389
+ grouped_samples = group_texts(samples)
390
+ return grouped_samples
391
+
392
+
393
+ def write_train_metric(summary_writer, train_metrics, train_time, step):
394
+ summary_writer.scalar("train_time", train_time, step)
395
+
396
+ train_metrics = get_metrics(train_metrics)
397
+ for key, vals in train_metrics.items():
398
+ tag = f"train_{key}"
399
+ for i, val in enumerate(vals):
400
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
401
+
402
+
403
+ def write_eval_metric(summary_writer, eval_metrics, step):
404
+ for metric_name, value in eval_metrics.items():
405
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
406
+
407
+
408
+ if __name__ == "__main__":
409
+ # See all possible arguments in src/transformers/training_args.py
410
+ # or by passing the --help flag to this script.
411
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
412
+
413
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
414
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
415
+ # If we pass only one argument to the script and it's the path to a json file,
416
+ # let's parse it to get our arguments.
417
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
418
+ else:
419
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
420
+
421
+ if (
422
+ os.path.exists(training_args.output_dir)
423
+ and os.listdir(training_args.output_dir)
424
+ and training_args.do_train
425
+ and not training_args.overwrite_output_dir
426
+ ):
427
+ raise ValueError(
428
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
429
+ "Use --overwrite_output_dir to overcome."
430
+ )
431
+
432
+ # Setup logging
433
+ logging.basicConfig(
434
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
435
+ level="INFO",
436
+ datefmt="[%X]",
437
+ )
438
+
439
+ # Log on each process the small summary:
440
+ logger = logging.getLogger(__name__)
441
+ #logger.warning(
442
+ # f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
443
+ # + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
444
+ #)
445
+
446
+ # Set the verbosity to info of the Transformers logger (on main process only):
447
+ logger.info(f"Training/evaluation parameters {training_args}")
448
+
449
+ # Set seed before initializing model.
450
+ set_seed(training_args.seed)
451
+
452
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
453
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
454
+ # (the dataset will be downloaded automatically from the datasets Hub).
455
+ #
456
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
457
+ # 'text' is found. You can easily tweak this behavior (see below).
458
+ if data_args.dataset_name is not None:
459
+ # Downloading and loading a dataset from the hub.
460
+ datasets = load_dataset(
461
+ data_args.dataset_name,
462
+ data_args.dataset_config_name,
463
+ cache_dir=model_args.cache_dir,
464
+ streaming=True,
465
+ split="train"
466
+ )
467
+
468
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
469
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
470
+
471
+ # Load pretrained model and tokenizer
472
+
473
+ if model_args.tokenizer_name:
474
+ tokenizer = T5TokenizerFast.from_pretrained(
475
+ model_args.tokenizer_name,
476
+ cache_dir=model_args.cache_dir,
477
+ use_fast=model_args.use_fast_tokenizer,
478
+ use_auth_token=model_args.auth_token
479
+ )
480
+ elif model_args.model_name_or_path:
481
+ tokenizer = T5TokenizerFast.from_pretrained(
482
+ model_args.model_name_or_path,
483
+ cache_dir=model_args.cache_dir,
484
+ use_fast=model_args.use_fast_tokenizer,
485
+ use_auth_token=model_args.auth_token
486
+ )
487
+ else:
488
+ raise ValueError(
489
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
490
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
491
+ )
492
+
493
+ if model_args.config_name:
494
+ config = T5Config.from_pretrained(
495
+ model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer)
496
+ )
497
+ elif model_args.model_name_or_path:
498
+ config = T5Config.from_pretrained(
499
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer)
500
+ )
501
+ else:
502
+ config = CONFIG_MAPPING[model_args.model_type]()
503
+ logger.warning("You are instantiating a new config instance from scratch.")
504
+
505
+ # Preprocessing the datasets.
506
+ # First we tokenize all the texts.
507
+
508
+ max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
509
+
510
+ # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
511
+ # Since we make sure that all sequences are of the same length, no attention_mask is needed.
512
+ def tokenize_function(examples):
513
+ return tokenizer(examples[data_args.text_column_name], return_attention_mask=False)
514
+
515
+ tokenized_datasets = datasets.map(
516
+ tokenize_function,
517
+ batched=True
518
+ )
519
+
520
+ # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
521
+ # To ensure that the input length is `max_seq_length`, we need to increase the maximum length
522
+ # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
523
+ expanded_inputs_length, targets_length = compute_input_and_target_lengths(
524
+ inputs_length=max_seq_length,
525
+ noise_density=data_args.mlm_probability,
526
+ mean_noise_span_length=data_args.mean_noise_span_length,
527
+ )
528
+
529
+ shuffle_seed = training_args.seed
530
+ tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
531
+
532
+ # Enable tensorboard only on the master node
533
+ has_tensorboard = is_tensorboard_available()
534
+ if has_tensorboard and jax.process_index() == 0:
535
+ try:
536
+ from flax.metrics.tensorboard import SummaryWriter
537
+
538
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
539
+ except ImportError as ie:
540
+ has_tensorboard = False
541
+ logger.warning(
542
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
543
+ )
544
+ else:
545
+ logger.warning(
546
+ "Unable to display metrics through TensorBoard because the package is not installed: "
547
+ "Please run pip install tensorboard to enable."
548
+ )
549
+
550
+ # Initialize our training
551
+ rng = jax.random.PRNGKey(training_args.seed)
552
+ dropout_rngs = jax.random.split(rng, jax.local_device_count())
553
+
554
+ model = FlaxT5ForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
555
+
556
+ # Data collator
557
+ # This one will take care of randomly masking the tokens.
558
+ data_collator = FlaxDataCollatorForT5MLM(
559
+ tokenizer=tokenizer,
560
+ noise_density=data_args.mlm_probability,
561
+ mean_noise_span_length=data_args.mean_noise_span_length,
562
+ input_length=max_seq_length,
563
+ target_length=targets_length,
564
+ pad_token_id=model.config.pad_token_id,
565
+ decoder_start_token_id=model.config.decoder_start_token_id,
566
+ )
567
+
568
+ # Store some constant
569
+ num_epochs = int(training_args.num_train_epochs)
570
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
571
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
572
+
573
+ num_train_steps = data_args.num_train_steps
574
+
575
+ # Create learning rate schedule
576
+ warmup_fn = optax.linear_schedule(
577
+ init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
578
+ )
579
+ decay_fn = optax.linear_schedule(
580
+ init_value=training_args.learning_rate,
581
+ end_value=0,
582
+ transition_steps=num_train_steps - training_args.warmup_steps,
583
+ )
584
+ linear_decay_lr_schedule_fn = optax.join_schedules(
585
+ schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
586
+ )
587
+
588
+ # We use Optax's "masking" functionality to not apply weight decay
589
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
590
+ # mask boolean with the same structure as the parameters.
591
+ # The mask is True for parameters that should be decayed.
592
+ def decay_mask_fn(params):
593
+ flat_params = traverse_util.flatten_dict(params)
594
+ flat_mask = {
595
+ path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")])
596
+ for path in flat_params
597
+ }
598
+ return traverse_util.unflatten_dict(flat_mask)
599
+
600
+ # create adam optimizer
601
+ if training_args.adafactor:
602
+ # We use the default parameters here to initialize adafactor,
603
+ # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
604
+ optimizer = optax.adafactor(
605
+ learning_rate=linear_decay_lr_schedule_fn,
606
+ )
607
+ else:
608
+ optimizer = optax.adamw(
609
+ learning_rate=linear_decay_lr_schedule_fn,
610
+ b1=training_args.adam_beta1,
611
+ b2=training_args.adam_beta2,
612
+ weight_decay=training_args.weight_decay,
613
+ mask=decay_mask_fn,
614
+ )
615
+
616
+ # Setup train state
617
+ state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
618
+
619
+ # Define gradient update step fn
620
+ def train_step(state, batch, dropout_rng):
621
+ dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
622
+
623
+ def loss_fn(params):
624
+ labels = batch.pop("labels")
625
+
626
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
627
+
628
+ # compute loss
629
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
630
+
631
+ return loss
632
+
633
+ grad_fn = jax.value_and_grad(loss_fn)
634
+ loss, grad = grad_fn(state.params)
635
+ grad = jax.lax.pmean(grad, "batch")
636
+ new_state = state.apply_gradients(grads=grad)
637
+
638
+ metrics = jax.lax.pmean(
639
+ {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
640
+ )
641
+
642
+ return new_state, metrics, new_dropout_rng
643
+
644
+ # Create parallel version of the train step
645
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
646
+
647
+ # Define eval fn
648
+ def eval_step(params, batch):
649
+ labels = batch.pop("labels")
650
+
651
+ logits = model(**batch, params=params, train=False)[0]
652
+
653
+ # compute loss
654
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
655
+
656
+ # compute accuracy
657
+ accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels)
658
+
659
+ # summarize metrics
660
+ metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()}
661
+ metrics = jax.lax.pmean(metrics, axis_name="batch")
662
+
663
+ return metrics
664
+
665
+ p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
666
+
667
+ # Replicate the train state on each device
668
+ state = jax_utils.replicate(state)
669
+
670
+ train_time = 0
671
+ train_start = time.time()
672
+ train_metrics = []
673
+ eval_metrics = []
674
+
675
+ training_iter = iter(tokenized_datasets)
676
+
677
+ eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, expanded_inputs_length)
678
+
679
+ steps = tqdm(range(num_train_steps), desc="Training...", position=0)
680
+ for step in range(num_train_steps):
681
+ # ======================== Training ================================
682
+ try:
683
+ samples = advance_iter_and_group_samples(training_iter, train_batch_size, expanded_inputs_length)
684
+ except StopIteration:
685
+ # Once the end of the dataset stream is reached, the training iterator
686
+ # is reinitialized and reshuffled and a new eval dataset is randomely chosen.
687
+ shuffle_seed += 1
688
+ tokenized_datasets.set_epoch(shuffle_seed)
689
+
690
+ training_iter = iter(tokenized_datasets)
691
+
692
+ eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, expanded_inputs_length)
693
+ samples = advance_iter_and_group_samples(training_iter, train_batch_size, expanded_inputs_length)
694
+
695
+ # Model forward
696
+ model_inputs = data_collator(samples)
697
+ model_inputs = shard(model_inputs.data)
698
+ state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
699
+ train_metrics.append(train_metric)
700
+
701
+ if step % training_args.logging_steps == 0 and step > 0:
702
+ train_metric = jax_utils.unreplicate(train_metric)
703
+ steps.write(
704
+ f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
705
+ )
706
+ train_time += time.time() - train_start
707
+ if has_tensorboard and jax.process_index() == 0:
708
+ write_train_metric(summary_writer, train_metrics, train_time, step)
709
+ train_metrics = []
710
+ # ======================== Evaluating ==============================
711
+ if step % training_args.eval_steps == 0 and step > 0:
712
+ eval_samples_idx = jnp.arange(data_args.num_eval_samples)
713
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
714
+
715
+ for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
716
+ # process input samples
717
+ batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
718
+ model_inputs = data_collator(batch_eval_samples)
719
+
720
+ # Model forward
721
+ model_inputs = shard(model_inputs.data)
722
+ metrics = p_eval_step(state.params, model_inputs)
723
+ eval_metrics.append(metrics)
724
+
725
+ # normalize eval metrics
726
+ eval_metrics = get_metrics(eval_metrics)
727
+ eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
728
+
729
+ # Update progress bar
730
+ steps.desc = f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
731
+
732
+ if has_tensorboard and jax.process_index() == 0:
733
+ write_eval_metric(summary_writer, eval_metrics, step)
734
+ eval_metrics = []
735
+
736
+ if step % training_args.save_steps == 0 and step > 0:
737
+ # save checkpoint after each save_steps and push checkpoint to the hub
738
+ if jax.process_index() == 0:
739
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
740
+ model.save_pretrained(
741
+ training_args.output_dir,
742
+ params=params,
743
+ push_to_hub=training_args.push_to_hub,
744
+ commit_message=f"Saving weights and logs of step {step+1}",
745
+ )
746
+ tokenizer.save_pretrained(
747
+ training_args.output_dir
748
+ )
749
+
750
+ # update tqdm bar
751
+ steps.update(1)