demo
Browse files- __pycache__/tasks.cpython-38.pyc +0 -0
- longt5/__pycache__/preprocessors.cpython-38.pyc +0 -0
- longt5/preprocessors.py +202 -0
- longt5_1_1_base.gin +61 -0
- tasks.py +1 -12
- train_long_base.sh +9 -0
__pycache__/tasks.cpython-38.pyc
CHANGED
Binary files a/__pycache__/tasks.cpython-38.pyc and b/__pycache__/tasks.cpython-38.pyc differ
|
|
longt5/__pycache__/preprocessors.cpython-38.pyc
ADDED
Binary file (4.8 kB). View file
|
|
longt5/preprocessors.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The LongT5 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Copyright 2022 Google LLC.
|
16 |
+
#
|
17 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
18 |
+
# you may not use this file except in compliance with the License.
|
19 |
+
# You may obtain a copy of the License at
|
20 |
+
#
|
21 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
22 |
+
#
|
23 |
+
# Unless required by applicable law or agreed to in writing, software
|
24 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
25 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
26 |
+
# See the License for the specific language governing permissions and
|
27 |
+
# limitations under the License.
|
28 |
+
|
29 |
+
"""Preprocessors for long T5."""
|
30 |
+
|
31 |
+
from pegasus.data import parsers
|
32 |
+
import seqio
|
33 |
+
import t5.data
|
34 |
+
import tensorflow.compat.v2 as tf
|
35 |
+
|
36 |
+
|
37 |
+
def _string_join(lst):
|
38 |
+
# Join on space, but collapse consecutive spaces.
|
39 |
+
out = tf.strings.join(lst, separator=' ')
|
40 |
+
return tf.strings.regex_replace(out, r'\s+', ' ')
|
41 |
+
|
42 |
+
|
43 |
+
def _normalize_text(text):
|
44 |
+
"""Lowercase and remove quotes from a TensorFlow string."""
|
45 |
+
text = tf.strings.lower(text)
|
46 |
+
text = tf.strings.regex_replace(text, "'(.*)'", r'\1')
|
47 |
+
return text
|
48 |
+
|
49 |
+
|
50 |
+
@seqio.map_over_dataset
|
51 |
+
def nq(x):
|
52 |
+
"""Convert NQ TF examples to a text2text pair.
|
53 |
+
|
54 |
+
NQ produces examples with this form:
|
55 |
+
{'id_': <id>, 'title': <title>, context': <article>, 'question': <question>,
|
56 |
+
'answer': <answer> }
|
57 |
+
This function will return examples of the format:
|
58 |
+
{'inputs': 'question: <question> context: <article>',
|
59 |
+
'targets': '<answer>',
|
60 |
+
'id': <id>, 'question': <question>, 'context': <context>,
|
61 |
+
'answers': [<n answers>]},
|
62 |
+
|
63 |
+
Args:
|
64 |
+
x: an example to process.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
A preprocessed example with the format listed above.
|
68 |
+
"""
|
69 |
+
inputs = _string_join(['question:', x['question'], 'context:', x['context']])
|
70 |
+
|
71 |
+
return {
|
72 |
+
'inputs': inputs,
|
73 |
+
'targets': x['answer'],
|
74 |
+
'id': x['id_'],
|
75 |
+
'context': x['context'],
|
76 |
+
'question': x['question'],
|
77 |
+
'answers': [x['answer']]
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
@seqio.map_over_dataset
|
82 |
+
def triviaqa(x, ignore_web=True, include_title=True):
|
83 |
+
"""Convert TriviaQA TF examples to a text2text pair.
|
84 |
+
|
85 |
+
TriviaQA produces examples with this form:
|
86 |
+
{'entity_pages': {dict of wiki entities},
|
87 |
+
'search_results': <dict of web search results>,
|
88 |
+
'answer': {dict of all answers}, 'question': <question>,
|
89 |
+
'question_id': <question_id>, 'question_source': <question_source>}
|
90 |
+
|
91 |
+
This function will return examples of the format:
|
92 |
+
{'inputs': 'question: <question> context: <article>',
|
93 |
+
'targets': '<answer>',
|
94 |
+
'id': <id>, 'question': <question>, 'context': <context>,
|
95 |
+
'answers': [<n answers>]},
|
96 |
+
|
97 |
+
Args:
|
98 |
+
x: an example to process.
|
99 |
+
ignore_web: whether to ignore the web context
|
100 |
+
include_title: whether to include the title
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
A preprocessed example with the format listed above.
|
104 |
+
"""
|
105 |
+
|
106 |
+
question = _normalize_text(x['question'])
|
107 |
+
|
108 |
+
wiki_context = [_normalize_text(x['entity_pages']['wiki_context'])]
|
109 |
+
if include_title:
|
110 |
+
# Append the title before each context.
|
111 |
+
wiki_context = [_normalize_text(x['entity_pages']['title'])] + wiki_context
|
112 |
+
wiki_context = tf.transpose(tf.stack(wiki_context))
|
113 |
+
wiki_context = tf.strings.reduce_join(wiki_context, separator=' ')
|
114 |
+
context = wiki_context
|
115 |
+
|
116 |
+
if not ignore_web:
|
117 |
+
web_context = [_normalize_text(x['search_results']['search_context'])]
|
118 |
+
if include_title:
|
119 |
+
# Append the title before each context.
|
120 |
+
web_context = [_normalize_text(x['search_results']['title'])
|
121 |
+
] + web_context
|
122 |
+
web_context = tf.transpose(tf.stack(web_context))
|
123 |
+
web_context = tf.strings.reduce_join(web_context, separator=' ')
|
124 |
+
context = _string_join([wiki_context, web_context])
|
125 |
+
|
126 |
+
inputs = _string_join(['question:', question, 'context:', context])
|
127 |
+
targets = _normalize_text(x['answer']['value'])
|
128 |
+
|
129 |
+
return {
|
130 |
+
'inputs': inputs,
|
131 |
+
'targets': targets,
|
132 |
+
'id': x['question_id'],
|
133 |
+
'context': context,
|
134 |
+
'question': question,
|
135 |
+
'answers': x['answer']['aliases']
|
136 |
+
}
|
137 |
+
|
138 |
+
|
139 |
+
# Preprocessor for PEGASUS type pretraining.
|
140 |
+
# Sentences/words are masked/replaced with different strategies. Details at
|
141 |
+
# https://arxiv.org/abs/1912.08777
|
142 |
+
pegasus_parser, _ = parsers.string_features_for_pretraining_parser(
|
143 |
+
vocab_filename='gs://t5-data/vocabs/cc_all.32000.100extra/sentencepiece.model',
|
144 |
+
encoder_type='sentencepiece_noshift', # Matches tokenizer used by T5.
|
145 |
+
max_input_len=4096,
|
146 |
+
max_target_len=910,
|
147 |
+
max_total_words=0,
|
148 |
+
parser_strategy='dynamic_rouge',
|
149 |
+
parser_masked_sentence_ratio=0.2,
|
150 |
+
parser_masked_words_ratio=0,
|
151 |
+
parser_mask_word_option_prob=[0.8, 0.1, 0.1],
|
152 |
+
parser_mask_sentence_option_prob=[.9, 0, .1, 0],
|
153 |
+
parser_rouge_ngrams_size=1,
|
154 |
+
parser_rouge_metric_type='F',
|
155 |
+
parser_rouge_compute_option='standard',
|
156 |
+
# The stopwords file used is here: https://gist.github.com/sebleier/554280
|
157 |
+
parser_rouge_stopwords_filename='',
|
158 |
+
shift_special_token_id=t5.data.DEFAULT_EXTRA_IDS - 2, # 2's for eos and pad
|
159 |
+
mode='',
|
160 |
+
parser_rouge_noise_ratio=.2,
|
161 |
+
parser_dynamic_mask_min_ratio=.33,
|
162 |
+
input_feature='inputs',
|
163 |
+
pretrain_target_filter_min=0)
|
164 |
+
|
165 |
+
|
166 |
+
@seqio.map_over_dataset
|
167 |
+
def pegasus_parse(x):
|
168 |
+
"""Parses an example with the Pegasus parser.
|
169 |
+
|
170 |
+
As input, method receives:
|
171 |
+
{
|
172 |
+
'inputs': '<sent1> <sent2> .... <sentn>'
|
173 |
+
'targets': None
|
174 |
+
}
|
175 |
+
This function will return examples of the format:
|
176 |
+
{
|
177 |
+
'inputs': '<sent1> <mask> .... <sentn>'
|
178 |
+
'targets': '<sent2>'
|
179 |
+
}
|
180 |
+
though the returned example will have been tokenized with SPM and will
|
181 |
+
contain EOS id at the end of both inputs and targets (as is also done in T5).
|
182 |
+
|
183 |
+
Args:
|
184 |
+
x: an example to process.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
A preprocessed example, where some of the input is masked and copied to the
|
188 |
+
target. These values will have been tokenized with SPM.
|
189 |
+
"""
|
190 |
+
|
191 |
+
# Add key 'supervised' as required by Pegasus parser.
|
192 |
+
x['supervised'] = tf.constant(False, dtype=tf.bool)
|
193 |
+
# Parse the input. Pegasus parser will return with some of the input masked
|
194 |
+
# and copied to target (all having been tokenized).
|
195 |
+
parsed = pegasus_parser(x)
|
196 |
+
# Adjust outputs from Pegasus parser to work with T5. This involves taking
|
197 |
+
# the elements at index 0 (to get the right shape needed) and casting from
|
198 |
+
# int64 to int32.
|
199 |
+
return {
|
200 |
+
'inputs': tf.cast(parsed['inputs'][0], tf.int32),
|
201 |
+
'targets': tf.cast(parsed['targets'][0], tf.int32)
|
202 |
+
}
|
longt5_1_1_base.gin
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LongT5 Base model. Config based on T5.1.1 Base model.
|
2 |
+
# Provides MODEL
|
3 |
+
from __gin__ import dynamic_registration
|
4 |
+
|
5 |
+
import seqio
|
6 |
+
from t5x import adafactor
|
7 |
+
from t5x import models
|
8 |
+
import tasks
|
9 |
+
|
10 |
+
ARCHITECTURE = %gin.REQUIRED
|
11 |
+
|
12 |
+
include 'flaxformer/t5x/configs/longt5/architectures/longt5_1_1_flaxformer.gin'
|
13 |
+
|
14 |
+
include 't5x/configs/runs/pretrain.gin'
|
15 |
+
#include 'pretrain_cont.gin'
|
16 |
+
|
17 |
+
MIXTURE_OR_TASK_NAME = "ncc_scandinavian_span_corruption_stream"
|
18 |
+
TASK_FEATURE_LENGTHS = {"inputs": 4048, "targets": 910}
|
19 |
+
# CORRECT IS 128!!
|
20 |
+
BATCH_SIZE=32
|
21 |
+
TRAIN_STEPS = 1_000_000
|
22 |
+
DROPOUT_RATE = 0.0 # Changed from the default since T5-1.1 recomments this.
|
23 |
+
#INITIAL_CHECKPOINT_PATH = "gs://nb-t5x-us-central2/norwegian_NCC_plus_English_t5x_base/checkpoint_1500000"
|
24 |
+
#PjitPartitioner.num_partitions = 1
|
25 |
+
|
26 |
+
|
27 |
+
# Architecture overrides
|
28 |
+
NUM_HEADS = 12
|
29 |
+
NUM_ENCODER_LAYERS = 12
|
30 |
+
NUM_DECODER_LAYERS = 12
|
31 |
+
HEAD_DIM = 64
|
32 |
+
EMBED_DIM = 768
|
33 |
+
MLP_DIM = 2048
|
34 |
+
|
35 |
+
# Loss HParam defaults
|
36 |
+
Z_LOSS = 0.0001
|
37 |
+
LABEL_SMOOTHING = 0.0
|
38 |
+
LOSS_NORMALIZING_FACTOR = None
|
39 |
+
|
40 |
+
# Vocabulary (shared by encoder and decoder)
|
41 |
+
VOCABULARY = @seqio.SentencePieceVocabulary()
|
42 |
+
seqio.SentencePieceVocabulary.sentencepiece_model_file = "gs://t5-data/vocabs/cc_all.32000.100extra/sentencepiece.model"
|
43 |
+
NUM_EMBEDDINGS = 32128 # vocab size rounded to a multiple of 128 for TPU efficiency
|
44 |
+
|
45 |
+
# Optimizer
|
46 |
+
# `learning_rate` is set by `Trainer.learning_rate_fn`.
|
47 |
+
OPTIMIZER = @adafactor.Adafactor()
|
48 |
+
adafactor.Adafactor:
|
49 |
+
decay_rate = 0.8
|
50 |
+
step_offset = 0
|
51 |
+
|
52 |
+
# Model
|
53 |
+
MODEL = @models.EncoderDecoderModel()
|
54 |
+
models.EncoderDecoderModel:
|
55 |
+
module = %ARCHITECTURE # provided by longt5_flaxformer
|
56 |
+
input_vocabulary = %VOCABULARY
|
57 |
+
output_vocabulary = %VOCABULARY
|
58 |
+
optimizer_def = %OPTIMIZER
|
59 |
+
z_loss = %Z_LOSS
|
60 |
+
label_smoothing = %LABEL_SMOOTHING
|
61 |
+
loss_normalizing_factor = %LOSS_NORMALIZING_FACTOR
|
tasks.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import functools
|
2 |
-
|
3 |
import seqio
|
4 |
import tensorflow as tf
|
5 |
import t5.data
|
@@ -10,9 +9,7 @@ from t5.evaluation import metrics
|
|
10 |
from seqio import FunctionDataSource, utils
|
11 |
|
12 |
TaskRegistry = seqio.TaskRegistry
|
13 |
-
|
14 |
-
vocabulary = seqio.SentencePieceVocabulary('gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model', extra_ids=0)
|
15 |
-
byt5_vocabulary = t5.data.ByteVocabulary()
|
16 |
|
17 |
DEFAULT_OUTPUT_FEATURES = {
|
18 |
"inputs": seqio.Feature(
|
@@ -22,14 +19,6 @@ DEFAULT_OUTPUT_FEATURES = {
|
|
22 |
vocabulary=vocabulary, add_eos=True)
|
23 |
}
|
24 |
|
25 |
-
BYT5_DEFAULT_OUTPUT_FEATURES = {
|
26 |
-
"inputs": seqio.Feature(
|
27 |
-
vocabulary=byt5_vocabulary, add_eos=True,
|
28 |
-
required=False),
|
29 |
-
"targets": seqio.Feature(
|
30 |
-
vocabulary=byt5_vocabulary, add_eos=True)
|
31 |
-
}
|
32 |
-
|
33 |
|
34 |
def gen_dataset(split, shuffle=False, seed=None, column="text", dataset_params=None):
|
35 |
dataset = load_dataset(**dataset_params)
|
|
|
1 |
import functools
|
|
|
2 |
import seqio
|
3 |
import tensorflow as tf
|
4 |
import t5.data
|
|
|
9 |
from seqio import FunctionDataSource, utils
|
10 |
|
11 |
TaskRegistry = seqio.TaskRegistry
|
12 |
+
vocabulary=seqio.SentencePieceVocabulary('gs://t5-data/vocabs/cc_all.32000.100extra/sentencepiece.model', extra_ids=0)
|
|
|
|
|
13 |
|
14 |
DEFAULT_OUTPUT_FEATURES = {
|
15 |
"inputs": seqio.Feature(
|
|
|
19 |
vocabulary=vocabulary, add_eos=True)
|
20 |
}
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def gen_dataset(split, shuffle=False, seed=None, column="text", dataset_params=None):
|
24 |
dataset = load_dataset(**dataset_params)
|
train_long_base.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PROJECT_DIR=${HOME}"/models/long-t5x"
|
2 |
+
T5X_DIR="../../t5x" # directory where the t5x is cloned.
|
3 |
+
MODEL_DIR="gs://nb-t5x-us-central2/long_test_t5x_base"
|
4 |
+
export PYTHONPATH=${PROJECT_DIR}
|
5 |
+
|
6 |
+
python3 ${T5X_DIR}/t5x/train.py \
|
7 |
+
--gin_search_paths=${PROJECT_DIR} \
|
8 |
+
--gin_file="longt5_1_1_base.gin" \
|
9 |
+
--gin.MODEL_DIR="'${MODEL_DIR}'" \
|