flax-bart-nb-nn / data_collator.py
pere's picture
fisrt commit
e565538
raw
history blame
No virus
16.1 kB
import math
from dataclasses import dataclass
from typing import Dict, List, Optional
import nltk
import numpy as np
from numpy.random import permutation, poisson
from transformers.data.data_collator import _torch_collate_batch
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase
nltk.download("punkt")
@dataclass
class DataCollatorForTextInfilling:
tokenizer: PreTrainedTokenizerBase
mlm_probability: float = 0.15
poisson_lambda: float = 3.0
pad_to_multiple_of: Optional[int] = None
def __post_init__(self):
if self.tokenizer.mask_token is None:
raise ValueError
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = {}
if isinstance(examples, (dict, BatchEncoding)):
examples_ids = examples["input_ids"]
if "decoder_input_ids" in examples.keys():
examples_dec = examples["decoder_input_ids"]
else:
examples_dec = examples_ids
# bs of one
if type(examples_ids[0]) is int:
examples_ids = [examples_ids]
# bs of one
if type(examples_dec[0]) is int:
examples_dec = [examples_dec]
batch["input_ids"] = _torch_collate_batch(
examples_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
)
batch["decoder_input_ids"] = _torch_collate_batch(
examples_dec, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
)
batch["decoder_input_ids"] = batch["decoder_input_ids"].tolist()
elif isinstance(examples[0], (dict, BatchEncoding)):
batch = self.tokenizer.pad(examples, return_tensors="jax", pad_to_multiple_of=self.pad_to_multiple_of)
else:
batch["input_ids"] = _torch_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
batch["decoder_input_ids"] = _torch_collate_batch(
examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
).tolist()
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
return batch
def mask_tokens(self, inputs):
inputs_copy = np.array(inputs)
labels = np.array(inputs)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = jnp.array(special_tokens_mask, dtype=bool)
else:
special_tokens_mask = special_tokens_mask.bool()
# determine how many tokens we need to mask in total
is_token = ~(labels == self.tokenizer.pad_token_id) & ~special_tokens_mask
num_to_mask = int(math.ceil(is_token.astype(float).sum() * self.mlm_probability))
if num_to_mask == 0:
return inputs, labels
# generate a sufficient number of span lengths
lengths = poisson(lam=self.poisson_lambda, size=(num_to_mask,))
while np.cumsum(lengths, 0)[-1] < num_to_mask:
lengths = np.concatenate([lengths, poisson(lam=self.poisson_lambda, size=(num_to_mask,))])
# remove all spans of length 0
# Note that BART inserts additional mask tokens where length == 0,
# which we do not implement for now as it adds additional complexity
lengths = lengths[lengths > 0]
# trim to about num_to_mask tokens
idx = np.argmin(np.abs(np.cumsum(lengths, 0) - num_to_mask)) + 1
lengths = lengths[: idx + 1]
# select span start indices
# print("IS TOKEN")
# print(is_token)
# print(sum(list(map(lambda x: 1 if(x) else 0, is_token[0]))))
token_indices = np.argwhere(is_token == 1)
# print("TOKEN INDICES")
# print(token_indices)
span_starts = permutation(token_indices.shape[0])[: lengths.shape[0]]
# prepare mask
masked_indices = np.array(token_indices[span_starts])
# print("MASKED INDICES")
# print(masked_indices)
mask = np.full_like(labels, fill_value=False)
# mask span start indices
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
# fill up spans
max_index = labels.shape[1] - 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
while np.any(remaining):
masked_indices[remaining, 1] += 1
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
# place the mask tokens
mask[np.where(special_tokens_mask == True)] = False
inputs_copy[np.where(mask == 1)] = self.tokenizer.mask_token_id
labels[np.where(mask == 0)] = -100
# remove mask tokens that are not starts of spans
to_remove = (mask == 1) & np.roll((mask == 1), 1, 1)
new_inputs = np.full_like(labels, fill_value=self.tokenizer.pad_token_id)
# splits = list(map(lambda x: x.reshape(-1), np.split(inputs_copy, indices_or_sections=2, axis=0))
for i, example in enumerate(np.split(inputs_copy, indices_or_sections=new_inputs.shape[0], axis=0)):
new_example = example[0][~to_remove[i]]
new_inputs[i, 0 : new_example.shape[0]] = new_example
# batching now fixed
return new_inputs.tolist(), labels.tolist()
# Code below is by Matt Bui
@dataclass
class SentenceTokenize:
"""Tokenize documents into sentences, add bos and eos tokens and split sentences into smaller chunks if too long."""
sentence_tokenizer = nltk.data.load("tokenizers/punkt/english.pickle")
bos: str = "<s>"
eos: str = "</s>"
max_sentences = 256
sentence_stride = 128
max_characters = 100000
def __call__(self, examples: Dict[str, List[str]]) -> Dict[str, List[str]]:
is_batched = isinstance(examples["text"], list)
if not is_batched:
# raise ValueError("required batched=True in map() method")
examples["text"] = [examples["text"]]
texts = []
# print(f"len(examples['text'] : {len(examples['text'])}")
for doc in examples["text"]:
sentences = self.sentence_tokenizer.tokenize(doc)
start_index = 0
# print(f"doc len: {len(doc)}")
# print(f"sent_tok len: {len(sentences)}")
while start_index < len(sentences):
sentence_span = sentences[start_index : min(len(sentences), start_index + self.max_sentences)]
text = f"{self.eos}{self.bos}".join([sentence for sentence in sentence_span])
# trim text by max characters
if len(text) > self.max_characters:
text = text[: self.max_characters]
texts.append(text)
start_index += self.sentence_stride
# print(len(texts))
# print()
return {"text": texts}
@dataclass
class DataCollatorForSentencePermutation:
tokenizer: PreTrainedTokenizerBase
permutate_sentence_ratio: float = 1.0
def __post_init__(self):
self.full_stop_index = self.tokenizer.eos_token_id
def __call__(self, example: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
source = example["input_ids"]
full_stops = source == self.full_stop_index
# Tokens that are full stops, where the previous token is not
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero()[0] + 2
result = source.copy()
num_sentences = jnp.size(sentence_ends, 0)
num_to_permute = math.ceil((num_sentences * 2 * self.permutate_sentence_ratio) / 2.0)
substitutions = random.permutation(self.random_key, num_sentences)[:num_to_permute]
ordering = jnp.arange(0, num_sentences)
ordering = ops.index_update(
ordering, substitutions, substitutions[random.permutation(self.random_key, num_to_permute)]
)
index = 0
for i in ordering:
sentence = source[(sentence_ends[i - 1] if i > 0 else 0) : sentence_ends[i]]
result = ops.index_update(result, ops.index[index : index + jnp.size(sentence, 0)], sentence)
index += jnp.size(sentence, 0)
example["decoder_input_ids"] = example["input_ids"]
example["input_ids"] = result
return example
@dataclass
class DataCollatorForDenoisingTasks:
"""Data collator used denoising language modeling task in BART.
The implementation is based on
https://github.com/pytorch/fairseq/blob/1bba712622b8ae4efb3eb793a8a40da386fe11d0/fairseq/data/denoising_dataset.py.
The default paramters is based on BART paper https://arxiv.org/abs/1910.13461.
"""
tokenizer: PreTrainedTokenizerBase
mask_ratio: float = 0.3
poisson_lambda: float = 3.0
permutate_sentence_ratio: float = 1.0
pad_to_multiple_of: int = 16
def __post_init__(self):
if self.tokenizer.mask_token is None or self.tokenizer.eos_token is None:
raise ValueError
def __call__(self, examples: List[Dict[str, List[int]]]) -> Dict[str, np.ndarray]:
"""Batching, adding whole word mask and permutate sentences
Args:
examples (dict): list of examples each examples contains input_ids field
"""
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="np")
batch["decoder_input_ids"] = self.shift_tokens_right(batch["input_ids"])
do_permutate = False
if self.permutate_sentence_ratio > 0.0:
batch["input_ids"] = self.permutate_sentences(batch["input_ids"])
do_permutate = True
if self.mask_ratio:
batch["input_ids"], batch["labels"] = self.add_whole_word_mask(batch["input_ids"], do_permutate)
return batch
def shift_tokens_right(self, inputs):
"""Shift decoder input ids right: https://github.com/huggingface/transformers/issues/7961.
Examples:
<s>My dog is cute.</s><s>It loves to play in the park.</s><pad><pad>
shift to -> </s><s>My dog is cute.</s><s>It loves to play in the park.<pad><pad>
"""
shifted_inputs = np.roll(inputs, 1, axis=-1)
# replace first token with eos token
shifted_inputs[:, 0] = self.tokenizer.eos_token_id
# when there's padding, the last eos tokens will not be rotate to first positon
# we'll need to replace it with a padding token
# replace eos tokens at the end of sequences with pad tokens
end_with_eos = np.where(shifted_inputs[:, -1] == self.tokenizer.eos_token_id)
shifted_inputs[end_with_eos, -1] = self.tokenizer.pad_token_id
# find positions where where's the token is eos and its follwing token is a padding token
last_eos_indices = np.where(
(shifted_inputs[:, :-1] == self.tokenizer.eos_token_id)
* (shifted_inputs[:, 1:] == self.tokenizer.pad_token_id)
)
# replace eos tokens with pad token
shifted_inputs[last_eos_indices] = self.tokenizer.pad_token_id
return shifted_inputs
def permutate_sentences(self, inputs):
results = inputs.copy()
full_stops = inputs == self.tokenizer.eos_token_id
sentence_ends = np.argwhere(full_stops[:, 1:] * ~full_stops[:, :-1])
sentence_ends[:, 1] += 2
num_sentences = np.unique(sentence_ends[:, 0], return_counts=True)[1]
num_to_permute = np.ceil((num_sentences * 2 * self.permutate_sentence_ratio) / 2.0).astype(int)
sentence_ends = np.split(sentence_ends[:, 1], np.unique(sentence_ends[:, 0], return_index=True)[1][1:])
for i in range(inputs.shape[0]):
substitutions = np.random.permutation(num_sentences[i])[: num_to_permute[i]]
ordering = np.arange(0, num_sentences[i])
ordering[substitutions] = substitutions[np.random.permutation(num_to_permute[i])]
index = 0
for j in ordering:
sentence = inputs[i, (sentence_ends[i][j - 1] if j > 0 else 0) : sentence_ends[i][j]]
results[i, index : index + sentence.shape[0]] = sentence
index += sentence.shape[0]
return results
def add_whole_word_mask(self, inputs, do_permutate):
labels = inputs.copy()
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = np.array(special_tokens_mask, dtype=bool)
# determine how many tokens we need to mask in total
is_token = ~(labels == self.tokenizer.pad_token_id) & ~special_tokens_mask
num_to_mask = int(math.ceil(is_token.astype(float).sum() * self.mask_ratio))
if num_to_mask == 0:
return inputs, labels
# generate a sufficient number of span lengths
lengths = poisson(lam=self.poisson_lambda, size=(num_to_mask,))
while np.cumsum(lengths, 0)[-1] < num_to_mask:
lengths = np.concatenate([lengths, poisson(lam=self.poisson_lambda, size=(num_to_mask,))])
# remove all spans of length 0
# Note that BART inserts additional mask tokens where length == 0,
# which we do not implement for now as it adds additional complexity
lengths = lengths[lengths > 0]
# trim to about num_to_mask tokens
idx = np.argmin(np.abs(np.cumsum(lengths, 0) - num_to_mask)) + 1
lengths = lengths[: idx + 1]
# select span start indices
# print("IS TOKEN")
# print(is_token)
# print(sum(list(map(lambda x: 1 if(x) else 0, is_token[0]))))
token_indices = np.argwhere(is_token == 1)
# print("TOKEN INDICES")
# print(token_indices)
span_starts = permutation(token_indices.shape[0])[: lengths.shape[0]]
# prepare mask
masked_indices = np.array(token_indices[span_starts])
# print("MASKED INDICES")
# print(masked_indices)
mask = np.full_like(labels, fill_value=False)
# mask span start indices
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
# fill up spans
max_index = labels.shape[1] - 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
while np.any(remaining):
masked_indices[remaining, 1] += 1
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
# place the mask tokens
mask[np.where(special_tokens_mask)] = False
inputs[np.where(mask)] = self.tokenizer.mask_token_id
if not do_permutate:
labels[np.where(mask)] = -100
else:
labels[np.where(special_tokens_mask)] = -100
# remove mask tokens that are not starts of spans
to_remove = (mask == 1) & np.roll((mask == 1), 1, 1)
new_inputs = np.full_like(labels, fill_value=self.tokenizer.pad_token_id)
# splits = list(map(lambda x: x.reshape(-1), np.split(inputs_copy, indices_or_sections=2, axis=0))
for i, example in enumerate(np.split(inputs, indices_or_sections=new_inputs.shape[0], axis=0)):
new_example = example[0][~to_remove[i]]
new_inputs[i, 0 : new_example.shape[0]] = new_example
# batching now fixed
return new_inputs, labels