pere commited on
Commit
ed9aa4b
·
verified ·
1 Parent(s): 81b0e25

Saving train state of step 100

Browse files
Files changed (40) hide show
  1. .gitignore +1 -0
  2. added_tokens.json +1609 -0
  3. checkpoint-100-epoch-0/added_tokens.json +1609 -0
  4. checkpoint-100-epoch-0/config.json +298 -0
  5. checkpoint-100-epoch-0/generation_config.json +255 -0
  6. checkpoint-100-epoch-0/merges.txt +0 -0
  7. checkpoint-100-epoch-0/model.safetensors +3 -0
  8. checkpoint-100-epoch-0/model_1.safetensors +3 -0
  9. checkpoint-100-epoch-0/normalizer.json +1742 -0
  10. checkpoint-100-epoch-0/optimizer.bin +3 -0
  11. checkpoint-100-epoch-0/preprocessor_config.json +14 -0
  12. checkpoint-100-epoch-0/random_states_0.pkl +3 -0
  13. checkpoint-100-epoch-0/scheduler.bin +3 -0
  14. checkpoint-100-epoch-0/special_tokens_map.json +139 -0
  15. checkpoint-100-epoch-0/tokenizer.json +0 -0
  16. checkpoint-100-epoch-0/tokenizer_config.json +0 -0
  17. checkpoint-100-epoch-0/vocab.json +0 -0
  18. config.json +298 -0
  19. create_student_model.py +231 -0
  20. distil-small-init/added_tokens.json +1609 -0
  21. distil-small-init/config.json +298 -0
  22. distil-small-init/generation_config.json +255 -0
  23. distil-small-init/merges.txt +0 -0
  24. distil-small-init/model.safetensors +3 -0
  25. distil-small-init/normalizer.json +1742 -0
  26. distil-small-init/preprocessor_config.json +14 -0
  27. distil-small-init/special_tokens_map.json +139 -0
  28. distil-small-init/tokenizer_config.json +0 -0
  29. distil-small-init/vocab.json +0 -0
  30. distil-whisper/events.out.tfevents.1729254277.dante.10002.0 +3 -0
  31. distil-whisper/events.out.tfevents.1729254378.dante.10276.0 +3 -0
  32. generation_config.json +255 -0
  33. merges.txt +0 -0
  34. normalizer.json +1742 -0
  35. preprocessor_config.json +14 -0
  36. run_distillation.py +1811 -0
  37. special_tokens_map.json +139 -0
  38. tokenizer.json +0 -0
  39. tokenizer_config.json +0 -0
  40. vocab.json +0 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ wandb
added_tokens.json ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50364,
3
+ "<|0.02|>": 50365,
4
+ "<|0.04|>": 50366,
5
+ "<|0.06|>": 50367,
6
+ "<|0.08|>": 50368,
7
+ "<|0.10|>": 50369,
8
+ "<|0.12|>": 50370,
9
+ "<|0.14|>": 50371,
10
+ "<|0.16|>": 50372,
11
+ "<|0.18|>": 50373,
12
+ "<|0.20|>": 50374,
13
+ "<|0.22|>": 50375,
14
+ "<|0.24|>": 50376,
15
+ "<|0.26|>": 50377,
16
+ "<|0.28|>": 50378,
17
+ "<|0.30|>": 50379,
18
+ "<|0.32|>": 50380,
19
+ "<|0.34|>": 50381,
20
+ "<|0.36|>": 50382,
21
+ "<|0.38|>": 50383,
22
+ "<|0.40|>": 50384,
23
+ "<|0.42|>": 50385,
24
+ "<|0.44|>": 50386,
25
+ "<|0.46|>": 50387,
26
+ "<|0.48|>": 50388,
27
+ "<|0.50|>": 50389,
28
+ "<|0.52|>": 50390,
29
+ "<|0.54|>": 50391,
30
+ "<|0.56|>": 50392,
31
+ "<|0.58|>": 50393,
32
+ "<|0.60|>": 50394,
33
+ "<|0.62|>": 50395,
34
+ "<|0.64|>": 50396,
35
+ "<|0.66|>": 50397,
36
+ "<|0.68|>": 50398,
37
+ "<|0.70|>": 50399,
38
+ "<|0.72|>": 50400,
39
+ "<|0.74|>": 50401,
40
+ "<|0.76|>": 50402,
41
+ "<|0.78|>": 50403,
42
+ "<|0.80|>": 50404,
43
+ "<|0.82|>": 50405,
44
+ "<|0.84|>": 50406,
45
+ "<|0.86|>": 50407,
46
+ "<|0.88|>": 50408,
47
+ "<|0.90|>": 50409,
48
+ "<|0.92|>": 50410,
49
+ "<|0.94|>": 50411,
50
+ "<|0.96|>": 50412,
51
+ "<|0.98|>": 50413,
52
+ "<|1.00|>": 50414,
53
+ "<|1.02|>": 50415,
54
+ "<|1.04|>": 50416,
55
+ "<|1.06|>": 50417,
56
+ "<|1.08|>": 50418,
57
+ "<|1.10|>": 50419,
58
+ "<|1.12|>": 50420,
59
+ "<|1.14|>": 50421,
60
+ "<|1.16|>": 50422,
61
+ "<|1.18|>": 50423,
62
+ "<|1.20|>": 50424,
63
+ "<|1.22|>": 50425,
64
+ "<|1.24|>": 50426,
65
+ "<|1.26|>": 50427,
66
+ "<|1.28|>": 50428,
67
+ "<|1.30|>": 50429,
68
+ "<|1.32|>": 50430,
69
+ "<|1.34|>": 50431,
70
+ "<|1.36|>": 50432,
71
+ "<|1.38|>": 50433,
72
+ "<|1.40|>": 50434,
73
+ "<|1.42|>": 50435,
74
+ "<|1.44|>": 50436,
75
+ "<|1.46|>": 50437,
76
+ "<|1.48|>": 50438,
77
+ "<|1.50|>": 50439,
78
+ "<|1.52|>": 50440,
79
+ "<|1.54|>": 50441,
80
+ "<|1.56|>": 50442,
81
+ "<|1.58|>": 50443,
82
+ "<|1.60|>": 50444,
83
+ "<|1.62|>": 50445,
84
+ "<|1.64|>": 50446,
85
+ "<|1.66|>": 50447,
86
+ "<|1.68|>": 50448,
87
+ "<|1.70|>": 50449,
88
+ "<|1.72|>": 50450,
89
+ "<|1.74|>": 50451,
90
+ "<|1.76|>": 50452,
91
+ "<|1.78|>": 50453,
92
+ "<|1.80|>": 50454,
93
+ "<|1.82|>": 50455,
94
+ "<|1.84|>": 50456,
95
+ "<|1.86|>": 50457,
96
+ "<|1.88|>": 50458,
97
+ "<|1.90|>": 50459,
98
+ "<|1.92|>": 50460,
99
+ "<|1.94|>": 50461,
100
+ "<|1.96|>": 50462,
101
+ "<|1.98|>": 50463,
102
+ "<|10.00|>": 50864,
103
+ "<|10.02|>": 50865,
104
+ "<|10.04|>": 50866,
105
+ "<|10.06|>": 50867,
106
+ "<|10.08|>": 50868,
107
+ "<|10.10|>": 50869,
108
+ "<|10.12|>": 50870,
109
+ "<|10.14|>": 50871,
110
+ "<|10.16|>": 50872,
111
+ "<|10.18|>": 50873,
112
+ "<|10.20|>": 50874,
113
+ "<|10.22|>": 50875,
114
+ "<|10.24|>": 50876,
115
+ "<|10.26|>": 50877,
116
+ "<|10.28|>": 50878,
117
+ "<|10.30|>": 50879,
118
+ "<|10.32|>": 50880,
119
+ "<|10.34|>": 50881,
120
+ "<|10.36|>": 50882,
121
+ "<|10.38|>": 50883,
122
+ "<|10.40|>": 50884,
123
+ "<|10.42|>": 50885,
124
+ "<|10.44|>": 50886,
125
+ "<|10.46|>": 50887,
126
+ "<|10.48|>": 50888,
127
+ "<|10.50|>": 50889,
128
+ "<|10.52|>": 50890,
129
+ "<|10.54|>": 50891,
130
+ "<|10.56|>": 50892,
131
+ "<|10.58|>": 50893,
132
+ "<|10.60|>": 50894,
133
+ "<|10.62|>": 50895,
134
+ "<|10.64|>": 50896,
135
+ "<|10.66|>": 50897,
136
+ "<|10.68|>": 50898,
137
+ "<|10.70|>": 50899,
138
+ "<|10.72|>": 50900,
139
+ "<|10.74|>": 50901,
140
+ "<|10.76|>": 50902,
141
+ "<|10.78|>": 50903,
142
+ "<|10.80|>": 50904,
143
+ "<|10.82|>": 50905,
144
+ "<|10.84|>": 50906,
145
+ "<|10.86|>": 50907,
146
+ "<|10.88|>": 50908,
147
+ "<|10.90|>": 50909,
148
+ "<|10.92|>": 50910,
149
+ "<|10.94|>": 50911,
150
+ "<|10.96|>": 50912,
151
+ "<|10.98|>": 50913,
152
+ "<|11.00|>": 50914,
153
+ "<|11.02|>": 50915,
154
+ "<|11.04|>": 50916,
155
+ "<|11.06|>": 50917,
156
+ "<|11.08|>": 50918,
157
+ "<|11.10|>": 50919,
158
+ "<|11.12|>": 50920,
159
+ "<|11.14|>": 50921,
160
+ "<|11.16|>": 50922,
161
+ "<|11.18|>": 50923,
162
+ "<|11.20|>": 50924,
163
+ "<|11.22|>": 50925,
164
+ "<|11.24|>": 50926,
165
+ "<|11.26|>": 50927,
166
+ "<|11.28|>": 50928,
167
+ "<|11.30|>": 50929,
168
+ "<|11.32|>": 50930,
169
+ "<|11.34|>": 50931,
170
+ "<|11.36|>": 50932,
171
+ "<|11.38|>": 50933,
172
+ "<|11.40|>": 50934,
173
+ "<|11.42|>": 50935,
174
+ "<|11.44|>": 50936,
175
+ "<|11.46|>": 50937,
176
+ "<|11.48|>": 50938,
177
+ "<|11.50|>": 50939,
178
+ "<|11.52|>": 50940,
179
+ "<|11.54|>": 50941,
180
+ "<|11.56|>": 50942,
181
+ "<|11.58|>": 50943,
182
+ "<|11.60|>": 50944,
183
+ "<|11.62|>": 50945,
184
+ "<|11.64|>": 50946,
185
+ "<|11.66|>": 50947,
186
+ "<|11.68|>": 50948,
187
+ "<|11.70|>": 50949,
188
+ "<|11.72|>": 50950,
189
+ "<|11.74|>": 50951,
190
+ "<|11.76|>": 50952,
191
+ "<|11.78|>": 50953,
192
+ "<|11.80|>": 50954,
193
+ "<|11.82|>": 50955,
194
+ "<|11.84|>": 50956,
195
+ "<|11.86|>": 50957,
196
+ "<|11.88|>": 50958,
197
+ "<|11.90|>": 50959,
198
+ "<|11.92|>": 50960,
199
+ "<|11.94|>": 50961,
200
+ "<|11.96|>": 50962,
201
+ "<|11.98|>": 50963,
202
+ "<|12.00|>": 50964,
203
+ "<|12.02|>": 50965,
204
+ "<|12.04|>": 50966,
205
+ "<|12.06|>": 50967,
206
+ "<|12.08|>": 50968,
207
+ "<|12.10|>": 50969,
208
+ "<|12.12|>": 50970,
209
+ "<|12.14|>": 50971,
210
+ "<|12.16|>": 50972,
211
+ "<|12.18|>": 50973,
212
+ "<|12.20|>": 50974,
213
+ "<|12.22|>": 50975,
214
+ "<|12.24|>": 50976,
215
+ "<|12.26|>": 50977,
216
+ "<|12.28|>": 50978,
217
+ "<|12.30|>": 50979,
218
+ "<|12.32|>": 50980,
219
+ "<|12.34|>": 50981,
220
+ "<|12.36|>": 50982,
221
+ "<|12.38|>": 50983,
222
+ "<|12.40|>": 50984,
223
+ "<|12.42|>": 50985,
224
+ "<|12.44|>": 50986,
225
+ "<|12.46|>": 50987,
226
+ "<|12.48|>": 50988,
227
+ "<|12.50|>": 50989,
228
+ "<|12.52|>": 50990,
229
+ "<|12.54|>": 50991,
230
+ "<|12.56|>": 50992,
231
+ "<|12.58|>": 50993,
232
+ "<|12.60|>": 50994,
233
+ "<|12.62|>": 50995,
234
+ "<|12.64|>": 50996,
235
+ "<|12.66|>": 50997,
236
+ "<|12.68|>": 50998,
237
+ "<|12.70|>": 50999,
238
+ "<|12.72|>": 51000,
239
+ "<|12.74|>": 51001,
240
+ "<|12.76|>": 51002,
241
+ "<|12.78|>": 51003,
242
+ "<|12.80|>": 51004,
243
+ "<|12.82|>": 51005,
244
+ "<|12.84|>": 51006,
245
+ "<|12.86|>": 51007,
246
+ "<|12.88|>": 51008,
247
+ "<|12.90|>": 51009,
248
+ "<|12.92|>": 51010,
249
+ "<|12.94|>": 51011,
250
+ "<|12.96|>": 51012,
251
+ "<|12.98|>": 51013,
252
+ "<|13.00|>": 51014,
253
+ "<|13.02|>": 51015,
254
+ "<|13.04|>": 51016,
255
+ "<|13.06|>": 51017,
256
+ "<|13.08|>": 51018,
257
+ "<|13.10|>": 51019,
258
+ "<|13.12|>": 51020,
259
+ "<|13.14|>": 51021,
260
+ "<|13.16|>": 51022,
261
+ "<|13.18|>": 51023,
262
+ "<|13.20|>": 51024,
263
+ "<|13.22|>": 51025,
264
+ "<|13.24|>": 51026,
265
+ "<|13.26|>": 51027,
266
+ "<|13.28|>": 51028,
267
+ "<|13.30|>": 51029,
268
+ "<|13.32|>": 51030,
269
+ "<|13.34|>": 51031,
270
+ "<|13.36|>": 51032,
271
+ "<|13.38|>": 51033,
272
+ "<|13.40|>": 51034,
273
+ "<|13.42|>": 51035,
274
+ "<|13.44|>": 51036,
275
+ "<|13.46|>": 51037,
276
+ "<|13.48|>": 51038,
277
+ "<|13.50|>": 51039,
278
+ "<|13.52|>": 51040,
279
+ "<|13.54|>": 51041,
280
+ "<|13.56|>": 51042,
281
+ "<|13.58|>": 51043,
282
+ "<|13.60|>": 51044,
283
+ "<|13.62|>": 51045,
284
+ "<|13.64|>": 51046,
285
+ "<|13.66|>": 51047,
286
+ "<|13.68|>": 51048,
287
+ "<|13.70|>": 51049,
288
+ "<|13.72|>": 51050,
289
+ "<|13.74|>": 51051,
290
+ "<|13.76|>": 51052,
291
+ "<|13.78|>": 51053,
292
+ "<|13.80|>": 51054,
293
+ "<|13.82|>": 51055,
294
+ "<|13.84|>": 51056,
295
+ "<|13.86|>": 51057,
296
+ "<|13.88|>": 51058,
297
+ "<|13.90|>": 51059,
298
+ "<|13.92|>": 51060,
299
+ "<|13.94|>": 51061,
300
+ "<|13.96|>": 51062,
301
+ "<|13.98|>": 51063,
302
+ "<|14.00|>": 51064,
303
+ "<|14.02|>": 51065,
304
+ "<|14.04|>": 51066,
305
+ "<|14.06|>": 51067,
306
+ "<|14.08|>": 51068,
307
+ "<|14.10|>": 51069,
308
+ "<|14.12|>": 51070,
309
+ "<|14.14|>": 51071,
310
+ "<|14.16|>": 51072,
311
+ "<|14.18|>": 51073,
312
+ "<|14.20|>": 51074,
313
+ "<|14.22|>": 51075,
314
+ "<|14.24|>": 51076,
315
+ "<|14.26|>": 51077,
316
+ "<|14.28|>": 51078,
317
+ "<|14.30|>": 51079,
318
+ "<|14.32|>": 51080,
319
+ "<|14.34|>": 51081,
320
+ "<|14.36|>": 51082,
321
+ "<|14.38|>": 51083,
322
+ "<|14.40|>": 51084,
323
+ "<|14.42|>": 51085,
324
+ "<|14.44|>": 51086,
325
+ "<|14.46|>": 51087,
326
+ "<|14.48|>": 51088,
327
+ "<|14.50|>": 51089,
328
+ "<|14.52|>": 51090,
329
+ "<|14.54|>": 51091,
330
+ "<|14.56|>": 51092,
331
+ "<|14.58|>": 51093,
332
+ "<|14.60|>": 51094,
333
+ "<|14.62|>": 51095,
334
+ "<|14.64|>": 51096,
335
+ "<|14.66|>": 51097,
336
+ "<|14.68|>": 51098,
337
+ "<|14.70|>": 51099,
338
+ "<|14.72|>": 51100,
339
+ "<|14.74|>": 51101,
340
+ "<|14.76|>": 51102,
341
+ "<|14.78|>": 51103,
342
+ "<|14.80|>": 51104,
343
+ "<|14.82|>": 51105,
344
+ "<|14.84|>": 51106,
345
+ "<|14.86|>": 51107,
346
+ "<|14.88|>": 51108,
347
+ "<|14.90|>": 51109,
348
+ "<|14.92|>": 51110,
349
+ "<|14.94|>": 51111,
350
+ "<|14.96|>": 51112,
351
+ "<|14.98|>": 51113,
352
+ "<|15.00|>": 51114,
353
+ "<|15.02|>": 51115,
354
+ "<|15.04|>": 51116,
355
+ "<|15.06|>": 51117,
356
+ "<|15.08|>": 51118,
357
+ "<|15.10|>": 51119,
358
+ "<|15.12|>": 51120,
359
+ "<|15.14|>": 51121,
360
+ "<|15.16|>": 51122,
361
+ "<|15.18|>": 51123,
362
+ "<|15.20|>": 51124,
363
+ "<|15.22|>": 51125,
364
+ "<|15.24|>": 51126,
365
+ "<|15.26|>": 51127,
366
+ "<|15.28|>": 51128,
367
+ "<|15.30|>": 51129,
368
+ "<|15.32|>": 51130,
369
+ "<|15.34|>": 51131,
370
+ "<|15.36|>": 51132,
371
+ "<|15.38|>": 51133,
372
+ "<|15.40|>": 51134,
373
+ "<|15.42|>": 51135,
374
+ "<|15.44|>": 51136,
375
+ "<|15.46|>": 51137,
376
+ "<|15.48|>": 51138,
377
+ "<|15.50|>": 51139,
378
+ "<|15.52|>": 51140,
379
+ "<|15.54|>": 51141,
380
+ "<|15.56|>": 51142,
381
+ "<|15.58|>": 51143,
382
+ "<|15.60|>": 51144,
383
+ "<|15.62|>": 51145,
384
+ "<|15.64|>": 51146,
385
+ "<|15.66|>": 51147,
386
+ "<|15.68|>": 51148,
387
+ "<|15.70|>": 51149,
388
+ "<|15.72|>": 51150,
389
+ "<|15.74|>": 51151,
390
+ "<|15.76|>": 51152,
391
+ "<|15.78|>": 51153,
392
+ "<|15.80|>": 51154,
393
+ "<|15.82|>": 51155,
394
+ "<|15.84|>": 51156,
395
+ "<|15.86|>": 51157,
396
+ "<|15.88|>": 51158,
397
+ "<|15.90|>": 51159,
398
+ "<|15.92|>": 51160,
399
+ "<|15.94|>": 51161,
400
+ "<|15.96|>": 51162,
401
+ "<|15.98|>": 51163,
402
+ "<|16.00|>": 51164,
403
+ "<|16.02|>": 51165,
404
+ "<|16.04|>": 51166,
405
+ "<|16.06|>": 51167,
406
+ "<|16.08|>": 51168,
407
+ "<|16.10|>": 51169,
408
+ "<|16.12|>": 51170,
409
+ "<|16.14|>": 51171,
410
+ "<|16.16|>": 51172,
411
+ "<|16.18|>": 51173,
412
+ "<|16.20|>": 51174,
413
+ "<|16.22|>": 51175,
414
+ "<|16.24|>": 51176,
415
+ "<|16.26|>": 51177,
416
+ "<|16.28|>": 51178,
417
+ "<|16.30|>": 51179,
418
+ "<|16.32|>": 51180,
419
+ "<|16.34|>": 51181,
420
+ "<|16.36|>": 51182,
421
+ "<|16.38|>": 51183,
422
+ "<|16.40|>": 51184,
423
+ "<|16.42|>": 51185,
424
+ "<|16.44|>": 51186,
425
+ "<|16.46|>": 51187,
426
+ "<|16.48|>": 51188,
427
+ "<|16.50|>": 51189,
428
+ "<|16.52|>": 51190,
429
+ "<|16.54|>": 51191,
430
+ "<|16.56|>": 51192,
431
+ "<|16.58|>": 51193,
432
+ "<|16.60|>": 51194,
433
+ "<|16.62|>": 51195,
434
+ "<|16.64|>": 51196,
435
+ "<|16.66|>": 51197,
436
+ "<|16.68|>": 51198,
437
+ "<|16.70|>": 51199,
438
+ "<|16.72|>": 51200,
439
+ "<|16.74|>": 51201,
440
+ "<|16.76|>": 51202,
441
+ "<|16.78|>": 51203,
442
+ "<|16.80|>": 51204,
443
+ "<|16.82|>": 51205,
444
+ "<|16.84|>": 51206,
445
+ "<|16.86|>": 51207,
446
+ "<|16.88|>": 51208,
447
+ "<|16.90|>": 51209,
448
+ "<|16.92|>": 51210,
449
+ "<|16.94|>": 51211,
450
+ "<|16.96|>": 51212,
451
+ "<|16.98|>": 51213,
452
+ "<|17.00|>": 51214,
453
+ "<|17.02|>": 51215,
454
+ "<|17.04|>": 51216,
455
+ "<|17.06|>": 51217,
456
+ "<|17.08|>": 51218,
457
+ "<|17.10|>": 51219,
458
+ "<|17.12|>": 51220,
459
+ "<|17.14|>": 51221,
460
+ "<|17.16|>": 51222,
461
+ "<|17.18|>": 51223,
462
+ "<|17.20|>": 51224,
463
+ "<|17.22|>": 51225,
464
+ "<|17.24|>": 51226,
465
+ "<|17.26|>": 51227,
466
+ "<|17.28|>": 51228,
467
+ "<|17.30|>": 51229,
468
+ "<|17.32|>": 51230,
469
+ "<|17.34|>": 51231,
470
+ "<|17.36|>": 51232,
471
+ "<|17.38|>": 51233,
472
+ "<|17.40|>": 51234,
473
+ "<|17.42|>": 51235,
474
+ "<|17.44|>": 51236,
475
+ "<|17.46|>": 51237,
476
+ "<|17.48|>": 51238,
477
+ "<|17.50|>": 51239,
478
+ "<|17.52|>": 51240,
479
+ "<|17.54|>": 51241,
480
+ "<|17.56|>": 51242,
481
+ "<|17.58|>": 51243,
482
+ "<|17.60|>": 51244,
483
+ "<|17.62|>": 51245,
484
+ "<|17.64|>": 51246,
485
+ "<|17.66|>": 51247,
486
+ "<|17.68|>": 51248,
487
+ "<|17.70|>": 51249,
488
+ "<|17.72|>": 51250,
489
+ "<|17.74|>": 51251,
490
+ "<|17.76|>": 51252,
491
+ "<|17.78|>": 51253,
492
+ "<|17.80|>": 51254,
493
+ "<|17.82|>": 51255,
494
+ "<|17.84|>": 51256,
495
+ "<|17.86|>": 51257,
496
+ "<|17.88|>": 51258,
497
+ "<|17.90|>": 51259,
498
+ "<|17.92|>": 51260,
499
+ "<|17.94|>": 51261,
500
+ "<|17.96|>": 51262,
501
+ "<|17.98|>": 51263,
502
+ "<|18.00|>": 51264,
503
+ "<|18.02|>": 51265,
504
+ "<|18.04|>": 51266,
505
+ "<|18.06|>": 51267,
506
+ "<|18.08|>": 51268,
507
+ "<|18.10|>": 51269,
508
+ "<|18.12|>": 51270,
509
+ "<|18.14|>": 51271,
510
+ "<|18.16|>": 51272,
511
+ "<|18.18|>": 51273,
512
+ "<|18.20|>": 51274,
513
+ "<|18.22|>": 51275,
514
+ "<|18.24|>": 51276,
515
+ "<|18.26|>": 51277,
516
+ "<|18.28|>": 51278,
517
+ "<|18.30|>": 51279,
518
+ "<|18.32|>": 51280,
519
+ "<|18.34|>": 51281,
520
+ "<|18.36|>": 51282,
521
+ "<|18.38|>": 51283,
522
+ "<|18.40|>": 51284,
523
+ "<|18.42|>": 51285,
524
+ "<|18.44|>": 51286,
525
+ "<|18.46|>": 51287,
526
+ "<|18.48|>": 51288,
527
+ "<|18.50|>": 51289,
528
+ "<|18.52|>": 51290,
529
+ "<|18.54|>": 51291,
530
+ "<|18.56|>": 51292,
531
+ "<|18.58|>": 51293,
532
+ "<|18.60|>": 51294,
533
+ "<|18.62|>": 51295,
534
+ "<|18.64|>": 51296,
535
+ "<|18.66|>": 51297,
536
+ "<|18.68|>": 51298,
537
+ "<|18.70|>": 51299,
538
+ "<|18.72|>": 51300,
539
+ "<|18.74|>": 51301,
540
+ "<|18.76|>": 51302,
541
+ "<|18.78|>": 51303,
542
+ "<|18.80|>": 51304,
543
+ "<|18.82|>": 51305,
544
+ "<|18.84|>": 51306,
545
+ "<|18.86|>": 51307,
546
+ "<|18.88|>": 51308,
547
+ "<|18.90|>": 51309,
548
+ "<|18.92|>": 51310,
549
+ "<|18.94|>": 51311,
550
+ "<|18.96|>": 51312,
551
+ "<|18.98|>": 51313,
552
+ "<|19.00|>": 51314,
553
+ "<|19.02|>": 51315,
554
+ "<|19.04|>": 51316,
555
+ "<|19.06|>": 51317,
556
+ "<|19.08|>": 51318,
557
+ "<|19.10|>": 51319,
558
+ "<|19.12|>": 51320,
559
+ "<|19.14|>": 51321,
560
+ "<|19.16|>": 51322,
561
+ "<|19.18|>": 51323,
562
+ "<|19.20|>": 51324,
563
+ "<|19.22|>": 51325,
564
+ "<|19.24|>": 51326,
565
+ "<|19.26|>": 51327,
566
+ "<|19.28|>": 51328,
567
+ "<|19.30|>": 51329,
568
+ "<|19.32|>": 51330,
569
+ "<|19.34|>": 51331,
570
+ "<|19.36|>": 51332,
571
+ "<|19.38|>": 51333,
572
+ "<|19.40|>": 51334,
573
+ "<|19.42|>": 51335,
574
+ "<|19.44|>": 51336,
575
+ "<|19.46|>": 51337,
576
+ "<|19.48|>": 51338,
577
+ "<|19.50|>": 51339,
578
+ "<|19.52|>": 51340,
579
+ "<|19.54|>": 51341,
580
+ "<|19.56|>": 51342,
581
+ "<|19.58|>": 51343,
582
+ "<|19.60|>": 51344,
583
+ "<|19.62|>": 51345,
584
+ "<|19.64|>": 51346,
585
+ "<|19.66|>": 51347,
586
+ "<|19.68|>": 51348,
587
+ "<|19.70|>": 51349,
588
+ "<|19.72|>": 51350,
589
+ "<|19.74|>": 51351,
590
+ "<|19.76|>": 51352,
591
+ "<|19.78|>": 51353,
592
+ "<|19.80|>": 51354,
593
+ "<|19.82|>": 51355,
594
+ "<|19.84|>": 51356,
595
+ "<|19.86|>": 51357,
596
+ "<|19.88|>": 51358,
597
+ "<|19.90|>": 51359,
598
+ "<|19.92|>": 51360,
599
+ "<|19.94|>": 51361,
600
+ "<|19.96|>": 51362,
601
+ "<|19.98|>": 51363,
602
+ "<|2.00|>": 50464,
603
+ "<|2.02|>": 50465,
604
+ "<|2.04|>": 50466,
605
+ "<|2.06|>": 50467,
606
+ "<|2.08|>": 50468,
607
+ "<|2.10|>": 50469,
608
+ "<|2.12|>": 50470,
609
+ "<|2.14|>": 50471,
610
+ "<|2.16|>": 50472,
611
+ "<|2.18|>": 50473,
612
+ "<|2.20|>": 50474,
613
+ "<|2.22|>": 50475,
614
+ "<|2.24|>": 50476,
615
+ "<|2.26|>": 50477,
616
+ "<|2.28|>": 50478,
617
+ "<|2.30|>": 50479,
618
+ "<|2.32|>": 50480,
619
+ "<|2.34|>": 50481,
620
+ "<|2.36|>": 50482,
621
+ "<|2.38|>": 50483,
622
+ "<|2.40|>": 50484,
623
+ "<|2.42|>": 50485,
624
+ "<|2.44|>": 50486,
625
+ "<|2.46|>": 50487,
626
+ "<|2.48|>": 50488,
627
+ "<|2.50|>": 50489,
628
+ "<|2.52|>": 50490,
629
+ "<|2.54|>": 50491,
630
+ "<|2.56|>": 50492,
631
+ "<|2.58|>": 50493,
632
+ "<|2.60|>": 50494,
633
+ "<|2.62|>": 50495,
634
+ "<|2.64|>": 50496,
635
+ "<|2.66|>": 50497,
636
+ "<|2.68|>": 50498,
637
+ "<|2.70|>": 50499,
638
+ "<|2.72|>": 50500,
639
+ "<|2.74|>": 50501,
640
+ "<|2.76|>": 50502,
641
+ "<|2.78|>": 50503,
642
+ "<|2.80|>": 50504,
643
+ "<|2.82|>": 50505,
644
+ "<|2.84|>": 50506,
645
+ "<|2.86|>": 50507,
646
+ "<|2.88|>": 50508,
647
+ "<|2.90|>": 50509,
648
+ "<|2.92|>": 50510,
649
+ "<|2.94|>": 50511,
650
+ "<|2.96|>": 50512,
651
+ "<|2.98|>": 50513,
652
+ "<|20.00|>": 51364,
653
+ "<|20.02|>": 51365,
654
+ "<|20.04|>": 51366,
655
+ "<|20.06|>": 51367,
656
+ "<|20.08|>": 51368,
657
+ "<|20.10|>": 51369,
658
+ "<|20.12|>": 51370,
659
+ "<|20.14|>": 51371,
660
+ "<|20.16|>": 51372,
661
+ "<|20.18|>": 51373,
662
+ "<|20.20|>": 51374,
663
+ "<|20.22|>": 51375,
664
+ "<|20.24|>": 51376,
665
+ "<|20.26|>": 51377,
666
+ "<|20.28|>": 51378,
667
+ "<|20.30|>": 51379,
668
+ "<|20.32|>": 51380,
669
+ "<|20.34|>": 51381,
670
+ "<|20.36|>": 51382,
671
+ "<|20.38|>": 51383,
672
+ "<|20.40|>": 51384,
673
+ "<|20.42|>": 51385,
674
+ "<|20.44|>": 51386,
675
+ "<|20.46|>": 51387,
676
+ "<|20.48|>": 51388,
677
+ "<|20.50|>": 51389,
678
+ "<|20.52|>": 51390,
679
+ "<|20.54|>": 51391,
680
+ "<|20.56|>": 51392,
681
+ "<|20.58|>": 51393,
682
+ "<|20.60|>": 51394,
683
+ "<|20.62|>": 51395,
684
+ "<|20.64|>": 51396,
685
+ "<|20.66|>": 51397,
686
+ "<|20.68|>": 51398,
687
+ "<|20.70|>": 51399,
688
+ "<|20.72|>": 51400,
689
+ "<|20.74|>": 51401,
690
+ "<|20.76|>": 51402,
691
+ "<|20.78|>": 51403,
692
+ "<|20.80|>": 51404,
693
+ "<|20.82|>": 51405,
694
+ "<|20.84|>": 51406,
695
+ "<|20.86|>": 51407,
696
+ "<|20.88|>": 51408,
697
+ "<|20.90|>": 51409,
698
+ "<|20.92|>": 51410,
699
+ "<|20.94|>": 51411,
700
+ "<|20.96|>": 51412,
701
+ "<|20.98|>": 51413,
702
+ "<|21.00|>": 51414,
703
+ "<|21.02|>": 51415,
704
+ "<|21.04|>": 51416,
705
+ "<|21.06|>": 51417,
706
+ "<|21.08|>": 51418,
707
+ "<|21.10|>": 51419,
708
+ "<|21.12|>": 51420,
709
+ "<|21.14|>": 51421,
710
+ "<|21.16|>": 51422,
711
+ "<|21.18|>": 51423,
712
+ "<|21.20|>": 51424,
713
+ "<|21.22|>": 51425,
714
+ "<|21.24|>": 51426,
715
+ "<|21.26|>": 51427,
716
+ "<|21.28|>": 51428,
717
+ "<|21.30|>": 51429,
718
+ "<|21.32|>": 51430,
719
+ "<|21.34|>": 51431,
720
+ "<|21.36|>": 51432,
721
+ "<|21.38|>": 51433,
722
+ "<|21.40|>": 51434,
723
+ "<|21.42|>": 51435,
724
+ "<|21.44|>": 51436,
725
+ "<|21.46|>": 51437,
726
+ "<|21.48|>": 51438,
727
+ "<|21.50|>": 51439,
728
+ "<|21.52|>": 51440,
729
+ "<|21.54|>": 51441,
730
+ "<|21.56|>": 51442,
731
+ "<|21.58|>": 51443,
732
+ "<|21.60|>": 51444,
733
+ "<|21.62|>": 51445,
734
+ "<|21.64|>": 51446,
735
+ "<|21.66|>": 51447,
736
+ "<|21.68|>": 51448,
737
+ "<|21.70|>": 51449,
738
+ "<|21.72|>": 51450,
739
+ "<|21.74|>": 51451,
740
+ "<|21.76|>": 51452,
741
+ "<|21.78|>": 51453,
742
+ "<|21.80|>": 51454,
743
+ "<|21.82|>": 51455,
744
+ "<|21.84|>": 51456,
745
+ "<|21.86|>": 51457,
746
+ "<|21.88|>": 51458,
747
+ "<|21.90|>": 51459,
748
+ "<|21.92|>": 51460,
749
+ "<|21.94|>": 51461,
750
+ "<|21.96|>": 51462,
751
+ "<|21.98|>": 51463,
752
+ "<|22.00|>": 51464,
753
+ "<|22.02|>": 51465,
754
+ "<|22.04|>": 51466,
755
+ "<|22.06|>": 51467,
756
+ "<|22.08|>": 51468,
757
+ "<|22.10|>": 51469,
758
+ "<|22.12|>": 51470,
759
+ "<|22.14|>": 51471,
760
+ "<|22.16|>": 51472,
761
+ "<|22.18|>": 51473,
762
+ "<|22.20|>": 51474,
763
+ "<|22.22|>": 51475,
764
+ "<|22.24|>": 51476,
765
+ "<|22.26|>": 51477,
766
+ "<|22.28|>": 51478,
767
+ "<|22.30|>": 51479,
768
+ "<|22.32|>": 51480,
769
+ "<|22.34|>": 51481,
770
+ "<|22.36|>": 51482,
771
+ "<|22.38|>": 51483,
772
+ "<|22.40|>": 51484,
773
+ "<|22.42|>": 51485,
774
+ "<|22.44|>": 51486,
775
+ "<|22.46|>": 51487,
776
+ "<|22.48|>": 51488,
777
+ "<|22.50|>": 51489,
778
+ "<|22.52|>": 51490,
779
+ "<|22.54|>": 51491,
780
+ "<|22.56|>": 51492,
781
+ "<|22.58|>": 51493,
782
+ "<|22.60|>": 51494,
783
+ "<|22.62|>": 51495,
784
+ "<|22.64|>": 51496,
785
+ "<|22.66|>": 51497,
786
+ "<|22.68|>": 51498,
787
+ "<|22.70|>": 51499,
788
+ "<|22.72|>": 51500,
789
+ "<|22.74|>": 51501,
790
+ "<|22.76|>": 51502,
791
+ "<|22.78|>": 51503,
792
+ "<|22.80|>": 51504,
793
+ "<|22.82|>": 51505,
794
+ "<|22.84|>": 51506,
795
+ "<|22.86|>": 51507,
796
+ "<|22.88|>": 51508,
797
+ "<|22.90|>": 51509,
798
+ "<|22.92|>": 51510,
799
+ "<|22.94|>": 51511,
800
+ "<|22.96|>": 51512,
801
+ "<|22.98|>": 51513,
802
+ "<|23.00|>": 51514,
803
+ "<|23.02|>": 51515,
804
+ "<|23.04|>": 51516,
805
+ "<|23.06|>": 51517,
806
+ "<|23.08|>": 51518,
807
+ "<|23.10|>": 51519,
808
+ "<|23.12|>": 51520,
809
+ "<|23.14|>": 51521,
810
+ "<|23.16|>": 51522,
811
+ "<|23.18|>": 51523,
812
+ "<|23.20|>": 51524,
813
+ "<|23.22|>": 51525,
814
+ "<|23.24|>": 51526,
815
+ "<|23.26|>": 51527,
816
+ "<|23.28|>": 51528,
817
+ "<|23.30|>": 51529,
818
+ "<|23.32|>": 51530,
819
+ "<|23.34|>": 51531,
820
+ "<|23.36|>": 51532,
821
+ "<|23.38|>": 51533,
822
+ "<|23.40|>": 51534,
823
+ "<|23.42|>": 51535,
824
+ "<|23.44|>": 51536,
825
+ "<|23.46|>": 51537,
826
+ "<|23.48|>": 51538,
827
+ "<|23.50|>": 51539,
828
+ "<|23.52|>": 51540,
829
+ "<|23.54|>": 51541,
830
+ "<|23.56|>": 51542,
831
+ "<|23.58|>": 51543,
832
+ "<|23.60|>": 51544,
833
+ "<|23.62|>": 51545,
834
+ "<|23.64|>": 51546,
835
+ "<|23.66|>": 51547,
836
+ "<|23.68|>": 51548,
837
+ "<|23.70|>": 51549,
838
+ "<|23.72|>": 51550,
839
+ "<|23.74|>": 51551,
840
+ "<|23.76|>": 51552,
841
+ "<|23.78|>": 51553,
842
+ "<|23.80|>": 51554,
843
+ "<|23.82|>": 51555,
844
+ "<|23.84|>": 51556,
845
+ "<|23.86|>": 51557,
846
+ "<|23.88|>": 51558,
847
+ "<|23.90|>": 51559,
848
+ "<|23.92|>": 51560,
849
+ "<|23.94|>": 51561,
850
+ "<|23.96|>": 51562,
851
+ "<|23.98|>": 51563,
852
+ "<|24.00|>": 51564,
853
+ "<|24.02|>": 51565,
854
+ "<|24.04|>": 51566,
855
+ "<|24.06|>": 51567,
856
+ "<|24.08|>": 51568,
857
+ "<|24.10|>": 51569,
858
+ "<|24.12|>": 51570,
859
+ "<|24.14|>": 51571,
860
+ "<|24.16|>": 51572,
861
+ "<|24.18|>": 51573,
862
+ "<|24.20|>": 51574,
863
+ "<|24.22|>": 51575,
864
+ "<|24.24|>": 51576,
865
+ "<|24.26|>": 51577,
866
+ "<|24.28|>": 51578,
867
+ "<|24.30|>": 51579,
868
+ "<|24.32|>": 51580,
869
+ "<|24.34|>": 51581,
870
+ "<|24.36|>": 51582,
871
+ "<|24.38|>": 51583,
872
+ "<|24.40|>": 51584,
873
+ "<|24.42|>": 51585,
874
+ "<|24.44|>": 51586,
875
+ "<|24.46|>": 51587,
876
+ "<|24.48|>": 51588,
877
+ "<|24.50|>": 51589,
878
+ "<|24.52|>": 51590,
879
+ "<|24.54|>": 51591,
880
+ "<|24.56|>": 51592,
881
+ "<|24.58|>": 51593,
882
+ "<|24.60|>": 51594,
883
+ "<|24.62|>": 51595,
884
+ "<|24.64|>": 51596,
885
+ "<|24.66|>": 51597,
886
+ "<|24.68|>": 51598,
887
+ "<|24.70|>": 51599,
888
+ "<|24.72|>": 51600,
889
+ "<|24.74|>": 51601,
890
+ "<|24.76|>": 51602,
891
+ "<|24.78|>": 51603,
892
+ "<|24.80|>": 51604,
893
+ "<|24.82|>": 51605,
894
+ "<|24.84|>": 51606,
895
+ "<|24.86|>": 51607,
896
+ "<|24.88|>": 51608,
897
+ "<|24.90|>": 51609,
898
+ "<|24.92|>": 51610,
899
+ "<|24.94|>": 51611,
900
+ "<|24.96|>": 51612,
901
+ "<|24.98|>": 51613,
902
+ "<|25.00|>": 51614,
903
+ "<|25.02|>": 51615,
904
+ "<|25.04|>": 51616,
905
+ "<|25.06|>": 51617,
906
+ "<|25.08|>": 51618,
907
+ "<|25.10|>": 51619,
908
+ "<|25.12|>": 51620,
909
+ "<|25.14|>": 51621,
910
+ "<|25.16|>": 51622,
911
+ "<|25.18|>": 51623,
912
+ "<|25.20|>": 51624,
913
+ "<|25.22|>": 51625,
914
+ "<|25.24|>": 51626,
915
+ "<|25.26|>": 51627,
916
+ "<|25.28|>": 51628,
917
+ "<|25.30|>": 51629,
918
+ "<|25.32|>": 51630,
919
+ "<|25.34|>": 51631,
920
+ "<|25.36|>": 51632,
921
+ "<|25.38|>": 51633,
922
+ "<|25.40|>": 51634,
923
+ "<|25.42|>": 51635,
924
+ "<|25.44|>": 51636,
925
+ "<|25.46|>": 51637,
926
+ "<|25.48|>": 51638,
927
+ "<|25.50|>": 51639,
928
+ "<|25.52|>": 51640,
929
+ "<|25.54|>": 51641,
930
+ "<|25.56|>": 51642,
931
+ "<|25.58|>": 51643,
932
+ "<|25.60|>": 51644,
933
+ "<|25.62|>": 51645,
934
+ "<|25.64|>": 51646,
935
+ "<|25.66|>": 51647,
936
+ "<|25.68|>": 51648,
937
+ "<|25.70|>": 51649,
938
+ "<|25.72|>": 51650,
939
+ "<|25.74|>": 51651,
940
+ "<|25.76|>": 51652,
941
+ "<|25.78|>": 51653,
942
+ "<|25.80|>": 51654,
943
+ "<|25.82|>": 51655,
944
+ "<|25.84|>": 51656,
945
+ "<|25.86|>": 51657,
946
+ "<|25.88|>": 51658,
947
+ "<|25.90|>": 51659,
948
+ "<|25.92|>": 51660,
949
+ "<|25.94|>": 51661,
950
+ "<|25.96|>": 51662,
951
+ "<|25.98|>": 51663,
952
+ "<|26.00|>": 51664,
953
+ "<|26.02|>": 51665,
954
+ "<|26.04|>": 51666,
955
+ "<|26.06|>": 51667,
956
+ "<|26.08|>": 51668,
957
+ "<|26.10|>": 51669,
958
+ "<|26.12|>": 51670,
959
+ "<|26.14|>": 51671,
960
+ "<|26.16|>": 51672,
961
+ "<|26.18|>": 51673,
962
+ "<|26.20|>": 51674,
963
+ "<|26.22|>": 51675,
964
+ "<|26.24|>": 51676,
965
+ "<|26.26|>": 51677,
966
+ "<|26.28|>": 51678,
967
+ "<|26.30|>": 51679,
968
+ "<|26.32|>": 51680,
969
+ "<|26.34|>": 51681,
970
+ "<|26.36|>": 51682,
971
+ "<|26.38|>": 51683,
972
+ "<|26.40|>": 51684,
973
+ "<|26.42|>": 51685,
974
+ "<|26.44|>": 51686,
975
+ "<|26.46|>": 51687,
976
+ "<|26.48|>": 51688,
977
+ "<|26.50|>": 51689,
978
+ "<|26.52|>": 51690,
979
+ "<|26.54|>": 51691,
980
+ "<|26.56|>": 51692,
981
+ "<|26.58|>": 51693,
982
+ "<|26.60|>": 51694,
983
+ "<|26.62|>": 51695,
984
+ "<|26.64|>": 51696,
985
+ "<|26.66|>": 51697,
986
+ "<|26.68|>": 51698,
987
+ "<|26.70|>": 51699,
988
+ "<|26.72|>": 51700,
989
+ "<|26.74|>": 51701,
990
+ "<|26.76|>": 51702,
991
+ "<|26.78|>": 51703,
992
+ "<|26.80|>": 51704,
993
+ "<|26.82|>": 51705,
994
+ "<|26.84|>": 51706,
995
+ "<|26.86|>": 51707,
996
+ "<|26.88|>": 51708,
997
+ "<|26.90|>": 51709,
998
+ "<|26.92|>": 51710,
999
+ "<|26.94|>": 51711,
1000
+ "<|26.96|>": 51712,
1001
+ "<|26.98|>": 51713,
1002
+ "<|27.00|>": 51714,
1003
+ "<|27.02|>": 51715,
1004
+ "<|27.04|>": 51716,
1005
+ "<|27.06|>": 51717,
1006
+ "<|27.08|>": 51718,
1007
+ "<|27.10|>": 51719,
1008
+ "<|27.12|>": 51720,
1009
+ "<|27.14|>": 51721,
1010
+ "<|27.16|>": 51722,
1011
+ "<|27.18|>": 51723,
1012
+ "<|27.20|>": 51724,
1013
+ "<|27.22|>": 51725,
1014
+ "<|27.24|>": 51726,
1015
+ "<|27.26|>": 51727,
1016
+ "<|27.28|>": 51728,
1017
+ "<|27.30|>": 51729,
1018
+ "<|27.32|>": 51730,
1019
+ "<|27.34|>": 51731,
1020
+ "<|27.36|>": 51732,
1021
+ "<|27.38|>": 51733,
1022
+ "<|27.40|>": 51734,
1023
+ "<|27.42|>": 51735,
1024
+ "<|27.44|>": 51736,
1025
+ "<|27.46|>": 51737,
1026
+ "<|27.48|>": 51738,
1027
+ "<|27.50|>": 51739,
1028
+ "<|27.52|>": 51740,
1029
+ "<|27.54|>": 51741,
1030
+ "<|27.56|>": 51742,
1031
+ "<|27.58|>": 51743,
1032
+ "<|27.60|>": 51744,
1033
+ "<|27.62|>": 51745,
1034
+ "<|27.64|>": 51746,
1035
+ "<|27.66|>": 51747,
1036
+ "<|27.68|>": 51748,
1037
+ "<|27.70|>": 51749,
1038
+ "<|27.72|>": 51750,
1039
+ "<|27.74|>": 51751,
1040
+ "<|27.76|>": 51752,
1041
+ "<|27.78|>": 51753,
1042
+ "<|27.80|>": 51754,
1043
+ "<|27.82|>": 51755,
1044
+ "<|27.84|>": 51756,
1045
+ "<|27.86|>": 51757,
1046
+ "<|27.88|>": 51758,
1047
+ "<|27.90|>": 51759,
1048
+ "<|27.92|>": 51760,
1049
+ "<|27.94|>": 51761,
1050
+ "<|27.96|>": 51762,
1051
+ "<|27.98|>": 51763,
1052
+ "<|28.00|>": 51764,
1053
+ "<|28.02|>": 51765,
1054
+ "<|28.04|>": 51766,
1055
+ "<|28.06|>": 51767,
1056
+ "<|28.08|>": 51768,
1057
+ "<|28.10|>": 51769,
1058
+ "<|28.12|>": 51770,
1059
+ "<|28.14|>": 51771,
1060
+ "<|28.16|>": 51772,
1061
+ "<|28.18|>": 51773,
1062
+ "<|28.20|>": 51774,
1063
+ "<|28.22|>": 51775,
1064
+ "<|28.24|>": 51776,
1065
+ "<|28.26|>": 51777,
1066
+ "<|28.28|>": 51778,
1067
+ "<|28.30|>": 51779,
1068
+ "<|28.32|>": 51780,
1069
+ "<|28.34|>": 51781,
1070
+ "<|28.36|>": 51782,
1071
+ "<|28.38|>": 51783,
1072
+ "<|28.40|>": 51784,
1073
+ "<|28.42|>": 51785,
1074
+ "<|28.44|>": 51786,
1075
+ "<|28.46|>": 51787,
1076
+ "<|28.48|>": 51788,
1077
+ "<|28.50|>": 51789,
1078
+ "<|28.52|>": 51790,
1079
+ "<|28.54|>": 51791,
1080
+ "<|28.56|>": 51792,
1081
+ "<|28.58|>": 51793,
1082
+ "<|28.60|>": 51794,
1083
+ "<|28.62|>": 51795,
1084
+ "<|28.64|>": 51796,
1085
+ "<|28.66|>": 51797,
1086
+ "<|28.68|>": 51798,
1087
+ "<|28.70|>": 51799,
1088
+ "<|28.72|>": 51800,
1089
+ "<|28.74|>": 51801,
1090
+ "<|28.76|>": 51802,
1091
+ "<|28.78|>": 51803,
1092
+ "<|28.80|>": 51804,
1093
+ "<|28.82|>": 51805,
1094
+ "<|28.84|>": 51806,
1095
+ "<|28.86|>": 51807,
1096
+ "<|28.88|>": 51808,
1097
+ "<|28.90|>": 51809,
1098
+ "<|28.92|>": 51810,
1099
+ "<|28.94|>": 51811,
1100
+ "<|28.96|>": 51812,
1101
+ "<|28.98|>": 51813,
1102
+ "<|29.00|>": 51814,
1103
+ "<|29.02|>": 51815,
1104
+ "<|29.04|>": 51816,
1105
+ "<|29.06|>": 51817,
1106
+ "<|29.08|>": 51818,
1107
+ "<|29.10|>": 51819,
1108
+ "<|29.12|>": 51820,
1109
+ "<|29.14|>": 51821,
1110
+ "<|29.16|>": 51822,
1111
+ "<|29.18|>": 51823,
1112
+ "<|29.20|>": 51824,
1113
+ "<|29.22|>": 51825,
1114
+ "<|29.24|>": 51826,
1115
+ "<|29.26|>": 51827,
1116
+ "<|29.28|>": 51828,
1117
+ "<|29.30|>": 51829,
1118
+ "<|29.32|>": 51830,
1119
+ "<|29.34|>": 51831,
1120
+ "<|29.36|>": 51832,
1121
+ "<|29.38|>": 51833,
1122
+ "<|29.40|>": 51834,
1123
+ "<|29.42|>": 51835,
1124
+ "<|29.44|>": 51836,
1125
+ "<|29.46|>": 51837,
1126
+ "<|29.48|>": 51838,
1127
+ "<|29.50|>": 51839,
1128
+ "<|29.52|>": 51840,
1129
+ "<|29.54|>": 51841,
1130
+ "<|29.56|>": 51842,
1131
+ "<|29.58|>": 51843,
1132
+ "<|29.60|>": 51844,
1133
+ "<|29.62|>": 51845,
1134
+ "<|29.64|>": 51846,
1135
+ "<|29.66|>": 51847,
1136
+ "<|29.68|>": 51848,
1137
+ "<|29.70|>": 51849,
1138
+ "<|29.72|>": 51850,
1139
+ "<|29.74|>": 51851,
1140
+ "<|29.76|>": 51852,
1141
+ "<|29.78|>": 51853,
1142
+ "<|29.80|>": 51854,
1143
+ "<|29.82|>": 51855,
1144
+ "<|29.84|>": 51856,
1145
+ "<|29.86|>": 51857,
1146
+ "<|29.88|>": 51858,
1147
+ "<|29.90|>": 51859,
1148
+ "<|29.92|>": 51860,
1149
+ "<|29.94|>": 51861,
1150
+ "<|29.96|>": 51862,
1151
+ "<|29.98|>": 51863,
1152
+ "<|3.00|>": 50514,
1153
+ "<|3.02|>": 50515,
1154
+ "<|3.04|>": 50516,
1155
+ "<|3.06|>": 50517,
1156
+ "<|3.08|>": 50518,
1157
+ "<|3.10|>": 50519,
1158
+ "<|3.12|>": 50520,
1159
+ "<|3.14|>": 50521,
1160
+ "<|3.16|>": 50522,
1161
+ "<|3.18|>": 50523,
1162
+ "<|3.20|>": 50524,
1163
+ "<|3.22|>": 50525,
1164
+ "<|3.24|>": 50526,
1165
+ "<|3.26|>": 50527,
1166
+ "<|3.28|>": 50528,
1167
+ "<|3.30|>": 50529,
1168
+ "<|3.32|>": 50530,
1169
+ "<|3.34|>": 50531,
1170
+ "<|3.36|>": 50532,
1171
+ "<|3.38|>": 50533,
1172
+ "<|3.40|>": 50534,
1173
+ "<|3.42|>": 50535,
1174
+ "<|3.44|>": 50536,
1175
+ "<|3.46|>": 50537,
1176
+ "<|3.48|>": 50538,
1177
+ "<|3.50|>": 50539,
1178
+ "<|3.52|>": 50540,
1179
+ "<|3.54|>": 50541,
1180
+ "<|3.56|>": 50542,
1181
+ "<|3.58|>": 50543,
1182
+ "<|3.60|>": 50544,
1183
+ "<|3.62|>": 50545,
1184
+ "<|3.64|>": 50546,
1185
+ "<|3.66|>": 50547,
1186
+ "<|3.68|>": 50548,
1187
+ "<|3.70|>": 50549,
1188
+ "<|3.72|>": 50550,
1189
+ "<|3.74|>": 50551,
1190
+ "<|3.76|>": 50552,
1191
+ "<|3.78|>": 50553,
1192
+ "<|3.80|>": 50554,
1193
+ "<|3.82|>": 50555,
1194
+ "<|3.84|>": 50556,
1195
+ "<|3.86|>": 50557,
1196
+ "<|3.88|>": 50558,
1197
+ "<|3.90|>": 50559,
1198
+ "<|3.92|>": 50560,
1199
+ "<|3.94|>": 50561,
1200
+ "<|3.96|>": 50562,
1201
+ "<|3.98|>": 50563,
1202
+ "<|30.00|>": 51864,
1203
+ "<|4.00|>": 50564,
1204
+ "<|4.02|>": 50565,
1205
+ "<|4.04|>": 50566,
1206
+ "<|4.06|>": 50567,
1207
+ "<|4.08|>": 50568,
1208
+ "<|4.10|>": 50569,
1209
+ "<|4.12|>": 50570,
1210
+ "<|4.14|>": 50571,
1211
+ "<|4.16|>": 50572,
1212
+ "<|4.18|>": 50573,
1213
+ "<|4.20|>": 50574,
1214
+ "<|4.22|>": 50575,
1215
+ "<|4.24|>": 50576,
1216
+ "<|4.26|>": 50577,
1217
+ "<|4.28|>": 50578,
1218
+ "<|4.30|>": 50579,
1219
+ "<|4.32|>": 50580,
1220
+ "<|4.34|>": 50581,
1221
+ "<|4.36|>": 50582,
1222
+ "<|4.38|>": 50583,
1223
+ "<|4.40|>": 50584,
1224
+ "<|4.42|>": 50585,
1225
+ "<|4.44|>": 50586,
1226
+ "<|4.46|>": 50587,
1227
+ "<|4.48|>": 50588,
1228
+ "<|4.50|>": 50589,
1229
+ "<|4.52|>": 50590,
1230
+ "<|4.54|>": 50591,
1231
+ "<|4.56|>": 50592,
1232
+ "<|4.58|>": 50593,
1233
+ "<|4.60|>": 50594,
1234
+ "<|4.62|>": 50595,
1235
+ "<|4.64|>": 50596,
1236
+ "<|4.66|>": 50597,
1237
+ "<|4.68|>": 50598,
1238
+ "<|4.70|>": 50599,
1239
+ "<|4.72|>": 50600,
1240
+ "<|4.74|>": 50601,
1241
+ "<|4.76|>": 50602,
1242
+ "<|4.78|>": 50603,
1243
+ "<|4.80|>": 50604,
1244
+ "<|4.82|>": 50605,
1245
+ "<|4.84|>": 50606,
1246
+ "<|4.86|>": 50607,
1247
+ "<|4.88|>": 50608,
1248
+ "<|4.90|>": 50609,
1249
+ "<|4.92|>": 50610,
1250
+ "<|4.94|>": 50611,
1251
+ "<|4.96|>": 50612,
1252
+ "<|4.98|>": 50613,
1253
+ "<|5.00|>": 50614,
1254
+ "<|5.02|>": 50615,
1255
+ "<|5.04|>": 50616,
1256
+ "<|5.06|>": 50617,
1257
+ "<|5.08|>": 50618,
1258
+ "<|5.10|>": 50619,
1259
+ "<|5.12|>": 50620,
1260
+ "<|5.14|>": 50621,
1261
+ "<|5.16|>": 50622,
1262
+ "<|5.18|>": 50623,
1263
+ "<|5.20|>": 50624,
1264
+ "<|5.22|>": 50625,
1265
+ "<|5.24|>": 50626,
1266
+ "<|5.26|>": 50627,
1267
+ "<|5.28|>": 50628,
1268
+ "<|5.30|>": 50629,
1269
+ "<|5.32|>": 50630,
1270
+ "<|5.34|>": 50631,
1271
+ "<|5.36|>": 50632,
1272
+ "<|5.38|>": 50633,
1273
+ "<|5.40|>": 50634,
1274
+ "<|5.42|>": 50635,
1275
+ "<|5.44|>": 50636,
1276
+ "<|5.46|>": 50637,
1277
+ "<|5.48|>": 50638,
1278
+ "<|5.50|>": 50639,
1279
+ "<|5.52|>": 50640,
1280
+ "<|5.54|>": 50641,
1281
+ "<|5.56|>": 50642,
1282
+ "<|5.58|>": 50643,
1283
+ "<|5.60|>": 50644,
1284
+ "<|5.62|>": 50645,
1285
+ "<|5.64|>": 50646,
1286
+ "<|5.66|>": 50647,
1287
+ "<|5.68|>": 50648,
1288
+ "<|5.70|>": 50649,
1289
+ "<|5.72|>": 50650,
1290
+ "<|5.74|>": 50651,
1291
+ "<|5.76|>": 50652,
1292
+ "<|5.78|>": 50653,
1293
+ "<|5.80|>": 50654,
1294
+ "<|5.82|>": 50655,
1295
+ "<|5.84|>": 50656,
1296
+ "<|5.86|>": 50657,
1297
+ "<|5.88|>": 50658,
1298
+ "<|5.90|>": 50659,
1299
+ "<|5.92|>": 50660,
1300
+ "<|5.94|>": 50661,
1301
+ "<|5.96|>": 50662,
1302
+ "<|5.98|>": 50663,
1303
+ "<|6.00|>": 50664,
1304
+ "<|6.02|>": 50665,
1305
+ "<|6.04|>": 50666,
1306
+ "<|6.06|>": 50667,
1307
+ "<|6.08|>": 50668,
1308
+ "<|6.10|>": 50669,
1309
+ "<|6.12|>": 50670,
1310
+ "<|6.14|>": 50671,
1311
+ "<|6.16|>": 50672,
1312
+ "<|6.18|>": 50673,
1313
+ "<|6.20|>": 50674,
1314
+ "<|6.22|>": 50675,
1315
+ "<|6.24|>": 50676,
1316
+ "<|6.26|>": 50677,
1317
+ "<|6.28|>": 50678,
1318
+ "<|6.30|>": 50679,
1319
+ "<|6.32|>": 50680,
1320
+ "<|6.34|>": 50681,
1321
+ "<|6.36|>": 50682,
1322
+ "<|6.38|>": 50683,
1323
+ "<|6.40|>": 50684,
1324
+ "<|6.42|>": 50685,
1325
+ "<|6.44|>": 50686,
1326
+ "<|6.46|>": 50687,
1327
+ "<|6.48|>": 50688,
1328
+ "<|6.50|>": 50689,
1329
+ "<|6.52|>": 50690,
1330
+ "<|6.54|>": 50691,
1331
+ "<|6.56|>": 50692,
1332
+ "<|6.58|>": 50693,
1333
+ "<|6.60|>": 50694,
1334
+ "<|6.62|>": 50695,
1335
+ "<|6.64|>": 50696,
1336
+ "<|6.66|>": 50697,
1337
+ "<|6.68|>": 50698,
1338
+ "<|6.70|>": 50699,
1339
+ "<|6.72|>": 50700,
1340
+ "<|6.74|>": 50701,
1341
+ "<|6.76|>": 50702,
1342
+ "<|6.78|>": 50703,
1343
+ "<|6.80|>": 50704,
1344
+ "<|6.82|>": 50705,
1345
+ "<|6.84|>": 50706,
1346
+ "<|6.86|>": 50707,
1347
+ "<|6.88|>": 50708,
1348
+ "<|6.90|>": 50709,
1349
+ "<|6.92|>": 50710,
1350
+ "<|6.94|>": 50711,
1351
+ "<|6.96|>": 50712,
1352
+ "<|6.98|>": 50713,
1353
+ "<|7.00|>": 50714,
1354
+ "<|7.02|>": 50715,
1355
+ "<|7.04|>": 50716,
1356
+ "<|7.06|>": 50717,
1357
+ "<|7.08|>": 50718,
1358
+ "<|7.10|>": 50719,
1359
+ "<|7.12|>": 50720,
1360
+ "<|7.14|>": 50721,
1361
+ "<|7.16|>": 50722,
1362
+ "<|7.18|>": 50723,
1363
+ "<|7.20|>": 50724,
1364
+ "<|7.22|>": 50725,
1365
+ "<|7.24|>": 50726,
1366
+ "<|7.26|>": 50727,
1367
+ "<|7.28|>": 50728,
1368
+ "<|7.30|>": 50729,
1369
+ "<|7.32|>": 50730,
1370
+ "<|7.34|>": 50731,
1371
+ "<|7.36|>": 50732,
1372
+ "<|7.38|>": 50733,
1373
+ "<|7.40|>": 50734,
1374
+ "<|7.42|>": 50735,
1375
+ "<|7.44|>": 50736,
1376
+ "<|7.46|>": 50737,
1377
+ "<|7.48|>": 50738,
1378
+ "<|7.50|>": 50739,
1379
+ "<|7.52|>": 50740,
1380
+ "<|7.54|>": 50741,
1381
+ "<|7.56|>": 50742,
1382
+ "<|7.58|>": 50743,
1383
+ "<|7.60|>": 50744,
1384
+ "<|7.62|>": 50745,
1385
+ "<|7.64|>": 50746,
1386
+ "<|7.66|>": 50747,
1387
+ "<|7.68|>": 50748,
1388
+ "<|7.70|>": 50749,
1389
+ "<|7.72|>": 50750,
1390
+ "<|7.74|>": 50751,
1391
+ "<|7.76|>": 50752,
1392
+ "<|7.78|>": 50753,
1393
+ "<|7.80|>": 50754,
1394
+ "<|7.82|>": 50755,
1395
+ "<|7.84|>": 50756,
1396
+ "<|7.86|>": 50757,
1397
+ "<|7.88|>": 50758,
1398
+ "<|7.90|>": 50759,
1399
+ "<|7.92|>": 50760,
1400
+ "<|7.94|>": 50761,
1401
+ "<|7.96|>": 50762,
1402
+ "<|7.98|>": 50763,
1403
+ "<|8.00|>": 50764,
1404
+ "<|8.02|>": 50765,
1405
+ "<|8.04|>": 50766,
1406
+ "<|8.06|>": 50767,
1407
+ "<|8.08|>": 50768,
1408
+ "<|8.10|>": 50769,
1409
+ "<|8.12|>": 50770,
1410
+ "<|8.14|>": 50771,
1411
+ "<|8.16|>": 50772,
1412
+ "<|8.18|>": 50773,
1413
+ "<|8.20|>": 50774,
1414
+ "<|8.22|>": 50775,
1415
+ "<|8.24|>": 50776,
1416
+ "<|8.26|>": 50777,
1417
+ "<|8.28|>": 50778,
1418
+ "<|8.30|>": 50779,
1419
+ "<|8.32|>": 50780,
1420
+ "<|8.34|>": 50781,
1421
+ "<|8.36|>": 50782,
1422
+ "<|8.38|>": 50783,
1423
+ "<|8.40|>": 50784,
1424
+ "<|8.42|>": 50785,
1425
+ "<|8.44|>": 50786,
1426
+ "<|8.46|>": 50787,
1427
+ "<|8.48|>": 50788,
1428
+ "<|8.50|>": 50789,
1429
+ "<|8.52|>": 50790,
1430
+ "<|8.54|>": 50791,
1431
+ "<|8.56|>": 50792,
1432
+ "<|8.58|>": 50793,
1433
+ "<|8.60|>": 50794,
1434
+ "<|8.62|>": 50795,
1435
+ "<|8.64|>": 50796,
1436
+ "<|8.66|>": 50797,
1437
+ "<|8.68|>": 50798,
1438
+ "<|8.70|>": 50799,
1439
+ "<|8.72|>": 50800,
1440
+ "<|8.74|>": 50801,
1441
+ "<|8.76|>": 50802,
1442
+ "<|8.78|>": 50803,
1443
+ "<|8.80|>": 50804,
1444
+ "<|8.82|>": 50805,
1445
+ "<|8.84|>": 50806,
1446
+ "<|8.86|>": 50807,
1447
+ "<|8.88|>": 50808,
1448
+ "<|8.90|>": 50809,
1449
+ "<|8.92|>": 50810,
1450
+ "<|8.94|>": 50811,
1451
+ "<|8.96|>": 50812,
1452
+ "<|8.98|>": 50813,
1453
+ "<|9.00|>": 50814,
1454
+ "<|9.02|>": 50815,
1455
+ "<|9.04|>": 50816,
1456
+ "<|9.06|>": 50817,
1457
+ "<|9.08|>": 50818,
1458
+ "<|9.10|>": 50819,
1459
+ "<|9.12|>": 50820,
1460
+ "<|9.14|>": 50821,
1461
+ "<|9.16|>": 50822,
1462
+ "<|9.18|>": 50823,
1463
+ "<|9.20|>": 50824,
1464
+ "<|9.22|>": 50825,
1465
+ "<|9.24|>": 50826,
1466
+ "<|9.26|>": 50827,
1467
+ "<|9.28|>": 50828,
1468
+ "<|9.30|>": 50829,
1469
+ "<|9.32|>": 50830,
1470
+ "<|9.34|>": 50831,
1471
+ "<|9.36|>": 50832,
1472
+ "<|9.38|>": 50833,
1473
+ "<|9.40|>": 50834,
1474
+ "<|9.42|>": 50835,
1475
+ "<|9.44|>": 50836,
1476
+ "<|9.46|>": 50837,
1477
+ "<|9.48|>": 50838,
1478
+ "<|9.50|>": 50839,
1479
+ "<|9.52|>": 50840,
1480
+ "<|9.54|>": 50841,
1481
+ "<|9.56|>": 50842,
1482
+ "<|9.58|>": 50843,
1483
+ "<|9.60|>": 50844,
1484
+ "<|9.62|>": 50845,
1485
+ "<|9.64|>": 50846,
1486
+ "<|9.66|>": 50847,
1487
+ "<|9.68|>": 50848,
1488
+ "<|9.70|>": 50849,
1489
+ "<|9.72|>": 50850,
1490
+ "<|9.74|>": 50851,
1491
+ "<|9.76|>": 50852,
1492
+ "<|9.78|>": 50853,
1493
+ "<|9.80|>": 50854,
1494
+ "<|9.82|>": 50855,
1495
+ "<|9.84|>": 50856,
1496
+ "<|9.86|>": 50857,
1497
+ "<|9.88|>": 50858,
1498
+ "<|9.90|>": 50859,
1499
+ "<|9.92|>": 50860,
1500
+ "<|9.94|>": 50861,
1501
+ "<|9.96|>": 50862,
1502
+ "<|9.98|>": 50863,
1503
+ "<|af|>": 50327,
1504
+ "<|am|>": 50334,
1505
+ "<|ar|>": 50272,
1506
+ "<|as|>": 50350,
1507
+ "<|az|>": 50304,
1508
+ "<|ba|>": 50355,
1509
+ "<|be|>": 50330,
1510
+ "<|bg|>": 50292,
1511
+ "<|bn|>": 50302,
1512
+ "<|bo|>": 50347,
1513
+ "<|br|>": 50309,
1514
+ "<|bs|>": 50315,
1515
+ "<|ca|>": 50270,
1516
+ "<|cs|>": 50283,
1517
+ "<|cy|>": 50297,
1518
+ "<|da|>": 50285,
1519
+ "<|de|>": 50261,
1520
+ "<|el|>": 50281,
1521
+ "<|en|>": 50259,
1522
+ "<|es|>": 50262,
1523
+ "<|et|>": 50307,
1524
+ "<|eu|>": 50310,
1525
+ "<|fa|>": 50300,
1526
+ "<|fi|>": 50277,
1527
+ "<|fo|>": 50338,
1528
+ "<|fr|>": 50265,
1529
+ "<|gl|>": 50319,
1530
+ "<|gu|>": 50333,
1531
+ "<|haw|>": 50352,
1532
+ "<|ha|>": 50354,
1533
+ "<|he|>": 50279,
1534
+ "<|hi|>": 50276,
1535
+ "<|hr|>": 50291,
1536
+ "<|ht|>": 50339,
1537
+ "<|hu|>": 50286,
1538
+ "<|hy|>": 50312,
1539
+ "<|id|>": 50275,
1540
+ "<|is|>": 50311,
1541
+ "<|it|>": 50274,
1542
+ "<|ja|>": 50266,
1543
+ "<|jw|>": 50356,
1544
+ "<|ka|>": 50329,
1545
+ "<|kk|>": 50316,
1546
+ "<|km|>": 50323,
1547
+ "<|kn|>": 50306,
1548
+ "<|ko|>": 50264,
1549
+ "<|la|>": 50294,
1550
+ "<|lb|>": 50345,
1551
+ "<|ln|>": 50353,
1552
+ "<|lo|>": 50336,
1553
+ "<|lt|>": 50293,
1554
+ "<|lv|>": 50301,
1555
+ "<|mg|>": 50349,
1556
+ "<|mi|>": 50295,
1557
+ "<|mk|>": 50308,
1558
+ "<|ml|>": 50296,
1559
+ "<|mn|>": 50314,
1560
+ "<|mr|>": 50320,
1561
+ "<|ms|>": 50282,
1562
+ "<|mt|>": 50343,
1563
+ "<|my|>": 50346,
1564
+ "<|ne|>": 50313,
1565
+ "<|nl|>": 50271,
1566
+ "<|nn|>": 50342,
1567
+ "<|nocaptions|>": 50362,
1568
+ "<|notimestamps|>": 50363,
1569
+ "<|no|>": 50288,
1570
+ "<|oc|>": 50328,
1571
+ "<|pa|>": 50321,
1572
+ "<|pl|>": 50269,
1573
+ "<|ps|>": 50340,
1574
+ "<|pt|>": 50267,
1575
+ "<|ro|>": 50284,
1576
+ "<|ru|>": 50263,
1577
+ "<|sa|>": 50344,
1578
+ "<|sd|>": 50332,
1579
+ "<|si|>": 50322,
1580
+ "<|sk|>": 50298,
1581
+ "<|sl|>": 50305,
1582
+ "<|sn|>": 50324,
1583
+ "<|so|>": 50326,
1584
+ "<|sq|>": 50317,
1585
+ "<|sr|>": 50303,
1586
+ "<|startoflm|>": 50360,
1587
+ "<|startofprev|>": 50361,
1588
+ "<|startoftranscript|>": 50258,
1589
+ "<|su|>": 50357,
1590
+ "<|sv|>": 50273,
1591
+ "<|sw|>": 50318,
1592
+ "<|ta|>": 50287,
1593
+ "<|te|>": 50299,
1594
+ "<|tg|>": 50331,
1595
+ "<|th|>": 50289,
1596
+ "<|tk|>": 50341,
1597
+ "<|tl|>": 50348,
1598
+ "<|transcribe|>": 50359,
1599
+ "<|translate|>": 50358,
1600
+ "<|tr|>": 50268,
1601
+ "<|tt|>": 50351,
1602
+ "<|uk|>": 50280,
1603
+ "<|ur|>": 50290,
1604
+ "<|uz|>": 50337,
1605
+ "<|vi|>": 50278,
1606
+ "<|yi|>": 50335,
1607
+ "<|yo|>": 50325,
1608
+ "<|zh|>": 50260
1609
+ }
checkpoint-100-epoch-0/added_tokens.json ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50364,
3
+ "<|0.02|>": 50365,
4
+ "<|0.04|>": 50366,
5
+ "<|0.06|>": 50367,
6
+ "<|0.08|>": 50368,
7
+ "<|0.10|>": 50369,
8
+ "<|0.12|>": 50370,
9
+ "<|0.14|>": 50371,
10
+ "<|0.16|>": 50372,
11
+ "<|0.18|>": 50373,
12
+ "<|0.20|>": 50374,
13
+ "<|0.22|>": 50375,
14
+ "<|0.24|>": 50376,
15
+ "<|0.26|>": 50377,
16
+ "<|0.28|>": 50378,
17
+ "<|0.30|>": 50379,
18
+ "<|0.32|>": 50380,
19
+ "<|0.34|>": 50381,
20
+ "<|0.36|>": 50382,
21
+ "<|0.38|>": 50383,
22
+ "<|0.40|>": 50384,
23
+ "<|0.42|>": 50385,
24
+ "<|0.44|>": 50386,
25
+ "<|0.46|>": 50387,
26
+ "<|0.48|>": 50388,
27
+ "<|0.50|>": 50389,
28
+ "<|0.52|>": 50390,
29
+ "<|0.54|>": 50391,
30
+ "<|0.56|>": 50392,
31
+ "<|0.58|>": 50393,
32
+ "<|0.60|>": 50394,
33
+ "<|0.62|>": 50395,
34
+ "<|0.64|>": 50396,
35
+ "<|0.66|>": 50397,
36
+ "<|0.68|>": 50398,
37
+ "<|0.70|>": 50399,
38
+ "<|0.72|>": 50400,
39
+ "<|0.74|>": 50401,
40
+ "<|0.76|>": 50402,
41
+ "<|0.78|>": 50403,
42
+ "<|0.80|>": 50404,
43
+ "<|0.82|>": 50405,
44
+ "<|0.84|>": 50406,
45
+ "<|0.86|>": 50407,
46
+ "<|0.88|>": 50408,
47
+ "<|0.90|>": 50409,
48
+ "<|0.92|>": 50410,
49
+ "<|0.94|>": 50411,
50
+ "<|0.96|>": 50412,
51
+ "<|0.98|>": 50413,
52
+ "<|1.00|>": 50414,
53
+ "<|1.02|>": 50415,
54
+ "<|1.04|>": 50416,
55
+ "<|1.06|>": 50417,
56
+ "<|1.08|>": 50418,
57
+ "<|1.10|>": 50419,
58
+ "<|1.12|>": 50420,
59
+ "<|1.14|>": 50421,
60
+ "<|1.16|>": 50422,
61
+ "<|1.18|>": 50423,
62
+ "<|1.20|>": 50424,
63
+ "<|1.22|>": 50425,
64
+ "<|1.24|>": 50426,
65
+ "<|1.26|>": 50427,
66
+ "<|1.28|>": 50428,
67
+ "<|1.30|>": 50429,
68
+ "<|1.32|>": 50430,
69
+ "<|1.34|>": 50431,
70
+ "<|1.36|>": 50432,
71
+ "<|1.38|>": 50433,
72
+ "<|1.40|>": 50434,
73
+ "<|1.42|>": 50435,
74
+ "<|1.44|>": 50436,
75
+ "<|1.46|>": 50437,
76
+ "<|1.48|>": 50438,
77
+ "<|1.50|>": 50439,
78
+ "<|1.52|>": 50440,
79
+ "<|1.54|>": 50441,
80
+ "<|1.56|>": 50442,
81
+ "<|1.58|>": 50443,
82
+ "<|1.60|>": 50444,
83
+ "<|1.62|>": 50445,
84
+ "<|1.64|>": 50446,
85
+ "<|1.66|>": 50447,
86
+ "<|1.68|>": 50448,
87
+ "<|1.70|>": 50449,
88
+ "<|1.72|>": 50450,
89
+ "<|1.74|>": 50451,
90
+ "<|1.76|>": 50452,
91
+ "<|1.78|>": 50453,
92
+ "<|1.80|>": 50454,
93
+ "<|1.82|>": 50455,
94
+ "<|1.84|>": 50456,
95
+ "<|1.86|>": 50457,
96
+ "<|1.88|>": 50458,
97
+ "<|1.90|>": 50459,
98
+ "<|1.92|>": 50460,
99
+ "<|1.94|>": 50461,
100
+ "<|1.96|>": 50462,
101
+ "<|1.98|>": 50463,
102
+ "<|10.00|>": 50864,
103
+ "<|10.02|>": 50865,
104
+ "<|10.04|>": 50866,
105
+ "<|10.06|>": 50867,
106
+ "<|10.08|>": 50868,
107
+ "<|10.10|>": 50869,
108
+ "<|10.12|>": 50870,
109
+ "<|10.14|>": 50871,
110
+ "<|10.16|>": 50872,
111
+ "<|10.18|>": 50873,
112
+ "<|10.20|>": 50874,
113
+ "<|10.22|>": 50875,
114
+ "<|10.24|>": 50876,
115
+ "<|10.26|>": 50877,
116
+ "<|10.28|>": 50878,
117
+ "<|10.30|>": 50879,
118
+ "<|10.32|>": 50880,
119
+ "<|10.34|>": 50881,
120
+ "<|10.36|>": 50882,
121
+ "<|10.38|>": 50883,
122
+ "<|10.40|>": 50884,
123
+ "<|10.42|>": 50885,
124
+ "<|10.44|>": 50886,
125
+ "<|10.46|>": 50887,
126
+ "<|10.48|>": 50888,
127
+ "<|10.50|>": 50889,
128
+ "<|10.52|>": 50890,
129
+ "<|10.54|>": 50891,
130
+ "<|10.56|>": 50892,
131
+ "<|10.58|>": 50893,
132
+ "<|10.60|>": 50894,
133
+ "<|10.62|>": 50895,
134
+ "<|10.64|>": 50896,
135
+ "<|10.66|>": 50897,
136
+ "<|10.68|>": 50898,
137
+ "<|10.70|>": 50899,
138
+ "<|10.72|>": 50900,
139
+ "<|10.74|>": 50901,
140
+ "<|10.76|>": 50902,
141
+ "<|10.78|>": 50903,
142
+ "<|10.80|>": 50904,
143
+ "<|10.82|>": 50905,
144
+ "<|10.84|>": 50906,
145
+ "<|10.86|>": 50907,
146
+ "<|10.88|>": 50908,
147
+ "<|10.90|>": 50909,
148
+ "<|10.92|>": 50910,
149
+ "<|10.94|>": 50911,
150
+ "<|10.96|>": 50912,
151
+ "<|10.98|>": 50913,
152
+ "<|11.00|>": 50914,
153
+ "<|11.02|>": 50915,
154
+ "<|11.04|>": 50916,
155
+ "<|11.06|>": 50917,
156
+ "<|11.08|>": 50918,
157
+ "<|11.10|>": 50919,
158
+ "<|11.12|>": 50920,
159
+ "<|11.14|>": 50921,
160
+ "<|11.16|>": 50922,
161
+ "<|11.18|>": 50923,
162
+ "<|11.20|>": 50924,
163
+ "<|11.22|>": 50925,
164
+ "<|11.24|>": 50926,
165
+ "<|11.26|>": 50927,
166
+ "<|11.28|>": 50928,
167
+ "<|11.30|>": 50929,
168
+ "<|11.32|>": 50930,
169
+ "<|11.34|>": 50931,
170
+ "<|11.36|>": 50932,
171
+ "<|11.38|>": 50933,
172
+ "<|11.40|>": 50934,
173
+ "<|11.42|>": 50935,
174
+ "<|11.44|>": 50936,
175
+ "<|11.46|>": 50937,
176
+ "<|11.48|>": 50938,
177
+ "<|11.50|>": 50939,
178
+ "<|11.52|>": 50940,
179
+ "<|11.54|>": 50941,
180
+ "<|11.56|>": 50942,
181
+ "<|11.58|>": 50943,
182
+ "<|11.60|>": 50944,
183
+ "<|11.62|>": 50945,
184
+ "<|11.64|>": 50946,
185
+ "<|11.66|>": 50947,
186
+ "<|11.68|>": 50948,
187
+ "<|11.70|>": 50949,
188
+ "<|11.72|>": 50950,
189
+ "<|11.74|>": 50951,
190
+ "<|11.76|>": 50952,
191
+ "<|11.78|>": 50953,
192
+ "<|11.80|>": 50954,
193
+ "<|11.82|>": 50955,
194
+ "<|11.84|>": 50956,
195
+ "<|11.86|>": 50957,
196
+ "<|11.88|>": 50958,
197
+ "<|11.90|>": 50959,
198
+ "<|11.92|>": 50960,
199
+ "<|11.94|>": 50961,
200
+ "<|11.96|>": 50962,
201
+ "<|11.98|>": 50963,
202
+ "<|12.00|>": 50964,
203
+ "<|12.02|>": 50965,
204
+ "<|12.04|>": 50966,
205
+ "<|12.06|>": 50967,
206
+ "<|12.08|>": 50968,
207
+ "<|12.10|>": 50969,
208
+ "<|12.12|>": 50970,
209
+ "<|12.14|>": 50971,
210
+ "<|12.16|>": 50972,
211
+ "<|12.18|>": 50973,
212
+ "<|12.20|>": 50974,
213
+ "<|12.22|>": 50975,
214
+ "<|12.24|>": 50976,
215
+ "<|12.26|>": 50977,
216
+ "<|12.28|>": 50978,
217
+ "<|12.30|>": 50979,
218
+ "<|12.32|>": 50980,
219
+ "<|12.34|>": 50981,
220
+ "<|12.36|>": 50982,
221
+ "<|12.38|>": 50983,
222
+ "<|12.40|>": 50984,
223
+ "<|12.42|>": 50985,
224
+ "<|12.44|>": 50986,
225
+ "<|12.46|>": 50987,
226
+ "<|12.48|>": 50988,
227
+ "<|12.50|>": 50989,
228
+ "<|12.52|>": 50990,
229
+ "<|12.54|>": 50991,
230
+ "<|12.56|>": 50992,
231
+ "<|12.58|>": 50993,
232
+ "<|12.60|>": 50994,
233
+ "<|12.62|>": 50995,
234
+ "<|12.64|>": 50996,
235
+ "<|12.66|>": 50997,
236
+ "<|12.68|>": 50998,
237
+ "<|12.70|>": 50999,
238
+ "<|12.72|>": 51000,
239
+ "<|12.74|>": 51001,
240
+ "<|12.76|>": 51002,
241
+ "<|12.78|>": 51003,
242
+ "<|12.80|>": 51004,
243
+ "<|12.82|>": 51005,
244
+ "<|12.84|>": 51006,
245
+ "<|12.86|>": 51007,
246
+ "<|12.88|>": 51008,
247
+ "<|12.90|>": 51009,
248
+ "<|12.92|>": 51010,
249
+ "<|12.94|>": 51011,
250
+ "<|12.96|>": 51012,
251
+ "<|12.98|>": 51013,
252
+ "<|13.00|>": 51014,
253
+ "<|13.02|>": 51015,
254
+ "<|13.04|>": 51016,
255
+ "<|13.06|>": 51017,
256
+ "<|13.08|>": 51018,
257
+ "<|13.10|>": 51019,
258
+ "<|13.12|>": 51020,
259
+ "<|13.14|>": 51021,
260
+ "<|13.16|>": 51022,
261
+ "<|13.18|>": 51023,
262
+ "<|13.20|>": 51024,
263
+ "<|13.22|>": 51025,
264
+ "<|13.24|>": 51026,
265
+ "<|13.26|>": 51027,
266
+ "<|13.28|>": 51028,
267
+ "<|13.30|>": 51029,
268
+ "<|13.32|>": 51030,
269
+ "<|13.34|>": 51031,
270
+ "<|13.36|>": 51032,
271
+ "<|13.38|>": 51033,
272
+ "<|13.40|>": 51034,
273
+ "<|13.42|>": 51035,
274
+ "<|13.44|>": 51036,
275
+ "<|13.46|>": 51037,
276
+ "<|13.48|>": 51038,
277
+ "<|13.50|>": 51039,
278
+ "<|13.52|>": 51040,
279
+ "<|13.54|>": 51041,
280
+ "<|13.56|>": 51042,
281
+ "<|13.58|>": 51043,
282
+ "<|13.60|>": 51044,
283
+ "<|13.62|>": 51045,
284
+ "<|13.64|>": 51046,
285
+ "<|13.66|>": 51047,
286
+ "<|13.68|>": 51048,
287
+ "<|13.70|>": 51049,
288
+ "<|13.72|>": 51050,
289
+ "<|13.74|>": 51051,
290
+ "<|13.76|>": 51052,
291
+ "<|13.78|>": 51053,
292
+ "<|13.80|>": 51054,
293
+ "<|13.82|>": 51055,
294
+ "<|13.84|>": 51056,
295
+ "<|13.86|>": 51057,
296
+ "<|13.88|>": 51058,
297
+ "<|13.90|>": 51059,
298
+ "<|13.92|>": 51060,
299
+ "<|13.94|>": 51061,
300
+ "<|13.96|>": 51062,
301
+ "<|13.98|>": 51063,
302
+ "<|14.00|>": 51064,
303
+ "<|14.02|>": 51065,
304
+ "<|14.04|>": 51066,
305
+ "<|14.06|>": 51067,
306
+ "<|14.08|>": 51068,
307
+ "<|14.10|>": 51069,
308
+ "<|14.12|>": 51070,
309
+ "<|14.14|>": 51071,
310
+ "<|14.16|>": 51072,
311
+ "<|14.18|>": 51073,
312
+ "<|14.20|>": 51074,
313
+ "<|14.22|>": 51075,
314
+ "<|14.24|>": 51076,
315
+ "<|14.26|>": 51077,
316
+ "<|14.28|>": 51078,
317
+ "<|14.30|>": 51079,
318
+ "<|14.32|>": 51080,
319
+ "<|14.34|>": 51081,
320
+ "<|14.36|>": 51082,
321
+ "<|14.38|>": 51083,
322
+ "<|14.40|>": 51084,
323
+ "<|14.42|>": 51085,
324
+ "<|14.44|>": 51086,
325
+ "<|14.46|>": 51087,
326
+ "<|14.48|>": 51088,
327
+ "<|14.50|>": 51089,
328
+ "<|14.52|>": 51090,
329
+ "<|14.54|>": 51091,
330
+ "<|14.56|>": 51092,
331
+ "<|14.58|>": 51093,
332
+ "<|14.60|>": 51094,
333
+ "<|14.62|>": 51095,
334
+ "<|14.64|>": 51096,
335
+ "<|14.66|>": 51097,
336
+ "<|14.68|>": 51098,
337
+ "<|14.70|>": 51099,
338
+ "<|14.72|>": 51100,
339
+ "<|14.74|>": 51101,
340
+ "<|14.76|>": 51102,
341
+ "<|14.78|>": 51103,
342
+ "<|14.80|>": 51104,
343
+ "<|14.82|>": 51105,
344
+ "<|14.84|>": 51106,
345
+ "<|14.86|>": 51107,
346
+ "<|14.88|>": 51108,
347
+ "<|14.90|>": 51109,
348
+ "<|14.92|>": 51110,
349
+ "<|14.94|>": 51111,
350
+ "<|14.96|>": 51112,
351
+ "<|14.98|>": 51113,
352
+ "<|15.00|>": 51114,
353
+ "<|15.02|>": 51115,
354
+ "<|15.04|>": 51116,
355
+ "<|15.06|>": 51117,
356
+ "<|15.08|>": 51118,
357
+ "<|15.10|>": 51119,
358
+ "<|15.12|>": 51120,
359
+ "<|15.14|>": 51121,
360
+ "<|15.16|>": 51122,
361
+ "<|15.18|>": 51123,
362
+ "<|15.20|>": 51124,
363
+ "<|15.22|>": 51125,
364
+ "<|15.24|>": 51126,
365
+ "<|15.26|>": 51127,
366
+ "<|15.28|>": 51128,
367
+ "<|15.30|>": 51129,
368
+ "<|15.32|>": 51130,
369
+ "<|15.34|>": 51131,
370
+ "<|15.36|>": 51132,
371
+ "<|15.38|>": 51133,
372
+ "<|15.40|>": 51134,
373
+ "<|15.42|>": 51135,
374
+ "<|15.44|>": 51136,
375
+ "<|15.46|>": 51137,
376
+ "<|15.48|>": 51138,
377
+ "<|15.50|>": 51139,
378
+ "<|15.52|>": 51140,
379
+ "<|15.54|>": 51141,
380
+ "<|15.56|>": 51142,
381
+ "<|15.58|>": 51143,
382
+ "<|15.60|>": 51144,
383
+ "<|15.62|>": 51145,
384
+ "<|15.64|>": 51146,
385
+ "<|15.66|>": 51147,
386
+ "<|15.68|>": 51148,
387
+ "<|15.70|>": 51149,
388
+ "<|15.72|>": 51150,
389
+ "<|15.74|>": 51151,
390
+ "<|15.76|>": 51152,
391
+ "<|15.78|>": 51153,
392
+ "<|15.80|>": 51154,
393
+ "<|15.82|>": 51155,
394
+ "<|15.84|>": 51156,
395
+ "<|15.86|>": 51157,
396
+ "<|15.88|>": 51158,
397
+ "<|15.90|>": 51159,
398
+ "<|15.92|>": 51160,
399
+ "<|15.94|>": 51161,
400
+ "<|15.96|>": 51162,
401
+ "<|15.98|>": 51163,
402
+ "<|16.00|>": 51164,
403
+ "<|16.02|>": 51165,
404
+ "<|16.04|>": 51166,
405
+ "<|16.06|>": 51167,
406
+ "<|16.08|>": 51168,
407
+ "<|16.10|>": 51169,
408
+ "<|16.12|>": 51170,
409
+ "<|16.14|>": 51171,
410
+ "<|16.16|>": 51172,
411
+ "<|16.18|>": 51173,
412
+ "<|16.20|>": 51174,
413
+ "<|16.22|>": 51175,
414
+ "<|16.24|>": 51176,
415
+ "<|16.26|>": 51177,
416
+ "<|16.28|>": 51178,
417
+ "<|16.30|>": 51179,
418
+ "<|16.32|>": 51180,
419
+ "<|16.34|>": 51181,
420
+ "<|16.36|>": 51182,
421
+ "<|16.38|>": 51183,
422
+ "<|16.40|>": 51184,
423
+ "<|16.42|>": 51185,
424
+ "<|16.44|>": 51186,
425
+ "<|16.46|>": 51187,
426
+ "<|16.48|>": 51188,
427
+ "<|16.50|>": 51189,
428
+ "<|16.52|>": 51190,
429
+ "<|16.54|>": 51191,
430
+ "<|16.56|>": 51192,
431
+ "<|16.58|>": 51193,
432
+ "<|16.60|>": 51194,
433
+ "<|16.62|>": 51195,
434
+ "<|16.64|>": 51196,
435
+ "<|16.66|>": 51197,
436
+ "<|16.68|>": 51198,
437
+ "<|16.70|>": 51199,
438
+ "<|16.72|>": 51200,
439
+ "<|16.74|>": 51201,
440
+ "<|16.76|>": 51202,
441
+ "<|16.78|>": 51203,
442
+ "<|16.80|>": 51204,
443
+ "<|16.82|>": 51205,
444
+ "<|16.84|>": 51206,
445
+ "<|16.86|>": 51207,
446
+ "<|16.88|>": 51208,
447
+ "<|16.90|>": 51209,
448
+ "<|16.92|>": 51210,
449
+ "<|16.94|>": 51211,
450
+ "<|16.96|>": 51212,
451
+ "<|16.98|>": 51213,
452
+ "<|17.00|>": 51214,
453
+ "<|17.02|>": 51215,
454
+ "<|17.04|>": 51216,
455
+ "<|17.06|>": 51217,
456
+ "<|17.08|>": 51218,
457
+ "<|17.10|>": 51219,
458
+ "<|17.12|>": 51220,
459
+ "<|17.14|>": 51221,
460
+ "<|17.16|>": 51222,
461
+ "<|17.18|>": 51223,
462
+ "<|17.20|>": 51224,
463
+ "<|17.22|>": 51225,
464
+ "<|17.24|>": 51226,
465
+ "<|17.26|>": 51227,
466
+ "<|17.28|>": 51228,
467
+ "<|17.30|>": 51229,
468
+ "<|17.32|>": 51230,
469
+ "<|17.34|>": 51231,
470
+ "<|17.36|>": 51232,
471
+ "<|17.38|>": 51233,
472
+ "<|17.40|>": 51234,
473
+ "<|17.42|>": 51235,
474
+ "<|17.44|>": 51236,
475
+ "<|17.46|>": 51237,
476
+ "<|17.48|>": 51238,
477
+ "<|17.50|>": 51239,
478
+ "<|17.52|>": 51240,
479
+ "<|17.54|>": 51241,
480
+ "<|17.56|>": 51242,
481
+ "<|17.58|>": 51243,
482
+ "<|17.60|>": 51244,
483
+ "<|17.62|>": 51245,
484
+ "<|17.64|>": 51246,
485
+ "<|17.66|>": 51247,
486
+ "<|17.68|>": 51248,
487
+ "<|17.70|>": 51249,
488
+ "<|17.72|>": 51250,
489
+ "<|17.74|>": 51251,
490
+ "<|17.76|>": 51252,
491
+ "<|17.78|>": 51253,
492
+ "<|17.80|>": 51254,
493
+ "<|17.82|>": 51255,
494
+ "<|17.84|>": 51256,
495
+ "<|17.86|>": 51257,
496
+ "<|17.88|>": 51258,
497
+ "<|17.90|>": 51259,
498
+ "<|17.92|>": 51260,
499
+ "<|17.94|>": 51261,
500
+ "<|17.96|>": 51262,
501
+ "<|17.98|>": 51263,
502
+ "<|18.00|>": 51264,
503
+ "<|18.02|>": 51265,
504
+ "<|18.04|>": 51266,
505
+ "<|18.06|>": 51267,
506
+ "<|18.08|>": 51268,
507
+ "<|18.10|>": 51269,
508
+ "<|18.12|>": 51270,
509
+ "<|18.14|>": 51271,
510
+ "<|18.16|>": 51272,
511
+ "<|18.18|>": 51273,
512
+ "<|18.20|>": 51274,
513
+ "<|18.22|>": 51275,
514
+ "<|18.24|>": 51276,
515
+ "<|18.26|>": 51277,
516
+ "<|18.28|>": 51278,
517
+ "<|18.30|>": 51279,
518
+ "<|18.32|>": 51280,
519
+ "<|18.34|>": 51281,
520
+ "<|18.36|>": 51282,
521
+ "<|18.38|>": 51283,
522
+ "<|18.40|>": 51284,
523
+ "<|18.42|>": 51285,
524
+ "<|18.44|>": 51286,
525
+ "<|18.46|>": 51287,
526
+ "<|18.48|>": 51288,
527
+ "<|18.50|>": 51289,
528
+ "<|18.52|>": 51290,
529
+ "<|18.54|>": 51291,
530
+ "<|18.56|>": 51292,
531
+ "<|18.58|>": 51293,
532
+ "<|18.60|>": 51294,
533
+ "<|18.62|>": 51295,
534
+ "<|18.64|>": 51296,
535
+ "<|18.66|>": 51297,
536
+ "<|18.68|>": 51298,
537
+ "<|18.70|>": 51299,
538
+ "<|18.72|>": 51300,
539
+ "<|18.74|>": 51301,
540
+ "<|18.76|>": 51302,
541
+ "<|18.78|>": 51303,
542
+ "<|18.80|>": 51304,
543
+ "<|18.82|>": 51305,
544
+ "<|18.84|>": 51306,
545
+ "<|18.86|>": 51307,
546
+ "<|18.88|>": 51308,
547
+ "<|18.90|>": 51309,
548
+ "<|18.92|>": 51310,
549
+ "<|18.94|>": 51311,
550
+ "<|18.96|>": 51312,
551
+ "<|18.98|>": 51313,
552
+ "<|19.00|>": 51314,
553
+ "<|19.02|>": 51315,
554
+ "<|19.04|>": 51316,
555
+ "<|19.06|>": 51317,
556
+ "<|19.08|>": 51318,
557
+ "<|19.10|>": 51319,
558
+ "<|19.12|>": 51320,
559
+ "<|19.14|>": 51321,
560
+ "<|19.16|>": 51322,
561
+ "<|19.18|>": 51323,
562
+ "<|19.20|>": 51324,
563
+ "<|19.22|>": 51325,
564
+ "<|19.24|>": 51326,
565
+ "<|19.26|>": 51327,
566
+ "<|19.28|>": 51328,
567
+ "<|19.30|>": 51329,
568
+ "<|19.32|>": 51330,
569
+ "<|19.34|>": 51331,
570
+ "<|19.36|>": 51332,
571
+ "<|19.38|>": 51333,
572
+ "<|19.40|>": 51334,
573
+ "<|19.42|>": 51335,
574
+ "<|19.44|>": 51336,
575
+ "<|19.46|>": 51337,
576
+ "<|19.48|>": 51338,
577
+ "<|19.50|>": 51339,
578
+ "<|19.52|>": 51340,
579
+ "<|19.54|>": 51341,
580
+ "<|19.56|>": 51342,
581
+ "<|19.58|>": 51343,
582
+ "<|19.60|>": 51344,
583
+ "<|19.62|>": 51345,
584
+ "<|19.64|>": 51346,
585
+ "<|19.66|>": 51347,
586
+ "<|19.68|>": 51348,
587
+ "<|19.70|>": 51349,
588
+ "<|19.72|>": 51350,
589
+ "<|19.74|>": 51351,
590
+ "<|19.76|>": 51352,
591
+ "<|19.78|>": 51353,
592
+ "<|19.80|>": 51354,
593
+ "<|19.82|>": 51355,
594
+ "<|19.84|>": 51356,
595
+ "<|19.86|>": 51357,
596
+ "<|19.88|>": 51358,
597
+ "<|19.90|>": 51359,
598
+ "<|19.92|>": 51360,
599
+ "<|19.94|>": 51361,
600
+ "<|19.96|>": 51362,
601
+ "<|19.98|>": 51363,
602
+ "<|2.00|>": 50464,
603
+ "<|2.02|>": 50465,
604
+ "<|2.04|>": 50466,
605
+ "<|2.06|>": 50467,
606
+ "<|2.08|>": 50468,
607
+ "<|2.10|>": 50469,
608
+ "<|2.12|>": 50470,
609
+ "<|2.14|>": 50471,
610
+ "<|2.16|>": 50472,
611
+ "<|2.18|>": 50473,
612
+ "<|2.20|>": 50474,
613
+ "<|2.22|>": 50475,
614
+ "<|2.24|>": 50476,
615
+ "<|2.26|>": 50477,
616
+ "<|2.28|>": 50478,
617
+ "<|2.30|>": 50479,
618
+ "<|2.32|>": 50480,
619
+ "<|2.34|>": 50481,
620
+ "<|2.36|>": 50482,
621
+ "<|2.38|>": 50483,
622
+ "<|2.40|>": 50484,
623
+ "<|2.42|>": 50485,
624
+ "<|2.44|>": 50486,
625
+ "<|2.46|>": 50487,
626
+ "<|2.48|>": 50488,
627
+ "<|2.50|>": 50489,
628
+ "<|2.52|>": 50490,
629
+ "<|2.54|>": 50491,
630
+ "<|2.56|>": 50492,
631
+ "<|2.58|>": 50493,
632
+ "<|2.60|>": 50494,
633
+ "<|2.62|>": 50495,
634
+ "<|2.64|>": 50496,
635
+ "<|2.66|>": 50497,
636
+ "<|2.68|>": 50498,
637
+ "<|2.70|>": 50499,
638
+ "<|2.72|>": 50500,
639
+ "<|2.74|>": 50501,
640
+ "<|2.76|>": 50502,
641
+ "<|2.78|>": 50503,
642
+ "<|2.80|>": 50504,
643
+ "<|2.82|>": 50505,
644
+ "<|2.84|>": 50506,
645
+ "<|2.86|>": 50507,
646
+ "<|2.88|>": 50508,
647
+ "<|2.90|>": 50509,
648
+ "<|2.92|>": 50510,
649
+ "<|2.94|>": 50511,
650
+ "<|2.96|>": 50512,
651
+ "<|2.98|>": 50513,
652
+ "<|20.00|>": 51364,
653
+ "<|20.02|>": 51365,
654
+ "<|20.04|>": 51366,
655
+ "<|20.06|>": 51367,
656
+ "<|20.08|>": 51368,
657
+ "<|20.10|>": 51369,
658
+ "<|20.12|>": 51370,
659
+ "<|20.14|>": 51371,
660
+ "<|20.16|>": 51372,
661
+ "<|20.18|>": 51373,
662
+ "<|20.20|>": 51374,
663
+ "<|20.22|>": 51375,
664
+ "<|20.24|>": 51376,
665
+ "<|20.26|>": 51377,
666
+ "<|20.28|>": 51378,
667
+ "<|20.30|>": 51379,
668
+ "<|20.32|>": 51380,
669
+ "<|20.34|>": 51381,
670
+ "<|20.36|>": 51382,
671
+ "<|20.38|>": 51383,
672
+ "<|20.40|>": 51384,
673
+ "<|20.42|>": 51385,
674
+ "<|20.44|>": 51386,
675
+ "<|20.46|>": 51387,
676
+ "<|20.48|>": 51388,
677
+ "<|20.50|>": 51389,
678
+ "<|20.52|>": 51390,
679
+ "<|20.54|>": 51391,
680
+ "<|20.56|>": 51392,
681
+ "<|20.58|>": 51393,
682
+ "<|20.60|>": 51394,
683
+ "<|20.62|>": 51395,
684
+ "<|20.64|>": 51396,
685
+ "<|20.66|>": 51397,
686
+ "<|20.68|>": 51398,
687
+ "<|20.70|>": 51399,
688
+ "<|20.72|>": 51400,
689
+ "<|20.74|>": 51401,
690
+ "<|20.76|>": 51402,
691
+ "<|20.78|>": 51403,
692
+ "<|20.80|>": 51404,
693
+ "<|20.82|>": 51405,
694
+ "<|20.84|>": 51406,
695
+ "<|20.86|>": 51407,
696
+ "<|20.88|>": 51408,
697
+ "<|20.90|>": 51409,
698
+ "<|20.92|>": 51410,
699
+ "<|20.94|>": 51411,
700
+ "<|20.96|>": 51412,
701
+ "<|20.98|>": 51413,
702
+ "<|21.00|>": 51414,
703
+ "<|21.02|>": 51415,
704
+ "<|21.04|>": 51416,
705
+ "<|21.06|>": 51417,
706
+ "<|21.08|>": 51418,
707
+ "<|21.10|>": 51419,
708
+ "<|21.12|>": 51420,
709
+ "<|21.14|>": 51421,
710
+ "<|21.16|>": 51422,
711
+ "<|21.18|>": 51423,
712
+ "<|21.20|>": 51424,
713
+ "<|21.22|>": 51425,
714
+ "<|21.24|>": 51426,
715
+ "<|21.26|>": 51427,
716
+ "<|21.28|>": 51428,
717
+ "<|21.30|>": 51429,
718
+ "<|21.32|>": 51430,
719
+ "<|21.34|>": 51431,
720
+ "<|21.36|>": 51432,
721
+ "<|21.38|>": 51433,
722
+ "<|21.40|>": 51434,
723
+ "<|21.42|>": 51435,
724
+ "<|21.44|>": 51436,
725
+ "<|21.46|>": 51437,
726
+ "<|21.48|>": 51438,
727
+ "<|21.50|>": 51439,
728
+ "<|21.52|>": 51440,
729
+ "<|21.54|>": 51441,
730
+ "<|21.56|>": 51442,
731
+ "<|21.58|>": 51443,
732
+ "<|21.60|>": 51444,
733
+ "<|21.62|>": 51445,
734
+ "<|21.64|>": 51446,
735
+ "<|21.66|>": 51447,
736
+ "<|21.68|>": 51448,
737
+ "<|21.70|>": 51449,
738
+ "<|21.72|>": 51450,
739
+ "<|21.74|>": 51451,
740
+ "<|21.76|>": 51452,
741
+ "<|21.78|>": 51453,
742
+ "<|21.80|>": 51454,
743
+ "<|21.82|>": 51455,
744
+ "<|21.84|>": 51456,
745
+ "<|21.86|>": 51457,
746
+ "<|21.88|>": 51458,
747
+ "<|21.90|>": 51459,
748
+ "<|21.92|>": 51460,
749
+ "<|21.94|>": 51461,
750
+ "<|21.96|>": 51462,
751
+ "<|21.98|>": 51463,
752
+ "<|22.00|>": 51464,
753
+ "<|22.02|>": 51465,
754
+ "<|22.04|>": 51466,
755
+ "<|22.06|>": 51467,
756
+ "<|22.08|>": 51468,
757
+ "<|22.10|>": 51469,
758
+ "<|22.12|>": 51470,
759
+ "<|22.14|>": 51471,
760
+ "<|22.16|>": 51472,
761
+ "<|22.18|>": 51473,
762
+ "<|22.20|>": 51474,
763
+ "<|22.22|>": 51475,
764
+ "<|22.24|>": 51476,
765
+ "<|22.26|>": 51477,
766
+ "<|22.28|>": 51478,
767
+ "<|22.30|>": 51479,
768
+ "<|22.32|>": 51480,
769
+ "<|22.34|>": 51481,
770
+ "<|22.36|>": 51482,
771
+ "<|22.38|>": 51483,
772
+ "<|22.40|>": 51484,
773
+ "<|22.42|>": 51485,
774
+ "<|22.44|>": 51486,
775
+ "<|22.46|>": 51487,
776
+ "<|22.48|>": 51488,
777
+ "<|22.50|>": 51489,
778
+ "<|22.52|>": 51490,
779
+ "<|22.54|>": 51491,
780
+ "<|22.56|>": 51492,
781
+ "<|22.58|>": 51493,
782
+ "<|22.60|>": 51494,
783
+ "<|22.62|>": 51495,
784
+ "<|22.64|>": 51496,
785
+ "<|22.66|>": 51497,
786
+ "<|22.68|>": 51498,
787
+ "<|22.70|>": 51499,
788
+ "<|22.72|>": 51500,
789
+ "<|22.74|>": 51501,
790
+ "<|22.76|>": 51502,
791
+ "<|22.78|>": 51503,
792
+ "<|22.80|>": 51504,
793
+ "<|22.82|>": 51505,
794
+ "<|22.84|>": 51506,
795
+ "<|22.86|>": 51507,
796
+ "<|22.88|>": 51508,
797
+ "<|22.90|>": 51509,
798
+ "<|22.92|>": 51510,
799
+ "<|22.94|>": 51511,
800
+ "<|22.96|>": 51512,
801
+ "<|22.98|>": 51513,
802
+ "<|23.00|>": 51514,
803
+ "<|23.02|>": 51515,
804
+ "<|23.04|>": 51516,
805
+ "<|23.06|>": 51517,
806
+ "<|23.08|>": 51518,
807
+ "<|23.10|>": 51519,
808
+ "<|23.12|>": 51520,
809
+ "<|23.14|>": 51521,
810
+ "<|23.16|>": 51522,
811
+ "<|23.18|>": 51523,
812
+ "<|23.20|>": 51524,
813
+ "<|23.22|>": 51525,
814
+ "<|23.24|>": 51526,
815
+ "<|23.26|>": 51527,
816
+ "<|23.28|>": 51528,
817
+ "<|23.30|>": 51529,
818
+ "<|23.32|>": 51530,
819
+ "<|23.34|>": 51531,
820
+ "<|23.36|>": 51532,
821
+ "<|23.38|>": 51533,
822
+ "<|23.40|>": 51534,
823
+ "<|23.42|>": 51535,
824
+ "<|23.44|>": 51536,
825
+ "<|23.46|>": 51537,
826
+ "<|23.48|>": 51538,
827
+ "<|23.50|>": 51539,
828
+ "<|23.52|>": 51540,
829
+ "<|23.54|>": 51541,
830
+ "<|23.56|>": 51542,
831
+ "<|23.58|>": 51543,
832
+ "<|23.60|>": 51544,
833
+ "<|23.62|>": 51545,
834
+ "<|23.64|>": 51546,
835
+ "<|23.66|>": 51547,
836
+ "<|23.68|>": 51548,
837
+ "<|23.70|>": 51549,
838
+ "<|23.72|>": 51550,
839
+ "<|23.74|>": 51551,
840
+ "<|23.76|>": 51552,
841
+ "<|23.78|>": 51553,
842
+ "<|23.80|>": 51554,
843
+ "<|23.82|>": 51555,
844
+ "<|23.84|>": 51556,
845
+ "<|23.86|>": 51557,
846
+ "<|23.88|>": 51558,
847
+ "<|23.90|>": 51559,
848
+ "<|23.92|>": 51560,
849
+ "<|23.94|>": 51561,
850
+ "<|23.96|>": 51562,
851
+ "<|23.98|>": 51563,
852
+ "<|24.00|>": 51564,
853
+ "<|24.02|>": 51565,
854
+ "<|24.04|>": 51566,
855
+ "<|24.06|>": 51567,
856
+ "<|24.08|>": 51568,
857
+ "<|24.10|>": 51569,
858
+ "<|24.12|>": 51570,
859
+ "<|24.14|>": 51571,
860
+ "<|24.16|>": 51572,
861
+ "<|24.18|>": 51573,
862
+ "<|24.20|>": 51574,
863
+ "<|24.22|>": 51575,
864
+ "<|24.24|>": 51576,
865
+ "<|24.26|>": 51577,
866
+ "<|24.28|>": 51578,
867
+ "<|24.30|>": 51579,
868
+ "<|24.32|>": 51580,
869
+ "<|24.34|>": 51581,
870
+ "<|24.36|>": 51582,
871
+ "<|24.38|>": 51583,
872
+ "<|24.40|>": 51584,
873
+ "<|24.42|>": 51585,
874
+ "<|24.44|>": 51586,
875
+ "<|24.46|>": 51587,
876
+ "<|24.48|>": 51588,
877
+ "<|24.50|>": 51589,
878
+ "<|24.52|>": 51590,
879
+ "<|24.54|>": 51591,
880
+ "<|24.56|>": 51592,
881
+ "<|24.58|>": 51593,
882
+ "<|24.60|>": 51594,
883
+ "<|24.62|>": 51595,
884
+ "<|24.64|>": 51596,
885
+ "<|24.66|>": 51597,
886
+ "<|24.68|>": 51598,
887
+ "<|24.70|>": 51599,
888
+ "<|24.72|>": 51600,
889
+ "<|24.74|>": 51601,
890
+ "<|24.76|>": 51602,
891
+ "<|24.78|>": 51603,
892
+ "<|24.80|>": 51604,
893
+ "<|24.82|>": 51605,
894
+ "<|24.84|>": 51606,
895
+ "<|24.86|>": 51607,
896
+ "<|24.88|>": 51608,
897
+ "<|24.90|>": 51609,
898
+ "<|24.92|>": 51610,
899
+ "<|24.94|>": 51611,
900
+ "<|24.96|>": 51612,
901
+ "<|24.98|>": 51613,
902
+ "<|25.00|>": 51614,
903
+ "<|25.02|>": 51615,
904
+ "<|25.04|>": 51616,
905
+ "<|25.06|>": 51617,
906
+ "<|25.08|>": 51618,
907
+ "<|25.10|>": 51619,
908
+ "<|25.12|>": 51620,
909
+ "<|25.14|>": 51621,
910
+ "<|25.16|>": 51622,
911
+ "<|25.18|>": 51623,
912
+ "<|25.20|>": 51624,
913
+ "<|25.22|>": 51625,
914
+ "<|25.24|>": 51626,
915
+ "<|25.26|>": 51627,
916
+ "<|25.28|>": 51628,
917
+ "<|25.30|>": 51629,
918
+ "<|25.32|>": 51630,
919
+ "<|25.34|>": 51631,
920
+ "<|25.36|>": 51632,
921
+ "<|25.38|>": 51633,
922
+ "<|25.40|>": 51634,
923
+ "<|25.42|>": 51635,
924
+ "<|25.44|>": 51636,
925
+ "<|25.46|>": 51637,
926
+ "<|25.48|>": 51638,
927
+ "<|25.50|>": 51639,
928
+ "<|25.52|>": 51640,
929
+ "<|25.54|>": 51641,
930
+ "<|25.56|>": 51642,
931
+ "<|25.58|>": 51643,
932
+ "<|25.60|>": 51644,
933
+ "<|25.62|>": 51645,
934
+ "<|25.64|>": 51646,
935
+ "<|25.66|>": 51647,
936
+ "<|25.68|>": 51648,
937
+ "<|25.70|>": 51649,
938
+ "<|25.72|>": 51650,
939
+ "<|25.74|>": 51651,
940
+ "<|25.76|>": 51652,
941
+ "<|25.78|>": 51653,
942
+ "<|25.80|>": 51654,
943
+ "<|25.82|>": 51655,
944
+ "<|25.84|>": 51656,
945
+ "<|25.86|>": 51657,
946
+ "<|25.88|>": 51658,
947
+ "<|25.90|>": 51659,
948
+ "<|25.92|>": 51660,
949
+ "<|25.94|>": 51661,
950
+ "<|25.96|>": 51662,
951
+ "<|25.98|>": 51663,
952
+ "<|26.00|>": 51664,
953
+ "<|26.02|>": 51665,
954
+ "<|26.04|>": 51666,
955
+ "<|26.06|>": 51667,
956
+ "<|26.08|>": 51668,
957
+ "<|26.10|>": 51669,
958
+ "<|26.12|>": 51670,
959
+ "<|26.14|>": 51671,
960
+ "<|26.16|>": 51672,
961
+ "<|26.18|>": 51673,
962
+ "<|26.20|>": 51674,
963
+ "<|26.22|>": 51675,
964
+ "<|26.24|>": 51676,
965
+ "<|26.26|>": 51677,
966
+ "<|26.28|>": 51678,
967
+ "<|26.30|>": 51679,
968
+ "<|26.32|>": 51680,
969
+ "<|26.34|>": 51681,
970
+ "<|26.36|>": 51682,
971
+ "<|26.38|>": 51683,
972
+ "<|26.40|>": 51684,
973
+ "<|26.42|>": 51685,
974
+ "<|26.44|>": 51686,
975
+ "<|26.46|>": 51687,
976
+ "<|26.48|>": 51688,
977
+ "<|26.50|>": 51689,
978
+ "<|26.52|>": 51690,
979
+ "<|26.54|>": 51691,
980
+ "<|26.56|>": 51692,
981
+ "<|26.58|>": 51693,
982
+ "<|26.60|>": 51694,
983
+ "<|26.62|>": 51695,
984
+ "<|26.64|>": 51696,
985
+ "<|26.66|>": 51697,
986
+ "<|26.68|>": 51698,
987
+ "<|26.70|>": 51699,
988
+ "<|26.72|>": 51700,
989
+ "<|26.74|>": 51701,
990
+ "<|26.76|>": 51702,
991
+ "<|26.78|>": 51703,
992
+ "<|26.80|>": 51704,
993
+ "<|26.82|>": 51705,
994
+ "<|26.84|>": 51706,
995
+ "<|26.86|>": 51707,
996
+ "<|26.88|>": 51708,
997
+ "<|26.90|>": 51709,
998
+ "<|26.92|>": 51710,
999
+ "<|26.94|>": 51711,
1000
+ "<|26.96|>": 51712,
1001
+ "<|26.98|>": 51713,
1002
+ "<|27.00|>": 51714,
1003
+ "<|27.02|>": 51715,
1004
+ "<|27.04|>": 51716,
1005
+ "<|27.06|>": 51717,
1006
+ "<|27.08|>": 51718,
1007
+ "<|27.10|>": 51719,
1008
+ "<|27.12|>": 51720,
1009
+ "<|27.14|>": 51721,
1010
+ "<|27.16|>": 51722,
1011
+ "<|27.18|>": 51723,
1012
+ "<|27.20|>": 51724,
1013
+ "<|27.22|>": 51725,
1014
+ "<|27.24|>": 51726,
1015
+ "<|27.26|>": 51727,
1016
+ "<|27.28|>": 51728,
1017
+ "<|27.30|>": 51729,
1018
+ "<|27.32|>": 51730,
1019
+ "<|27.34|>": 51731,
1020
+ "<|27.36|>": 51732,
1021
+ "<|27.38|>": 51733,
1022
+ "<|27.40|>": 51734,
1023
+ "<|27.42|>": 51735,
1024
+ "<|27.44|>": 51736,
1025
+ "<|27.46|>": 51737,
1026
+ "<|27.48|>": 51738,
1027
+ "<|27.50|>": 51739,
1028
+ "<|27.52|>": 51740,
1029
+ "<|27.54|>": 51741,
1030
+ "<|27.56|>": 51742,
1031
+ "<|27.58|>": 51743,
1032
+ "<|27.60|>": 51744,
1033
+ "<|27.62|>": 51745,
1034
+ "<|27.64|>": 51746,
1035
+ "<|27.66|>": 51747,
1036
+ "<|27.68|>": 51748,
1037
+ "<|27.70|>": 51749,
1038
+ "<|27.72|>": 51750,
1039
+ "<|27.74|>": 51751,
1040
+ "<|27.76|>": 51752,
1041
+ "<|27.78|>": 51753,
1042
+ "<|27.80|>": 51754,
1043
+ "<|27.82|>": 51755,
1044
+ "<|27.84|>": 51756,
1045
+ "<|27.86|>": 51757,
1046
+ "<|27.88|>": 51758,
1047
+ "<|27.90|>": 51759,
1048
+ "<|27.92|>": 51760,
1049
+ "<|27.94|>": 51761,
1050
+ "<|27.96|>": 51762,
1051
+ "<|27.98|>": 51763,
1052
+ "<|28.00|>": 51764,
1053
+ "<|28.02|>": 51765,
1054
+ "<|28.04|>": 51766,
1055
+ "<|28.06|>": 51767,
1056
+ "<|28.08|>": 51768,
1057
+ "<|28.10|>": 51769,
1058
+ "<|28.12|>": 51770,
1059
+ "<|28.14|>": 51771,
1060
+ "<|28.16|>": 51772,
1061
+ "<|28.18|>": 51773,
1062
+ "<|28.20|>": 51774,
1063
+ "<|28.22|>": 51775,
1064
+ "<|28.24|>": 51776,
1065
+ "<|28.26|>": 51777,
1066
+ "<|28.28|>": 51778,
1067
+ "<|28.30|>": 51779,
1068
+ "<|28.32|>": 51780,
1069
+ "<|28.34|>": 51781,
1070
+ "<|28.36|>": 51782,
1071
+ "<|28.38|>": 51783,
1072
+ "<|28.40|>": 51784,
1073
+ "<|28.42|>": 51785,
1074
+ "<|28.44|>": 51786,
1075
+ "<|28.46|>": 51787,
1076
+ "<|28.48|>": 51788,
1077
+ "<|28.50|>": 51789,
1078
+ "<|28.52|>": 51790,
1079
+ "<|28.54|>": 51791,
1080
+ "<|28.56|>": 51792,
1081
+ "<|28.58|>": 51793,
1082
+ "<|28.60|>": 51794,
1083
+ "<|28.62|>": 51795,
1084
+ "<|28.64|>": 51796,
1085
+ "<|28.66|>": 51797,
1086
+ "<|28.68|>": 51798,
1087
+ "<|28.70|>": 51799,
1088
+ "<|28.72|>": 51800,
1089
+ "<|28.74|>": 51801,
1090
+ "<|28.76|>": 51802,
1091
+ "<|28.78|>": 51803,
1092
+ "<|28.80|>": 51804,
1093
+ "<|28.82|>": 51805,
1094
+ "<|28.84|>": 51806,
1095
+ "<|28.86|>": 51807,
1096
+ "<|28.88|>": 51808,
1097
+ "<|28.90|>": 51809,
1098
+ "<|28.92|>": 51810,
1099
+ "<|28.94|>": 51811,
1100
+ "<|28.96|>": 51812,
1101
+ "<|28.98|>": 51813,
1102
+ "<|29.00|>": 51814,
1103
+ "<|29.02|>": 51815,
1104
+ "<|29.04|>": 51816,
1105
+ "<|29.06|>": 51817,
1106
+ "<|29.08|>": 51818,
1107
+ "<|29.10|>": 51819,
1108
+ "<|29.12|>": 51820,
1109
+ "<|29.14|>": 51821,
1110
+ "<|29.16|>": 51822,
1111
+ "<|29.18|>": 51823,
1112
+ "<|29.20|>": 51824,
1113
+ "<|29.22|>": 51825,
1114
+ "<|29.24|>": 51826,
1115
+ "<|29.26|>": 51827,
1116
+ "<|29.28|>": 51828,
1117
+ "<|29.30|>": 51829,
1118
+ "<|29.32|>": 51830,
1119
+ "<|29.34|>": 51831,
1120
+ "<|29.36|>": 51832,
1121
+ "<|29.38|>": 51833,
1122
+ "<|29.40|>": 51834,
1123
+ "<|29.42|>": 51835,
1124
+ "<|29.44|>": 51836,
1125
+ "<|29.46|>": 51837,
1126
+ "<|29.48|>": 51838,
1127
+ "<|29.50|>": 51839,
1128
+ "<|29.52|>": 51840,
1129
+ "<|29.54|>": 51841,
1130
+ "<|29.56|>": 51842,
1131
+ "<|29.58|>": 51843,
1132
+ "<|29.60|>": 51844,
1133
+ "<|29.62|>": 51845,
1134
+ "<|29.64|>": 51846,
1135
+ "<|29.66|>": 51847,
1136
+ "<|29.68|>": 51848,
1137
+ "<|29.70|>": 51849,
1138
+ "<|29.72|>": 51850,
1139
+ "<|29.74|>": 51851,
1140
+ "<|29.76|>": 51852,
1141
+ "<|29.78|>": 51853,
1142
+ "<|29.80|>": 51854,
1143
+ "<|29.82|>": 51855,
1144
+ "<|29.84|>": 51856,
1145
+ "<|29.86|>": 51857,
1146
+ "<|29.88|>": 51858,
1147
+ "<|29.90|>": 51859,
1148
+ "<|29.92|>": 51860,
1149
+ "<|29.94|>": 51861,
1150
+ "<|29.96|>": 51862,
1151
+ "<|29.98|>": 51863,
1152
+ "<|3.00|>": 50514,
1153
+ "<|3.02|>": 50515,
1154
+ "<|3.04|>": 50516,
1155
+ "<|3.06|>": 50517,
1156
+ "<|3.08|>": 50518,
1157
+ "<|3.10|>": 50519,
1158
+ "<|3.12|>": 50520,
1159
+ "<|3.14|>": 50521,
1160
+ "<|3.16|>": 50522,
1161
+ "<|3.18|>": 50523,
1162
+ "<|3.20|>": 50524,
1163
+ "<|3.22|>": 50525,
1164
+ "<|3.24|>": 50526,
1165
+ "<|3.26|>": 50527,
1166
+ "<|3.28|>": 50528,
1167
+ "<|3.30|>": 50529,
1168
+ "<|3.32|>": 50530,
1169
+ "<|3.34|>": 50531,
1170
+ "<|3.36|>": 50532,
1171
+ "<|3.38|>": 50533,
1172
+ "<|3.40|>": 50534,
1173
+ "<|3.42|>": 50535,
1174
+ "<|3.44|>": 50536,
1175
+ "<|3.46|>": 50537,
1176
+ "<|3.48|>": 50538,
1177
+ "<|3.50|>": 50539,
1178
+ "<|3.52|>": 50540,
1179
+ "<|3.54|>": 50541,
1180
+ "<|3.56|>": 50542,
1181
+ "<|3.58|>": 50543,
1182
+ "<|3.60|>": 50544,
1183
+ "<|3.62|>": 50545,
1184
+ "<|3.64|>": 50546,
1185
+ "<|3.66|>": 50547,
1186
+ "<|3.68|>": 50548,
1187
+ "<|3.70|>": 50549,
1188
+ "<|3.72|>": 50550,
1189
+ "<|3.74|>": 50551,
1190
+ "<|3.76|>": 50552,
1191
+ "<|3.78|>": 50553,
1192
+ "<|3.80|>": 50554,
1193
+ "<|3.82|>": 50555,
1194
+ "<|3.84|>": 50556,
1195
+ "<|3.86|>": 50557,
1196
+ "<|3.88|>": 50558,
1197
+ "<|3.90|>": 50559,
1198
+ "<|3.92|>": 50560,
1199
+ "<|3.94|>": 50561,
1200
+ "<|3.96|>": 50562,
1201
+ "<|3.98|>": 50563,
1202
+ "<|30.00|>": 51864,
1203
+ "<|4.00|>": 50564,
1204
+ "<|4.02|>": 50565,
1205
+ "<|4.04|>": 50566,
1206
+ "<|4.06|>": 50567,
1207
+ "<|4.08|>": 50568,
1208
+ "<|4.10|>": 50569,
1209
+ "<|4.12|>": 50570,
1210
+ "<|4.14|>": 50571,
1211
+ "<|4.16|>": 50572,
1212
+ "<|4.18|>": 50573,
1213
+ "<|4.20|>": 50574,
1214
+ "<|4.22|>": 50575,
1215
+ "<|4.24|>": 50576,
1216
+ "<|4.26|>": 50577,
1217
+ "<|4.28|>": 50578,
1218
+ "<|4.30|>": 50579,
1219
+ "<|4.32|>": 50580,
1220
+ "<|4.34|>": 50581,
1221
+ "<|4.36|>": 50582,
1222
+ "<|4.38|>": 50583,
1223
+ "<|4.40|>": 50584,
1224
+ "<|4.42|>": 50585,
1225
+ "<|4.44|>": 50586,
1226
+ "<|4.46|>": 50587,
1227
+ "<|4.48|>": 50588,
1228
+ "<|4.50|>": 50589,
1229
+ "<|4.52|>": 50590,
1230
+ "<|4.54|>": 50591,
1231
+ "<|4.56|>": 50592,
1232
+ "<|4.58|>": 50593,
1233
+ "<|4.60|>": 50594,
1234
+ "<|4.62|>": 50595,
1235
+ "<|4.64|>": 50596,
1236
+ "<|4.66|>": 50597,
1237
+ "<|4.68|>": 50598,
1238
+ "<|4.70|>": 50599,
1239
+ "<|4.72|>": 50600,
1240
+ "<|4.74|>": 50601,
1241
+ "<|4.76|>": 50602,
1242
+ "<|4.78|>": 50603,
1243
+ "<|4.80|>": 50604,
1244
+ "<|4.82|>": 50605,
1245
+ "<|4.84|>": 50606,
1246
+ "<|4.86|>": 50607,
1247
+ "<|4.88|>": 50608,
1248
+ "<|4.90|>": 50609,
1249
+ "<|4.92|>": 50610,
1250
+ "<|4.94|>": 50611,
1251
+ "<|4.96|>": 50612,
1252
+ "<|4.98|>": 50613,
1253
+ "<|5.00|>": 50614,
1254
+ "<|5.02|>": 50615,
1255
+ "<|5.04|>": 50616,
1256
+ "<|5.06|>": 50617,
1257
+ "<|5.08|>": 50618,
1258
+ "<|5.10|>": 50619,
1259
+ "<|5.12|>": 50620,
1260
+ "<|5.14|>": 50621,
1261
+ "<|5.16|>": 50622,
1262
+ "<|5.18|>": 50623,
1263
+ "<|5.20|>": 50624,
1264
+ "<|5.22|>": 50625,
1265
+ "<|5.24|>": 50626,
1266
+ "<|5.26|>": 50627,
1267
+ "<|5.28|>": 50628,
1268
+ "<|5.30|>": 50629,
1269
+ "<|5.32|>": 50630,
1270
+ "<|5.34|>": 50631,
1271
+ "<|5.36|>": 50632,
1272
+ "<|5.38|>": 50633,
1273
+ "<|5.40|>": 50634,
1274
+ "<|5.42|>": 50635,
1275
+ "<|5.44|>": 50636,
1276
+ "<|5.46|>": 50637,
1277
+ "<|5.48|>": 50638,
1278
+ "<|5.50|>": 50639,
1279
+ "<|5.52|>": 50640,
1280
+ "<|5.54|>": 50641,
1281
+ "<|5.56|>": 50642,
1282
+ "<|5.58|>": 50643,
1283
+ "<|5.60|>": 50644,
1284
+ "<|5.62|>": 50645,
1285
+ "<|5.64|>": 50646,
1286
+ "<|5.66|>": 50647,
1287
+ "<|5.68|>": 50648,
1288
+ "<|5.70|>": 50649,
1289
+ "<|5.72|>": 50650,
1290
+ "<|5.74|>": 50651,
1291
+ "<|5.76|>": 50652,
1292
+ "<|5.78|>": 50653,
1293
+ "<|5.80|>": 50654,
1294
+ "<|5.82|>": 50655,
1295
+ "<|5.84|>": 50656,
1296
+ "<|5.86|>": 50657,
1297
+ "<|5.88|>": 50658,
1298
+ "<|5.90|>": 50659,
1299
+ "<|5.92|>": 50660,
1300
+ "<|5.94|>": 50661,
1301
+ "<|5.96|>": 50662,
1302
+ "<|5.98|>": 50663,
1303
+ "<|6.00|>": 50664,
1304
+ "<|6.02|>": 50665,
1305
+ "<|6.04|>": 50666,
1306
+ "<|6.06|>": 50667,
1307
+ "<|6.08|>": 50668,
1308
+ "<|6.10|>": 50669,
1309
+ "<|6.12|>": 50670,
1310
+ "<|6.14|>": 50671,
1311
+ "<|6.16|>": 50672,
1312
+ "<|6.18|>": 50673,
1313
+ "<|6.20|>": 50674,
1314
+ "<|6.22|>": 50675,
1315
+ "<|6.24|>": 50676,
1316
+ "<|6.26|>": 50677,
1317
+ "<|6.28|>": 50678,
1318
+ "<|6.30|>": 50679,
1319
+ "<|6.32|>": 50680,
1320
+ "<|6.34|>": 50681,
1321
+ "<|6.36|>": 50682,
1322
+ "<|6.38|>": 50683,
1323
+ "<|6.40|>": 50684,
1324
+ "<|6.42|>": 50685,
1325
+ "<|6.44|>": 50686,
1326
+ "<|6.46|>": 50687,
1327
+ "<|6.48|>": 50688,
1328
+ "<|6.50|>": 50689,
1329
+ "<|6.52|>": 50690,
1330
+ "<|6.54|>": 50691,
1331
+ "<|6.56|>": 50692,
1332
+ "<|6.58|>": 50693,
1333
+ "<|6.60|>": 50694,
1334
+ "<|6.62|>": 50695,
1335
+ "<|6.64|>": 50696,
1336
+ "<|6.66|>": 50697,
1337
+ "<|6.68|>": 50698,
1338
+ "<|6.70|>": 50699,
1339
+ "<|6.72|>": 50700,
1340
+ "<|6.74|>": 50701,
1341
+ "<|6.76|>": 50702,
1342
+ "<|6.78|>": 50703,
1343
+ "<|6.80|>": 50704,
1344
+ "<|6.82|>": 50705,
1345
+ "<|6.84|>": 50706,
1346
+ "<|6.86|>": 50707,
1347
+ "<|6.88|>": 50708,
1348
+ "<|6.90|>": 50709,
1349
+ "<|6.92|>": 50710,
1350
+ "<|6.94|>": 50711,
1351
+ "<|6.96|>": 50712,
1352
+ "<|6.98|>": 50713,
1353
+ "<|7.00|>": 50714,
1354
+ "<|7.02|>": 50715,
1355
+ "<|7.04|>": 50716,
1356
+ "<|7.06|>": 50717,
1357
+ "<|7.08|>": 50718,
1358
+ "<|7.10|>": 50719,
1359
+ "<|7.12|>": 50720,
1360
+ "<|7.14|>": 50721,
1361
+ "<|7.16|>": 50722,
1362
+ "<|7.18|>": 50723,
1363
+ "<|7.20|>": 50724,
1364
+ "<|7.22|>": 50725,
1365
+ "<|7.24|>": 50726,
1366
+ "<|7.26|>": 50727,
1367
+ "<|7.28|>": 50728,
1368
+ "<|7.30|>": 50729,
1369
+ "<|7.32|>": 50730,
1370
+ "<|7.34|>": 50731,
1371
+ "<|7.36|>": 50732,
1372
+ "<|7.38|>": 50733,
1373
+ "<|7.40|>": 50734,
1374
+ "<|7.42|>": 50735,
1375
+ "<|7.44|>": 50736,
1376
+ "<|7.46|>": 50737,
1377
+ "<|7.48|>": 50738,
1378
+ "<|7.50|>": 50739,
1379
+ "<|7.52|>": 50740,
1380
+ "<|7.54|>": 50741,
1381
+ "<|7.56|>": 50742,
1382
+ "<|7.58|>": 50743,
1383
+ "<|7.60|>": 50744,
1384
+ "<|7.62|>": 50745,
1385
+ "<|7.64|>": 50746,
1386
+ "<|7.66|>": 50747,
1387
+ "<|7.68|>": 50748,
1388
+ "<|7.70|>": 50749,
1389
+ "<|7.72|>": 50750,
1390
+ "<|7.74|>": 50751,
1391
+ "<|7.76|>": 50752,
1392
+ "<|7.78|>": 50753,
1393
+ "<|7.80|>": 50754,
1394
+ "<|7.82|>": 50755,
1395
+ "<|7.84|>": 50756,
1396
+ "<|7.86|>": 50757,
1397
+ "<|7.88|>": 50758,
1398
+ "<|7.90|>": 50759,
1399
+ "<|7.92|>": 50760,
1400
+ "<|7.94|>": 50761,
1401
+ "<|7.96|>": 50762,
1402
+ "<|7.98|>": 50763,
1403
+ "<|8.00|>": 50764,
1404
+ "<|8.02|>": 50765,
1405
+ "<|8.04|>": 50766,
1406
+ "<|8.06|>": 50767,
1407
+ "<|8.08|>": 50768,
1408
+ "<|8.10|>": 50769,
1409
+ "<|8.12|>": 50770,
1410
+ "<|8.14|>": 50771,
1411
+ "<|8.16|>": 50772,
1412
+ "<|8.18|>": 50773,
1413
+ "<|8.20|>": 50774,
1414
+ "<|8.22|>": 50775,
1415
+ "<|8.24|>": 50776,
1416
+ "<|8.26|>": 50777,
1417
+ "<|8.28|>": 50778,
1418
+ "<|8.30|>": 50779,
1419
+ "<|8.32|>": 50780,
1420
+ "<|8.34|>": 50781,
1421
+ "<|8.36|>": 50782,
1422
+ "<|8.38|>": 50783,
1423
+ "<|8.40|>": 50784,
1424
+ "<|8.42|>": 50785,
1425
+ "<|8.44|>": 50786,
1426
+ "<|8.46|>": 50787,
1427
+ "<|8.48|>": 50788,
1428
+ "<|8.50|>": 50789,
1429
+ "<|8.52|>": 50790,
1430
+ "<|8.54|>": 50791,
1431
+ "<|8.56|>": 50792,
1432
+ "<|8.58|>": 50793,
1433
+ "<|8.60|>": 50794,
1434
+ "<|8.62|>": 50795,
1435
+ "<|8.64|>": 50796,
1436
+ "<|8.66|>": 50797,
1437
+ "<|8.68|>": 50798,
1438
+ "<|8.70|>": 50799,
1439
+ "<|8.72|>": 50800,
1440
+ "<|8.74|>": 50801,
1441
+ "<|8.76|>": 50802,
1442
+ "<|8.78|>": 50803,
1443
+ "<|8.80|>": 50804,
1444
+ "<|8.82|>": 50805,
1445
+ "<|8.84|>": 50806,
1446
+ "<|8.86|>": 50807,
1447
+ "<|8.88|>": 50808,
1448
+ "<|8.90|>": 50809,
1449
+ "<|8.92|>": 50810,
1450
+ "<|8.94|>": 50811,
1451
+ "<|8.96|>": 50812,
1452
+ "<|8.98|>": 50813,
1453
+ "<|9.00|>": 50814,
1454
+ "<|9.02|>": 50815,
1455
+ "<|9.04|>": 50816,
1456
+ "<|9.06|>": 50817,
1457
+ "<|9.08|>": 50818,
1458
+ "<|9.10|>": 50819,
1459
+ "<|9.12|>": 50820,
1460
+ "<|9.14|>": 50821,
1461
+ "<|9.16|>": 50822,
1462
+ "<|9.18|>": 50823,
1463
+ "<|9.20|>": 50824,
1464
+ "<|9.22|>": 50825,
1465
+ "<|9.24|>": 50826,
1466
+ "<|9.26|>": 50827,
1467
+ "<|9.28|>": 50828,
1468
+ "<|9.30|>": 50829,
1469
+ "<|9.32|>": 50830,
1470
+ "<|9.34|>": 50831,
1471
+ "<|9.36|>": 50832,
1472
+ "<|9.38|>": 50833,
1473
+ "<|9.40|>": 50834,
1474
+ "<|9.42|>": 50835,
1475
+ "<|9.44|>": 50836,
1476
+ "<|9.46|>": 50837,
1477
+ "<|9.48|>": 50838,
1478
+ "<|9.50|>": 50839,
1479
+ "<|9.52|>": 50840,
1480
+ "<|9.54|>": 50841,
1481
+ "<|9.56|>": 50842,
1482
+ "<|9.58|>": 50843,
1483
+ "<|9.60|>": 50844,
1484
+ "<|9.62|>": 50845,
1485
+ "<|9.64|>": 50846,
1486
+ "<|9.66|>": 50847,
1487
+ "<|9.68|>": 50848,
1488
+ "<|9.70|>": 50849,
1489
+ "<|9.72|>": 50850,
1490
+ "<|9.74|>": 50851,
1491
+ "<|9.76|>": 50852,
1492
+ "<|9.78|>": 50853,
1493
+ "<|9.80|>": 50854,
1494
+ "<|9.82|>": 50855,
1495
+ "<|9.84|>": 50856,
1496
+ "<|9.86|>": 50857,
1497
+ "<|9.88|>": 50858,
1498
+ "<|9.90|>": 50859,
1499
+ "<|9.92|>": 50860,
1500
+ "<|9.94|>": 50861,
1501
+ "<|9.96|>": 50862,
1502
+ "<|9.98|>": 50863,
1503
+ "<|af|>": 50327,
1504
+ "<|am|>": 50334,
1505
+ "<|ar|>": 50272,
1506
+ "<|as|>": 50350,
1507
+ "<|az|>": 50304,
1508
+ "<|ba|>": 50355,
1509
+ "<|be|>": 50330,
1510
+ "<|bg|>": 50292,
1511
+ "<|bn|>": 50302,
1512
+ "<|bo|>": 50347,
1513
+ "<|br|>": 50309,
1514
+ "<|bs|>": 50315,
1515
+ "<|ca|>": 50270,
1516
+ "<|cs|>": 50283,
1517
+ "<|cy|>": 50297,
1518
+ "<|da|>": 50285,
1519
+ "<|de|>": 50261,
1520
+ "<|el|>": 50281,
1521
+ "<|en|>": 50259,
1522
+ "<|es|>": 50262,
1523
+ "<|et|>": 50307,
1524
+ "<|eu|>": 50310,
1525
+ "<|fa|>": 50300,
1526
+ "<|fi|>": 50277,
1527
+ "<|fo|>": 50338,
1528
+ "<|fr|>": 50265,
1529
+ "<|gl|>": 50319,
1530
+ "<|gu|>": 50333,
1531
+ "<|haw|>": 50352,
1532
+ "<|ha|>": 50354,
1533
+ "<|he|>": 50279,
1534
+ "<|hi|>": 50276,
1535
+ "<|hr|>": 50291,
1536
+ "<|ht|>": 50339,
1537
+ "<|hu|>": 50286,
1538
+ "<|hy|>": 50312,
1539
+ "<|id|>": 50275,
1540
+ "<|is|>": 50311,
1541
+ "<|it|>": 50274,
1542
+ "<|ja|>": 50266,
1543
+ "<|jw|>": 50356,
1544
+ "<|ka|>": 50329,
1545
+ "<|kk|>": 50316,
1546
+ "<|km|>": 50323,
1547
+ "<|kn|>": 50306,
1548
+ "<|ko|>": 50264,
1549
+ "<|la|>": 50294,
1550
+ "<|lb|>": 50345,
1551
+ "<|ln|>": 50353,
1552
+ "<|lo|>": 50336,
1553
+ "<|lt|>": 50293,
1554
+ "<|lv|>": 50301,
1555
+ "<|mg|>": 50349,
1556
+ "<|mi|>": 50295,
1557
+ "<|mk|>": 50308,
1558
+ "<|ml|>": 50296,
1559
+ "<|mn|>": 50314,
1560
+ "<|mr|>": 50320,
1561
+ "<|ms|>": 50282,
1562
+ "<|mt|>": 50343,
1563
+ "<|my|>": 50346,
1564
+ "<|ne|>": 50313,
1565
+ "<|nl|>": 50271,
1566
+ "<|nn|>": 50342,
1567
+ "<|nocaptions|>": 50362,
1568
+ "<|notimestamps|>": 50363,
1569
+ "<|no|>": 50288,
1570
+ "<|oc|>": 50328,
1571
+ "<|pa|>": 50321,
1572
+ "<|pl|>": 50269,
1573
+ "<|ps|>": 50340,
1574
+ "<|pt|>": 50267,
1575
+ "<|ro|>": 50284,
1576
+ "<|ru|>": 50263,
1577
+ "<|sa|>": 50344,
1578
+ "<|sd|>": 50332,
1579
+ "<|si|>": 50322,
1580
+ "<|sk|>": 50298,
1581
+ "<|sl|>": 50305,
1582
+ "<|sn|>": 50324,
1583
+ "<|so|>": 50326,
1584
+ "<|sq|>": 50317,
1585
+ "<|sr|>": 50303,
1586
+ "<|startoflm|>": 50360,
1587
+ "<|startofprev|>": 50361,
1588
+ "<|startoftranscript|>": 50258,
1589
+ "<|su|>": 50357,
1590
+ "<|sv|>": 50273,
1591
+ "<|sw|>": 50318,
1592
+ "<|ta|>": 50287,
1593
+ "<|te|>": 50299,
1594
+ "<|tg|>": 50331,
1595
+ "<|th|>": 50289,
1596
+ "<|tk|>": 50341,
1597
+ "<|tl|>": 50348,
1598
+ "<|transcribe|>": 50359,
1599
+ "<|translate|>": 50358,
1600
+ "<|tr|>": 50268,
1601
+ "<|tt|>": 50351,
1602
+ "<|uk|>": 50280,
1603
+ "<|ur|>": 50290,
1604
+ "<|uz|>": 50337,
1605
+ "<|vi|>": 50278,
1606
+ "<|yi|>": 50335,
1607
+ "<|yo|>": 50325,
1608
+ "<|zh|>": 50260
1609
+ }
checkpoint-100-epoch-0/config.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "NbAiLab/nb-whisper-small",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "alignment_heads": [
6
+ [
7
+ 5,
8
+ 3
9
+ ],
10
+ [
11
+ 5,
12
+ 9
13
+ ],
14
+ [
15
+ 8,
16
+ 0
17
+ ],
18
+ [
19
+ 8,
20
+ 4
21
+ ],
22
+ [
23
+ 8,
24
+ 7
25
+ ],
26
+ [
27
+ 8,
28
+ 8
29
+ ],
30
+ [
31
+ 9,
32
+ 0
33
+ ],
34
+ [
35
+ 9,
36
+ 7
37
+ ],
38
+ [
39
+ 9,
40
+ 9
41
+ ],
42
+ [
43
+ 10,
44
+ 5
45
+ ]
46
+ ],
47
+ "apply_spec_augment": false,
48
+ "architectures": [
49
+ "WhisperForConditionalGeneration"
50
+ ],
51
+ "attention_dropout": 0,
52
+ "begin_suppress_tokens": null,
53
+ "bos_token_id": 50257,
54
+ "classifier_proj_size": 256,
55
+ "d_model": 768,
56
+ "decoder_attention_heads": 12,
57
+ "decoder_ffn_dim": 3072,
58
+ "decoder_layerdrop": 0,
59
+ "decoder_layers": 2,
60
+ "decoder_start_token_id": 50258,
61
+ "dropout": 0,
62
+ "encoder_attention_heads": 12,
63
+ "encoder_ffn_dim": 3072,
64
+ "encoder_layerdrop": 0,
65
+ "encoder_layers": 12,
66
+ "eos_token_id": 50257,
67
+ "forced_decoder_ids": [
68
+ [
69
+ 1,
70
+ 50259
71
+ ],
72
+ [
73
+ 2,
74
+ 50359
75
+ ],
76
+ [
77
+ 3,
78
+ 50363
79
+ ]
80
+ ],
81
+ "init_std": 0.02,
82
+ "is_encoder_decoder": true,
83
+ "lang_ids": [
84
+ 50259,
85
+ 50260,
86
+ 50261,
87
+ 50262,
88
+ 50263,
89
+ 50264,
90
+ 50265,
91
+ 50266,
92
+ 50267,
93
+ 50268,
94
+ 50269,
95
+ 50270,
96
+ 50271,
97
+ 50272,
98
+ 50273,
99
+ 50274,
100
+ 50275,
101
+ 50276,
102
+ 50277,
103
+ 50278,
104
+ 50279,
105
+ 50280,
106
+ 50281,
107
+ 50282,
108
+ 50283,
109
+ 50284,
110
+ 50285,
111
+ 50286,
112
+ 50287,
113
+ 50288,
114
+ 50289,
115
+ 50290,
116
+ 50291,
117
+ 50292,
118
+ 50293,
119
+ 50294,
120
+ 50295,
121
+ 50296,
122
+ 50297,
123
+ 50298,
124
+ 50299,
125
+ 50300,
126
+ 50301,
127
+ 50302,
128
+ 50303,
129
+ 50304,
130
+ 50305,
131
+ 50306,
132
+ 50307,
133
+ 50308,
134
+ 50309,
135
+ 50310,
136
+ 50311,
137
+ 50312,
138
+ 50313,
139
+ 50314,
140
+ 50315,
141
+ 50316,
142
+ 50317,
143
+ 50318,
144
+ 50319,
145
+ 50320,
146
+ 50321,
147
+ 50322,
148
+ 50323,
149
+ 50324,
150
+ 50325,
151
+ 50326,
152
+ 50327,
153
+ 50328,
154
+ 50329,
155
+ 50330,
156
+ 50331,
157
+ 50332,
158
+ 50333,
159
+ 50334,
160
+ 50335,
161
+ 50336,
162
+ 50337,
163
+ 50338,
164
+ 50339,
165
+ 50340,
166
+ 50341,
167
+ 50342,
168
+ 50343,
169
+ 50344,
170
+ 50345,
171
+ 50346,
172
+ 50347,
173
+ 50348,
174
+ 50349,
175
+ 50350,
176
+ 50351,
177
+ 50352,
178
+ 50353,
179
+ 50354,
180
+ 50355,
181
+ 50356,
182
+ 50357
183
+ ],
184
+ "mask_feature_length": 10,
185
+ "mask_feature_min_masks": 0,
186
+ "mask_feature_prob": 0,
187
+ "mask_time_length": 10,
188
+ "mask_time_min_masks": 2,
189
+ "mask_time_prob": 0.05,
190
+ "max_length": null,
191
+ "max_source_positions": 1500,
192
+ "max_target_positions": 448,
193
+ "median_filter_width": 7,
194
+ "model_type": "whisper",
195
+ "num_hidden_layers": 12,
196
+ "num_mel_bins": 80,
197
+ "pad_token_id": 50257,
198
+ "scale_embedding": false,
199
+ "suppress_ids": [
200
+ 1,
201
+ 2,
202
+ 7,
203
+ 8,
204
+ 9,
205
+ 10,
206
+ 14,
207
+ 25,
208
+ 26,
209
+ 27,
210
+ 28,
211
+ 29,
212
+ 31,
213
+ 58,
214
+ 59,
215
+ 60,
216
+ 61,
217
+ 62,
218
+ 63,
219
+ 90,
220
+ 91,
221
+ 92,
222
+ 93,
223
+ 359,
224
+ 503,
225
+ 522,
226
+ 542,
227
+ 873,
228
+ 893,
229
+ 902,
230
+ 918,
231
+ 922,
232
+ 931,
233
+ 1350,
234
+ 1853,
235
+ 1982,
236
+ 2460,
237
+ 2627,
238
+ 3246,
239
+ 3253,
240
+ 3268,
241
+ 3536,
242
+ 3846,
243
+ 3961,
244
+ 4183,
245
+ 4667,
246
+ 6585,
247
+ 6647,
248
+ 7273,
249
+ 9061,
250
+ 9383,
251
+ 10428,
252
+ 10929,
253
+ 11938,
254
+ 12033,
255
+ 12331,
256
+ 12562,
257
+ 13793,
258
+ 14157,
259
+ 14635,
260
+ 15265,
261
+ 15618,
262
+ 16553,
263
+ 16604,
264
+ 18362,
265
+ 18956,
266
+ 20075,
267
+ 21675,
268
+ 22520,
269
+ 26130,
270
+ 26161,
271
+ 26435,
272
+ 28279,
273
+ 29464,
274
+ 31650,
275
+ 32302,
276
+ 32470,
277
+ 36865,
278
+ 42863,
279
+ 47425,
280
+ 49870,
281
+ 50254,
282
+ 50258,
283
+ 50358,
284
+ 50359,
285
+ 50360,
286
+ 50361,
287
+ 50362
288
+ ],
289
+ "suppress_ids_begin": [
290
+ 220,
291
+ 50257
292
+ ],
293
+ "torch_dtype": "float32",
294
+ "transformers_version": "4.45.2",
295
+ "use_cache": true,
296
+ "use_weighted_layer_sum": false,
297
+ "vocab_size": 51865
298
+ }
checkpoint-100-epoch-0/generation_config.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 5,
5
+ 3
6
+ ],
7
+ [
8
+ 5,
9
+ 9
10
+ ],
11
+ [
12
+ 8,
13
+ 0
14
+ ],
15
+ [
16
+ 8,
17
+ 4
18
+ ],
19
+ [
20
+ 8,
21
+ 7
22
+ ],
23
+ [
24
+ 8,
25
+ 8
26
+ ],
27
+ [
28
+ 9,
29
+ 0
30
+ ],
31
+ [
32
+ 9,
33
+ 7
34
+ ],
35
+ [
36
+ 9,
37
+ 9
38
+ ],
39
+ [
40
+ 10,
41
+ 5
42
+ ]
43
+ ],
44
+ "begin_suppress_tokens": [
45
+ 220,
46
+ 50257
47
+ ],
48
+ "bos_token_id": 50257,
49
+ "decoder_start_token_id": 50258,
50
+ "eos_token_id": 50257,
51
+ "is_multilingual": true,
52
+ "lang_to_id": {
53
+ "<|af|>": 50327,
54
+ "<|am|>": 50334,
55
+ "<|ar|>": 50272,
56
+ "<|as|>": 50350,
57
+ "<|az|>": 50304,
58
+ "<|ba|>": 50355,
59
+ "<|be|>": 50330,
60
+ "<|bg|>": 50292,
61
+ "<|bn|>": 50302,
62
+ "<|bo|>": 50347,
63
+ "<|br|>": 50309,
64
+ "<|bs|>": 50315,
65
+ "<|ca|>": 50270,
66
+ "<|cs|>": 50283,
67
+ "<|cy|>": 50297,
68
+ "<|da|>": 50285,
69
+ "<|de|>": 50261,
70
+ "<|el|>": 50281,
71
+ "<|en|>": 50259,
72
+ "<|es|>": 50262,
73
+ "<|et|>": 50307,
74
+ "<|eu|>": 50310,
75
+ "<|fa|>": 50300,
76
+ "<|fi|>": 50277,
77
+ "<|fo|>": 50338,
78
+ "<|fr|>": 50265,
79
+ "<|gl|>": 50319,
80
+ "<|gu|>": 50333,
81
+ "<|haw|>": 50352,
82
+ "<|ha|>": 50354,
83
+ "<|he|>": 50279,
84
+ "<|hi|>": 50276,
85
+ "<|hr|>": 50291,
86
+ "<|ht|>": 50339,
87
+ "<|hu|>": 50286,
88
+ "<|hy|>": 50312,
89
+ "<|id|>": 50275,
90
+ "<|is|>": 50311,
91
+ "<|it|>": 50274,
92
+ "<|ja|>": 50266,
93
+ "<|jw|>": 50356,
94
+ "<|ka|>": 50329,
95
+ "<|kk|>": 50316,
96
+ "<|km|>": 50323,
97
+ "<|kn|>": 50306,
98
+ "<|ko|>": 50264,
99
+ "<|la|>": 50294,
100
+ "<|lb|>": 50345,
101
+ "<|ln|>": 50353,
102
+ "<|lo|>": 50336,
103
+ "<|lt|>": 50293,
104
+ "<|lv|>": 50301,
105
+ "<|mg|>": 50349,
106
+ "<|mi|>": 50295,
107
+ "<|mk|>": 50308,
108
+ "<|ml|>": 50296,
109
+ "<|mn|>": 50314,
110
+ "<|mr|>": 50320,
111
+ "<|ms|>": 50282,
112
+ "<|mt|>": 50343,
113
+ "<|my|>": 50346,
114
+ "<|ne|>": 50313,
115
+ "<|nl|>": 50271,
116
+ "<|nn|>": 50342,
117
+ "<|no|>": 50288,
118
+ "<|oc|>": 50328,
119
+ "<|pa|>": 50321,
120
+ "<|pl|>": 50269,
121
+ "<|ps|>": 50340,
122
+ "<|pt|>": 50267,
123
+ "<|ro|>": 50284,
124
+ "<|ru|>": 50263,
125
+ "<|sa|>": 50344,
126
+ "<|sd|>": 50332,
127
+ "<|si|>": 50322,
128
+ "<|sk|>": 50298,
129
+ "<|sl|>": 50305,
130
+ "<|sn|>": 50324,
131
+ "<|so|>": 50326,
132
+ "<|sq|>": 50317,
133
+ "<|sr|>": 50303,
134
+ "<|su|>": 50357,
135
+ "<|sv|>": 50273,
136
+ "<|sw|>": 50318,
137
+ "<|ta|>": 50287,
138
+ "<|te|>": 50299,
139
+ "<|tg|>": 50331,
140
+ "<|th|>": 50289,
141
+ "<|tk|>": 50341,
142
+ "<|tl|>": 50348,
143
+ "<|tr|>": 50268,
144
+ "<|tt|>": 50351,
145
+ "<|uk|>": 50280,
146
+ "<|ur|>": 50290,
147
+ "<|uz|>": 50337,
148
+ "<|vi|>": 50278,
149
+ "<|yi|>": 50335,
150
+ "<|yo|>": 50325,
151
+ "<|zh|>": 50260
152
+ },
153
+ "language": "no",
154
+ "max_initial_timestamp_index": 1,
155
+ "max_length": 448,
156
+ "no_timestamps_token_id": 50363,
157
+ "pad_token_id": 50257,
158
+ "return_timestamps": false,
159
+ "suppress_tokens": [
160
+ 1,
161
+ 2,
162
+ 7,
163
+ 8,
164
+ 9,
165
+ 10,
166
+ 14,
167
+ 25,
168
+ 26,
169
+ 27,
170
+ 28,
171
+ 29,
172
+ 31,
173
+ 58,
174
+ 59,
175
+ 60,
176
+ 61,
177
+ 62,
178
+ 63,
179
+ 90,
180
+ 91,
181
+ 92,
182
+ 93,
183
+ 359,
184
+ 503,
185
+ 522,
186
+ 542,
187
+ 873,
188
+ 893,
189
+ 902,
190
+ 918,
191
+ 922,
192
+ 931,
193
+ 1350,
194
+ 1853,
195
+ 1982,
196
+ 2460,
197
+ 2627,
198
+ 3246,
199
+ 3253,
200
+ 3268,
201
+ 3536,
202
+ 3846,
203
+ 3961,
204
+ 4183,
205
+ 4667,
206
+ 6585,
207
+ 6647,
208
+ 7273,
209
+ 9061,
210
+ 9383,
211
+ 10428,
212
+ 10929,
213
+ 11938,
214
+ 12033,
215
+ 12331,
216
+ 12562,
217
+ 13793,
218
+ 14157,
219
+ 14635,
220
+ 15265,
221
+ 15618,
222
+ 16553,
223
+ 16604,
224
+ 18362,
225
+ 18956,
226
+ 20075,
227
+ 21675,
228
+ 22520,
229
+ 26130,
230
+ 26161,
231
+ 26435,
232
+ 28279,
233
+ 29464,
234
+ 31650,
235
+ 32302,
236
+ 32470,
237
+ 36865,
238
+ 42863,
239
+ 47425,
240
+ 49870,
241
+ 50254,
242
+ 50258,
243
+ 50358,
244
+ 50359,
245
+ 50360,
246
+ 50361,
247
+ 50362
248
+ ],
249
+ "task": "transcribe",
250
+ "task_to_id": {
251
+ "transcribe": 50359,
252
+ "translate": 50358
253
+ },
254
+ "transformers_version": "4.45.2"
255
+ }
checkpoint-100-epoch-0/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100-epoch-0/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ee2bf898e69dc0812a84a0ff94b660eb4ed8776ba5340c9f4596533059d50e1
3
+ size 588957392
checkpoint-100-epoch-0/model_1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2c458003b11d22f3cd28a74805a76bb704d2704e36e574edc7bee9d1219d28f
3
+ size 659833656
checkpoint-100-epoch-0/normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
checkpoint-100-epoch-0/optimizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:909d7017808b9925f94842af6350a98e9a104b370a7bc75fb88c9b030c3ee318
3
+ size 469918138
checkpoint-100-epoch-0/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
checkpoint-100-epoch-0/random_states_0.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da1729f3fe205c2308dabf573576215a584b40b986f5ec38eab8b5eed46172f1
3
+ size 14604
checkpoint-100-epoch-0/scheduler.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:691263e55c7bb34b6e090bd89cf079f362100d7bd758be475bd3e7091c1a4ed6
3
+ size 1064
checkpoint-100-epoch-0/special_tokens_map.json ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": {
126
+ "content": "<|endoftext|>",
127
+ "lstrip": false,
128
+ "normalized": true,
129
+ "rstrip": false,
130
+ "single_word": false
131
+ },
132
+ "unk_token": {
133
+ "content": "<|endoftext|>",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false
138
+ }
139
+ }
checkpoint-100-epoch-0/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100-epoch-0/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100-epoch-0/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "NbAiLab/nb-whisper-small",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "alignment_heads": [
6
+ [
7
+ 5,
8
+ 3
9
+ ],
10
+ [
11
+ 5,
12
+ 9
13
+ ],
14
+ [
15
+ 8,
16
+ 0
17
+ ],
18
+ [
19
+ 8,
20
+ 4
21
+ ],
22
+ [
23
+ 8,
24
+ 7
25
+ ],
26
+ [
27
+ 8,
28
+ 8
29
+ ],
30
+ [
31
+ 9,
32
+ 0
33
+ ],
34
+ [
35
+ 9,
36
+ 7
37
+ ],
38
+ [
39
+ 9,
40
+ 9
41
+ ],
42
+ [
43
+ 10,
44
+ 5
45
+ ]
46
+ ],
47
+ "apply_spec_augment": false,
48
+ "architectures": [
49
+ "WhisperForConditionalGeneration"
50
+ ],
51
+ "attention_dropout": 0,
52
+ "begin_suppress_tokens": null,
53
+ "bos_token_id": 50257,
54
+ "classifier_proj_size": 256,
55
+ "d_model": 768,
56
+ "decoder_attention_heads": 12,
57
+ "decoder_ffn_dim": 3072,
58
+ "decoder_layerdrop": 0,
59
+ "decoder_layers": 2,
60
+ "decoder_start_token_id": 50258,
61
+ "dropout": 0,
62
+ "encoder_attention_heads": 12,
63
+ "encoder_ffn_dim": 3072,
64
+ "encoder_layerdrop": 0,
65
+ "encoder_layers": 12,
66
+ "eos_token_id": 50257,
67
+ "forced_decoder_ids": [
68
+ [
69
+ 1,
70
+ 50259
71
+ ],
72
+ [
73
+ 2,
74
+ 50359
75
+ ],
76
+ [
77
+ 3,
78
+ 50363
79
+ ]
80
+ ],
81
+ "init_std": 0.02,
82
+ "is_encoder_decoder": true,
83
+ "lang_ids": [
84
+ 50259,
85
+ 50260,
86
+ 50261,
87
+ 50262,
88
+ 50263,
89
+ 50264,
90
+ 50265,
91
+ 50266,
92
+ 50267,
93
+ 50268,
94
+ 50269,
95
+ 50270,
96
+ 50271,
97
+ 50272,
98
+ 50273,
99
+ 50274,
100
+ 50275,
101
+ 50276,
102
+ 50277,
103
+ 50278,
104
+ 50279,
105
+ 50280,
106
+ 50281,
107
+ 50282,
108
+ 50283,
109
+ 50284,
110
+ 50285,
111
+ 50286,
112
+ 50287,
113
+ 50288,
114
+ 50289,
115
+ 50290,
116
+ 50291,
117
+ 50292,
118
+ 50293,
119
+ 50294,
120
+ 50295,
121
+ 50296,
122
+ 50297,
123
+ 50298,
124
+ 50299,
125
+ 50300,
126
+ 50301,
127
+ 50302,
128
+ 50303,
129
+ 50304,
130
+ 50305,
131
+ 50306,
132
+ 50307,
133
+ 50308,
134
+ 50309,
135
+ 50310,
136
+ 50311,
137
+ 50312,
138
+ 50313,
139
+ 50314,
140
+ 50315,
141
+ 50316,
142
+ 50317,
143
+ 50318,
144
+ 50319,
145
+ 50320,
146
+ 50321,
147
+ 50322,
148
+ 50323,
149
+ 50324,
150
+ 50325,
151
+ 50326,
152
+ 50327,
153
+ 50328,
154
+ 50329,
155
+ 50330,
156
+ 50331,
157
+ 50332,
158
+ 50333,
159
+ 50334,
160
+ 50335,
161
+ 50336,
162
+ 50337,
163
+ 50338,
164
+ 50339,
165
+ 50340,
166
+ 50341,
167
+ 50342,
168
+ 50343,
169
+ 50344,
170
+ 50345,
171
+ 50346,
172
+ 50347,
173
+ 50348,
174
+ 50349,
175
+ 50350,
176
+ 50351,
177
+ 50352,
178
+ 50353,
179
+ 50354,
180
+ 50355,
181
+ 50356,
182
+ 50357
183
+ ],
184
+ "mask_feature_length": 10,
185
+ "mask_feature_min_masks": 0,
186
+ "mask_feature_prob": 0,
187
+ "mask_time_length": 10,
188
+ "mask_time_min_masks": 2,
189
+ "mask_time_prob": 0.05,
190
+ "max_length": null,
191
+ "max_source_positions": 1500,
192
+ "max_target_positions": 448,
193
+ "median_filter_width": 7,
194
+ "model_type": "whisper",
195
+ "num_hidden_layers": 12,
196
+ "num_mel_bins": 80,
197
+ "pad_token_id": 50257,
198
+ "scale_embedding": false,
199
+ "suppress_ids": [
200
+ 1,
201
+ 2,
202
+ 7,
203
+ 8,
204
+ 9,
205
+ 10,
206
+ 14,
207
+ 25,
208
+ 26,
209
+ 27,
210
+ 28,
211
+ 29,
212
+ 31,
213
+ 58,
214
+ 59,
215
+ 60,
216
+ 61,
217
+ 62,
218
+ 63,
219
+ 90,
220
+ 91,
221
+ 92,
222
+ 93,
223
+ 359,
224
+ 503,
225
+ 522,
226
+ 542,
227
+ 873,
228
+ 893,
229
+ 902,
230
+ 918,
231
+ 922,
232
+ 931,
233
+ 1350,
234
+ 1853,
235
+ 1982,
236
+ 2460,
237
+ 2627,
238
+ 3246,
239
+ 3253,
240
+ 3268,
241
+ 3536,
242
+ 3846,
243
+ 3961,
244
+ 4183,
245
+ 4667,
246
+ 6585,
247
+ 6647,
248
+ 7273,
249
+ 9061,
250
+ 9383,
251
+ 10428,
252
+ 10929,
253
+ 11938,
254
+ 12033,
255
+ 12331,
256
+ 12562,
257
+ 13793,
258
+ 14157,
259
+ 14635,
260
+ 15265,
261
+ 15618,
262
+ 16553,
263
+ 16604,
264
+ 18362,
265
+ 18956,
266
+ 20075,
267
+ 21675,
268
+ 22520,
269
+ 26130,
270
+ 26161,
271
+ 26435,
272
+ 28279,
273
+ 29464,
274
+ 31650,
275
+ 32302,
276
+ 32470,
277
+ 36865,
278
+ 42863,
279
+ 47425,
280
+ 49870,
281
+ 50254,
282
+ 50258,
283
+ 50358,
284
+ 50359,
285
+ 50360,
286
+ 50361,
287
+ 50362
288
+ ],
289
+ "suppress_ids_begin": [
290
+ 220,
291
+ 50257
292
+ ],
293
+ "torch_dtype": "float32",
294
+ "transformers_version": "4.45.2",
295
+ "use_cache": true,
296
+ "use_weighted_layer_sum": false,
297
+ "vocab_size": 51865
298
+ }
create_student_model.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Initialise a student Whisper model from a pre-trained teacher model for
18
+ teacher-student distillation.
19
+ """
20
+
21
+ import argparse
22
+ import copy
23
+ import logging
24
+
25
+ import numpy as np
26
+ import torch
27
+ from transformers import GenerationConfig, WhisperForConditionalGeneration, WhisperProcessor
28
+
29
+
30
+ logger = logging.getLogger(__name__)
31
+
32
+
33
+ def parse_args():
34
+ parser = argparse.ArgumentParser(
35
+ description="Initialise a student Whisper model from a teacher model, copying the relevant layer weights and adjusting the processor as necessary."
36
+ )
37
+ parser.add_argument(
38
+ "--teacher_checkpoint",
39
+ type=str,
40
+ required=True,
41
+ help="The HF Hub ID of the teacher checkpoint.",
42
+ )
43
+ parser.add_argument(
44
+ "--subfolder",
45
+ type=str,
46
+ default="",
47
+ help="In case the relevant teacher weights are located inside a subfolder of the model repo on huggingface.co, you "
48
+ "can specify the folder name here.",
49
+ )
50
+ parser.add_argument(
51
+ "--encoder_layers",
52
+ type=int,
53
+ default=None,
54
+ help="Number of encoder layers to use in the student model. Defaults to all layers from the teacher.",
55
+ )
56
+ parser.add_argument(
57
+ "--decoder_layers",
58
+ type=int,
59
+ default=2,
60
+ help="Number of decoder layers to use in the student model. Defaults to 2 layers.",
61
+ )
62
+ parser.add_argument(
63
+ "--decoder_layers_numbers",
64
+ type=int,
65
+ nargs="*",
66
+ help="Layers numbers of the decoder teacher to use in the student model. Defaults to None, equivalent to taking first and last layer (and equivalent to `--decoder_layers_numbers 0 -1`).",
67
+ )
68
+ parser.add_argument(
69
+ "--save_dir",
70
+ type=str,
71
+ required=True,
72
+ help="Where to save the student weights and processor.",
73
+ )
74
+ parser.add_argument(
75
+ "--push_to_hub",
76
+ type=bool,
77
+ required=False,
78
+ default=False,
79
+ help="Whether to push the student weights and processor to the Hub.",
80
+ )
81
+ parser.add_argument(
82
+ "--cache_dir",
83
+ type=str,
84
+ default=None,
85
+ help="Where to store the pretrained models downloaded from huggingface.co",
86
+ )
87
+
88
+ args = parser.parse_args()
89
+ return args
90
+
91
+
92
+ def init_student_model_from_teacher(
93
+ teacher_checkpoint,
94
+ encoder_layers=None,
95
+ decoder_layers=2,
96
+ decoder_layers_numbers=None,
97
+ save_dir=None,
98
+ push_to_hub=None,
99
+ cache_dir=None,
100
+ subfolder="",
101
+ ):
102
+ if decoder_layers_numbers is not None and len(decoder_layers_numbers) != decoder_layers:
103
+ raise ValueError(
104
+ f"Got {len(decoder_layers_numbers)} layers number for {decoder_layers} decoder layers."
105
+ )
106
+
107
+ teacher_model = WhisperForConditionalGeneration.from_pretrained(
108
+ teacher_checkpoint,
109
+ cache_dir=cache_dir,
110
+ subfolder=subfolder,
111
+ low_cpu_mem_usage=True,
112
+ )
113
+ processor = WhisperProcessor.from_pretrained(teacher_checkpoint)
114
+ generation_config = GenerationConfig.from_pretrained(teacher_checkpoint)
115
+ generation_config.forced_decoder_ids = None
116
+
117
+ teacher_config = teacher_model.config
118
+ teacher_encoder_layers = teacher_config.encoder_layers
119
+ teacher_decoder_layers = teacher_config.decoder_layers
120
+
121
+ student_config = copy.deepcopy(teacher_config)
122
+ student_config.update(
123
+ {
124
+ "encoder_layers": encoder_layers if encoder_layers is not None else teacher_encoder_layers,
125
+ "decoder_layers": decoder_layers,
126
+ }
127
+ )
128
+
129
+ encoder_mapping = np.linspace(0, teacher_encoder_layers - 1, student_config.encoder_layers, dtype=int)
130
+ encoder_mapping[-1] = teacher_encoder_layers - 1
131
+
132
+ encoder_map = {}
133
+ for student_layer, teacher_layer in enumerate(encoder_mapping):
134
+ encoder_map[teacher_layer] = student_layer
135
+
136
+ if decoder_layers_numbers is None:
137
+ decoder_mapping = np.linspace(0, teacher_decoder_layers - 1, student_config.decoder_layers, dtype=int)
138
+ decoder_mapping[-1] = teacher_decoder_layers - 1
139
+ else:
140
+ decoder_mapping = decoder_layers_numbers
141
+
142
+ decoder_map = {}
143
+ for student_layer, teacher_layer in enumerate(decoder_mapping):
144
+ decoder_map[teacher_layer] = student_layer
145
+
146
+ # init the student params from the teacher model
147
+ student_model = WhisperForConditionalGeneration(student_config)
148
+ missing_keys, unexpected_keys = student_model.load_state_dict(teacher_model.state_dict(), strict=False)
149
+ if len(missing_keys) > 0:
150
+ raise RuntimeError(
151
+ "Error(s) in loading state_dict for WhisperForConditionalGeneration. \n"
152
+ f"Missing key(s) in state_dict: {missing_keys}"
153
+ )
154
+ if decoder_layers == teacher_decoder_layers:
155
+ decoder_keys = [key for key in unexpected_keys if "model.decoder.layers" in key]
156
+ if len(decoder_keys) > 0:
157
+ raise RuntimeError(
158
+ "Error(s) in loading state_dict for WhisperForConditionalGeneration. \n"
159
+ f"Unexpected key(s) in state_dict: {decoder_keys}"
160
+ )
161
+ if encoder_layers == teacher_encoder_layers:
162
+ encoder_keys = [key for key in unexpected_keys if "model.encoder.layers" in key]
163
+ if len(encoder_keys) > 0:
164
+ raise RuntimeError(
165
+ "Error(s) in loading state_dict for WhisperForConditionalGeneration. \n"
166
+ f"Unexpected key(s) in state_dict: {encoder_keys}"
167
+ )
168
+
169
+ for layer in range(teacher_decoder_layers):
170
+ if layer in decoder_map:
171
+ # re-introduce pre-defined layers from the teacher
172
+ student_model.model.decoder.layers[decoder_map[layer]].load_state_dict(
173
+ teacher_model.model.decoder.layers[layer].state_dict()
174
+ )
175
+
176
+ if encoder_layers is not None:
177
+ for layer in range(teacher_encoder_layers):
178
+ if layer in encoder_map:
179
+ # re-introduce pre-defined layers from the teacher
180
+ student_model.model.encoder.layers[encoder_map[layer]].load_state_dict(
181
+ teacher_model.model.encoder.layers[layer].state_dict()
182
+ )
183
+
184
+ # remove the teacher params and model
185
+ del teacher_model
186
+
187
+ # save the converted weights and model
188
+ if save_dir is not None:
189
+ student_model.save_pretrained(save_dir)
190
+ # we also need to correctly save the processor and generation config
191
+ processor.save_pretrained(save_dir)
192
+ generation_config.save_pretrained(save_dir)
193
+
194
+ # check we can do a forward pass with the saved model - first load the weights and processor
195
+ logger.info("Checking we can load the saved model...")
196
+ student_model = WhisperForConditionalGeneration.from_pretrained(
197
+ save_dir,
198
+ low_cpu_mem_usage=True,
199
+ )
200
+ processor = WhisperProcessor.from_pretrained(save_dir)
201
+
202
+ # define some random inputs
203
+ input_features = processor(np.ones(16000), sampling_rate=16000, return_tensors="pt").input_features
204
+ decoder_start_token_id = student_model.config.decoder_start_token_id
205
+ decoder_input_ids = torch.ones((input_features.shape[0], 1), dtype=torch.long) * decoder_start_token_id
206
+
207
+ # do a forward pass - outputs will be gibberish for the initialised model so we can't check them
208
+ # but we make can sure the model runs as expected
209
+ logger.info("Checking we can run the converted model forward...")
210
+ _ = student_model(input_features, decoder_input_ids=decoder_input_ids).logits
211
+ logger.info("Conversion successful!")
212
+
213
+ if push_to_hub:
214
+ student_model.push_to_hub(save_dir)
215
+ processor.push_to_hub(save_dir)
216
+ generation_config.push_to_hub(save_dir)
217
+
218
+
219
+ if __name__ == "__main__":
220
+ args = parse_args()
221
+
222
+ init_student_model_from_teacher(
223
+ teacher_checkpoint=args.teacher_checkpoint,
224
+ encoder_layers=args.encoder_layers,
225
+ decoder_layers=args.decoder_layers,
226
+ decoder_layers_numbers=args.decoder_layers_numbers,
227
+ save_dir=args.save_dir,
228
+ push_to_hub=args.push_to_hub,
229
+ cache_dir=args.cache_dir,
230
+ subfolder=args.subfolder,
231
+ )
distil-small-init/added_tokens.json ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50364,
3
+ "<|0.02|>": 50365,
4
+ "<|0.04|>": 50366,
5
+ "<|0.06|>": 50367,
6
+ "<|0.08|>": 50368,
7
+ "<|0.10|>": 50369,
8
+ "<|0.12|>": 50370,
9
+ "<|0.14|>": 50371,
10
+ "<|0.16|>": 50372,
11
+ "<|0.18|>": 50373,
12
+ "<|0.20|>": 50374,
13
+ "<|0.22|>": 50375,
14
+ "<|0.24|>": 50376,
15
+ "<|0.26|>": 50377,
16
+ "<|0.28|>": 50378,
17
+ "<|0.30|>": 50379,
18
+ "<|0.32|>": 50380,
19
+ "<|0.34|>": 50381,
20
+ "<|0.36|>": 50382,
21
+ "<|0.38|>": 50383,
22
+ "<|0.40|>": 50384,
23
+ "<|0.42|>": 50385,
24
+ "<|0.44|>": 50386,
25
+ "<|0.46|>": 50387,
26
+ "<|0.48|>": 50388,
27
+ "<|0.50|>": 50389,
28
+ "<|0.52|>": 50390,
29
+ "<|0.54|>": 50391,
30
+ "<|0.56|>": 50392,
31
+ "<|0.58|>": 50393,
32
+ "<|0.60|>": 50394,
33
+ "<|0.62|>": 50395,
34
+ "<|0.64|>": 50396,
35
+ "<|0.66|>": 50397,
36
+ "<|0.68|>": 50398,
37
+ "<|0.70|>": 50399,
38
+ "<|0.72|>": 50400,
39
+ "<|0.74|>": 50401,
40
+ "<|0.76|>": 50402,
41
+ "<|0.78|>": 50403,
42
+ "<|0.80|>": 50404,
43
+ "<|0.82|>": 50405,
44
+ "<|0.84|>": 50406,
45
+ "<|0.86|>": 50407,
46
+ "<|0.88|>": 50408,
47
+ "<|0.90|>": 50409,
48
+ "<|0.92|>": 50410,
49
+ "<|0.94|>": 50411,
50
+ "<|0.96|>": 50412,
51
+ "<|0.98|>": 50413,
52
+ "<|1.00|>": 50414,
53
+ "<|1.02|>": 50415,
54
+ "<|1.04|>": 50416,
55
+ "<|1.06|>": 50417,
56
+ "<|1.08|>": 50418,
57
+ "<|1.10|>": 50419,
58
+ "<|1.12|>": 50420,
59
+ "<|1.14|>": 50421,
60
+ "<|1.16|>": 50422,
61
+ "<|1.18|>": 50423,
62
+ "<|1.20|>": 50424,
63
+ "<|1.22|>": 50425,
64
+ "<|1.24|>": 50426,
65
+ "<|1.26|>": 50427,
66
+ "<|1.28|>": 50428,
67
+ "<|1.30|>": 50429,
68
+ "<|1.32|>": 50430,
69
+ "<|1.34|>": 50431,
70
+ "<|1.36|>": 50432,
71
+ "<|1.38|>": 50433,
72
+ "<|1.40|>": 50434,
73
+ "<|1.42|>": 50435,
74
+ "<|1.44|>": 50436,
75
+ "<|1.46|>": 50437,
76
+ "<|1.48|>": 50438,
77
+ "<|1.50|>": 50439,
78
+ "<|1.52|>": 50440,
79
+ "<|1.54|>": 50441,
80
+ "<|1.56|>": 50442,
81
+ "<|1.58|>": 50443,
82
+ "<|1.60|>": 50444,
83
+ "<|1.62|>": 50445,
84
+ "<|1.64|>": 50446,
85
+ "<|1.66|>": 50447,
86
+ "<|1.68|>": 50448,
87
+ "<|1.70|>": 50449,
88
+ "<|1.72|>": 50450,
89
+ "<|1.74|>": 50451,
90
+ "<|1.76|>": 50452,
91
+ "<|1.78|>": 50453,
92
+ "<|1.80|>": 50454,
93
+ "<|1.82|>": 50455,
94
+ "<|1.84|>": 50456,
95
+ "<|1.86|>": 50457,
96
+ "<|1.88|>": 50458,
97
+ "<|1.90|>": 50459,
98
+ "<|1.92|>": 50460,
99
+ "<|1.94|>": 50461,
100
+ "<|1.96|>": 50462,
101
+ "<|1.98|>": 50463,
102
+ "<|10.00|>": 50864,
103
+ "<|10.02|>": 50865,
104
+ "<|10.04|>": 50866,
105
+ "<|10.06|>": 50867,
106
+ "<|10.08|>": 50868,
107
+ "<|10.10|>": 50869,
108
+ "<|10.12|>": 50870,
109
+ "<|10.14|>": 50871,
110
+ "<|10.16|>": 50872,
111
+ "<|10.18|>": 50873,
112
+ "<|10.20|>": 50874,
113
+ "<|10.22|>": 50875,
114
+ "<|10.24|>": 50876,
115
+ "<|10.26|>": 50877,
116
+ "<|10.28|>": 50878,
117
+ "<|10.30|>": 50879,
118
+ "<|10.32|>": 50880,
119
+ "<|10.34|>": 50881,
120
+ "<|10.36|>": 50882,
121
+ "<|10.38|>": 50883,
122
+ "<|10.40|>": 50884,
123
+ "<|10.42|>": 50885,
124
+ "<|10.44|>": 50886,
125
+ "<|10.46|>": 50887,
126
+ "<|10.48|>": 50888,
127
+ "<|10.50|>": 50889,
128
+ "<|10.52|>": 50890,
129
+ "<|10.54|>": 50891,
130
+ "<|10.56|>": 50892,
131
+ "<|10.58|>": 50893,
132
+ "<|10.60|>": 50894,
133
+ "<|10.62|>": 50895,
134
+ "<|10.64|>": 50896,
135
+ "<|10.66|>": 50897,
136
+ "<|10.68|>": 50898,
137
+ "<|10.70|>": 50899,
138
+ "<|10.72|>": 50900,
139
+ "<|10.74|>": 50901,
140
+ "<|10.76|>": 50902,
141
+ "<|10.78|>": 50903,
142
+ "<|10.80|>": 50904,
143
+ "<|10.82|>": 50905,
144
+ "<|10.84|>": 50906,
145
+ "<|10.86|>": 50907,
146
+ "<|10.88|>": 50908,
147
+ "<|10.90|>": 50909,
148
+ "<|10.92|>": 50910,
149
+ "<|10.94|>": 50911,
150
+ "<|10.96|>": 50912,
151
+ "<|10.98|>": 50913,
152
+ "<|11.00|>": 50914,
153
+ "<|11.02|>": 50915,
154
+ "<|11.04|>": 50916,
155
+ "<|11.06|>": 50917,
156
+ "<|11.08|>": 50918,
157
+ "<|11.10|>": 50919,
158
+ "<|11.12|>": 50920,
159
+ "<|11.14|>": 50921,
160
+ "<|11.16|>": 50922,
161
+ "<|11.18|>": 50923,
162
+ "<|11.20|>": 50924,
163
+ "<|11.22|>": 50925,
164
+ "<|11.24|>": 50926,
165
+ "<|11.26|>": 50927,
166
+ "<|11.28|>": 50928,
167
+ "<|11.30|>": 50929,
168
+ "<|11.32|>": 50930,
169
+ "<|11.34|>": 50931,
170
+ "<|11.36|>": 50932,
171
+ "<|11.38|>": 50933,
172
+ "<|11.40|>": 50934,
173
+ "<|11.42|>": 50935,
174
+ "<|11.44|>": 50936,
175
+ "<|11.46|>": 50937,
176
+ "<|11.48|>": 50938,
177
+ "<|11.50|>": 50939,
178
+ "<|11.52|>": 50940,
179
+ "<|11.54|>": 50941,
180
+ "<|11.56|>": 50942,
181
+ "<|11.58|>": 50943,
182
+ "<|11.60|>": 50944,
183
+ "<|11.62|>": 50945,
184
+ "<|11.64|>": 50946,
185
+ "<|11.66|>": 50947,
186
+ "<|11.68|>": 50948,
187
+ "<|11.70|>": 50949,
188
+ "<|11.72|>": 50950,
189
+ "<|11.74|>": 50951,
190
+ "<|11.76|>": 50952,
191
+ "<|11.78|>": 50953,
192
+ "<|11.80|>": 50954,
193
+ "<|11.82|>": 50955,
194
+ "<|11.84|>": 50956,
195
+ "<|11.86|>": 50957,
196
+ "<|11.88|>": 50958,
197
+ "<|11.90|>": 50959,
198
+ "<|11.92|>": 50960,
199
+ "<|11.94|>": 50961,
200
+ "<|11.96|>": 50962,
201
+ "<|11.98|>": 50963,
202
+ "<|12.00|>": 50964,
203
+ "<|12.02|>": 50965,
204
+ "<|12.04|>": 50966,
205
+ "<|12.06|>": 50967,
206
+ "<|12.08|>": 50968,
207
+ "<|12.10|>": 50969,
208
+ "<|12.12|>": 50970,
209
+ "<|12.14|>": 50971,
210
+ "<|12.16|>": 50972,
211
+ "<|12.18|>": 50973,
212
+ "<|12.20|>": 50974,
213
+ "<|12.22|>": 50975,
214
+ "<|12.24|>": 50976,
215
+ "<|12.26|>": 50977,
216
+ "<|12.28|>": 50978,
217
+ "<|12.30|>": 50979,
218
+ "<|12.32|>": 50980,
219
+ "<|12.34|>": 50981,
220
+ "<|12.36|>": 50982,
221
+ "<|12.38|>": 50983,
222
+ "<|12.40|>": 50984,
223
+ "<|12.42|>": 50985,
224
+ "<|12.44|>": 50986,
225
+ "<|12.46|>": 50987,
226
+ "<|12.48|>": 50988,
227
+ "<|12.50|>": 50989,
228
+ "<|12.52|>": 50990,
229
+ "<|12.54|>": 50991,
230
+ "<|12.56|>": 50992,
231
+ "<|12.58|>": 50993,
232
+ "<|12.60|>": 50994,
233
+ "<|12.62|>": 50995,
234
+ "<|12.64|>": 50996,
235
+ "<|12.66|>": 50997,
236
+ "<|12.68|>": 50998,
237
+ "<|12.70|>": 50999,
238
+ "<|12.72|>": 51000,
239
+ "<|12.74|>": 51001,
240
+ "<|12.76|>": 51002,
241
+ "<|12.78|>": 51003,
242
+ "<|12.80|>": 51004,
243
+ "<|12.82|>": 51005,
244
+ "<|12.84|>": 51006,
245
+ "<|12.86|>": 51007,
246
+ "<|12.88|>": 51008,
247
+ "<|12.90|>": 51009,
248
+ "<|12.92|>": 51010,
249
+ "<|12.94|>": 51011,
250
+ "<|12.96|>": 51012,
251
+ "<|12.98|>": 51013,
252
+ "<|13.00|>": 51014,
253
+ "<|13.02|>": 51015,
254
+ "<|13.04|>": 51016,
255
+ "<|13.06|>": 51017,
256
+ "<|13.08|>": 51018,
257
+ "<|13.10|>": 51019,
258
+ "<|13.12|>": 51020,
259
+ "<|13.14|>": 51021,
260
+ "<|13.16|>": 51022,
261
+ "<|13.18|>": 51023,
262
+ "<|13.20|>": 51024,
263
+ "<|13.22|>": 51025,
264
+ "<|13.24|>": 51026,
265
+ "<|13.26|>": 51027,
266
+ "<|13.28|>": 51028,
267
+ "<|13.30|>": 51029,
268
+ "<|13.32|>": 51030,
269
+ "<|13.34|>": 51031,
270
+ "<|13.36|>": 51032,
271
+ "<|13.38|>": 51033,
272
+ "<|13.40|>": 51034,
273
+ "<|13.42|>": 51035,
274
+ "<|13.44|>": 51036,
275
+ "<|13.46|>": 51037,
276
+ "<|13.48|>": 51038,
277
+ "<|13.50|>": 51039,
278
+ "<|13.52|>": 51040,
279
+ "<|13.54|>": 51041,
280
+ "<|13.56|>": 51042,
281
+ "<|13.58|>": 51043,
282
+ "<|13.60|>": 51044,
283
+ "<|13.62|>": 51045,
284
+ "<|13.64|>": 51046,
285
+ "<|13.66|>": 51047,
286
+ "<|13.68|>": 51048,
287
+ "<|13.70|>": 51049,
288
+ "<|13.72|>": 51050,
289
+ "<|13.74|>": 51051,
290
+ "<|13.76|>": 51052,
291
+ "<|13.78|>": 51053,
292
+ "<|13.80|>": 51054,
293
+ "<|13.82|>": 51055,
294
+ "<|13.84|>": 51056,
295
+ "<|13.86|>": 51057,
296
+ "<|13.88|>": 51058,
297
+ "<|13.90|>": 51059,
298
+ "<|13.92|>": 51060,
299
+ "<|13.94|>": 51061,
300
+ "<|13.96|>": 51062,
301
+ "<|13.98|>": 51063,
302
+ "<|14.00|>": 51064,
303
+ "<|14.02|>": 51065,
304
+ "<|14.04|>": 51066,
305
+ "<|14.06|>": 51067,
306
+ "<|14.08|>": 51068,
307
+ "<|14.10|>": 51069,
308
+ "<|14.12|>": 51070,
309
+ "<|14.14|>": 51071,
310
+ "<|14.16|>": 51072,
311
+ "<|14.18|>": 51073,
312
+ "<|14.20|>": 51074,
313
+ "<|14.22|>": 51075,
314
+ "<|14.24|>": 51076,
315
+ "<|14.26|>": 51077,
316
+ "<|14.28|>": 51078,
317
+ "<|14.30|>": 51079,
318
+ "<|14.32|>": 51080,
319
+ "<|14.34|>": 51081,
320
+ "<|14.36|>": 51082,
321
+ "<|14.38|>": 51083,
322
+ "<|14.40|>": 51084,
323
+ "<|14.42|>": 51085,
324
+ "<|14.44|>": 51086,
325
+ "<|14.46|>": 51087,
326
+ "<|14.48|>": 51088,
327
+ "<|14.50|>": 51089,
328
+ "<|14.52|>": 51090,
329
+ "<|14.54|>": 51091,
330
+ "<|14.56|>": 51092,
331
+ "<|14.58|>": 51093,
332
+ "<|14.60|>": 51094,
333
+ "<|14.62|>": 51095,
334
+ "<|14.64|>": 51096,
335
+ "<|14.66|>": 51097,
336
+ "<|14.68|>": 51098,
337
+ "<|14.70|>": 51099,
338
+ "<|14.72|>": 51100,
339
+ "<|14.74|>": 51101,
340
+ "<|14.76|>": 51102,
341
+ "<|14.78|>": 51103,
342
+ "<|14.80|>": 51104,
343
+ "<|14.82|>": 51105,
344
+ "<|14.84|>": 51106,
345
+ "<|14.86|>": 51107,
346
+ "<|14.88|>": 51108,
347
+ "<|14.90|>": 51109,
348
+ "<|14.92|>": 51110,
349
+ "<|14.94|>": 51111,
350
+ "<|14.96|>": 51112,
351
+ "<|14.98|>": 51113,
352
+ "<|15.00|>": 51114,
353
+ "<|15.02|>": 51115,
354
+ "<|15.04|>": 51116,
355
+ "<|15.06|>": 51117,
356
+ "<|15.08|>": 51118,
357
+ "<|15.10|>": 51119,
358
+ "<|15.12|>": 51120,
359
+ "<|15.14|>": 51121,
360
+ "<|15.16|>": 51122,
361
+ "<|15.18|>": 51123,
362
+ "<|15.20|>": 51124,
363
+ "<|15.22|>": 51125,
364
+ "<|15.24|>": 51126,
365
+ "<|15.26|>": 51127,
366
+ "<|15.28|>": 51128,
367
+ "<|15.30|>": 51129,
368
+ "<|15.32|>": 51130,
369
+ "<|15.34|>": 51131,
370
+ "<|15.36|>": 51132,
371
+ "<|15.38|>": 51133,
372
+ "<|15.40|>": 51134,
373
+ "<|15.42|>": 51135,
374
+ "<|15.44|>": 51136,
375
+ "<|15.46|>": 51137,
376
+ "<|15.48|>": 51138,
377
+ "<|15.50|>": 51139,
378
+ "<|15.52|>": 51140,
379
+ "<|15.54|>": 51141,
380
+ "<|15.56|>": 51142,
381
+ "<|15.58|>": 51143,
382
+ "<|15.60|>": 51144,
383
+ "<|15.62|>": 51145,
384
+ "<|15.64|>": 51146,
385
+ "<|15.66|>": 51147,
386
+ "<|15.68|>": 51148,
387
+ "<|15.70|>": 51149,
388
+ "<|15.72|>": 51150,
389
+ "<|15.74|>": 51151,
390
+ "<|15.76|>": 51152,
391
+ "<|15.78|>": 51153,
392
+ "<|15.80|>": 51154,
393
+ "<|15.82|>": 51155,
394
+ "<|15.84|>": 51156,
395
+ "<|15.86|>": 51157,
396
+ "<|15.88|>": 51158,
397
+ "<|15.90|>": 51159,
398
+ "<|15.92|>": 51160,
399
+ "<|15.94|>": 51161,
400
+ "<|15.96|>": 51162,
401
+ "<|15.98|>": 51163,
402
+ "<|16.00|>": 51164,
403
+ "<|16.02|>": 51165,
404
+ "<|16.04|>": 51166,
405
+ "<|16.06|>": 51167,
406
+ "<|16.08|>": 51168,
407
+ "<|16.10|>": 51169,
408
+ "<|16.12|>": 51170,
409
+ "<|16.14|>": 51171,
410
+ "<|16.16|>": 51172,
411
+ "<|16.18|>": 51173,
412
+ "<|16.20|>": 51174,
413
+ "<|16.22|>": 51175,
414
+ "<|16.24|>": 51176,
415
+ "<|16.26|>": 51177,
416
+ "<|16.28|>": 51178,
417
+ "<|16.30|>": 51179,
418
+ "<|16.32|>": 51180,
419
+ "<|16.34|>": 51181,
420
+ "<|16.36|>": 51182,
421
+ "<|16.38|>": 51183,
422
+ "<|16.40|>": 51184,
423
+ "<|16.42|>": 51185,
424
+ "<|16.44|>": 51186,
425
+ "<|16.46|>": 51187,
426
+ "<|16.48|>": 51188,
427
+ "<|16.50|>": 51189,
428
+ "<|16.52|>": 51190,
429
+ "<|16.54|>": 51191,
430
+ "<|16.56|>": 51192,
431
+ "<|16.58|>": 51193,
432
+ "<|16.60|>": 51194,
433
+ "<|16.62|>": 51195,
434
+ "<|16.64|>": 51196,
435
+ "<|16.66|>": 51197,
436
+ "<|16.68|>": 51198,
437
+ "<|16.70|>": 51199,
438
+ "<|16.72|>": 51200,
439
+ "<|16.74|>": 51201,
440
+ "<|16.76|>": 51202,
441
+ "<|16.78|>": 51203,
442
+ "<|16.80|>": 51204,
443
+ "<|16.82|>": 51205,
444
+ "<|16.84|>": 51206,
445
+ "<|16.86|>": 51207,
446
+ "<|16.88|>": 51208,
447
+ "<|16.90|>": 51209,
448
+ "<|16.92|>": 51210,
449
+ "<|16.94|>": 51211,
450
+ "<|16.96|>": 51212,
451
+ "<|16.98|>": 51213,
452
+ "<|17.00|>": 51214,
453
+ "<|17.02|>": 51215,
454
+ "<|17.04|>": 51216,
455
+ "<|17.06|>": 51217,
456
+ "<|17.08|>": 51218,
457
+ "<|17.10|>": 51219,
458
+ "<|17.12|>": 51220,
459
+ "<|17.14|>": 51221,
460
+ "<|17.16|>": 51222,
461
+ "<|17.18|>": 51223,
462
+ "<|17.20|>": 51224,
463
+ "<|17.22|>": 51225,
464
+ "<|17.24|>": 51226,
465
+ "<|17.26|>": 51227,
466
+ "<|17.28|>": 51228,
467
+ "<|17.30|>": 51229,
468
+ "<|17.32|>": 51230,
469
+ "<|17.34|>": 51231,
470
+ "<|17.36|>": 51232,
471
+ "<|17.38|>": 51233,
472
+ "<|17.40|>": 51234,
473
+ "<|17.42|>": 51235,
474
+ "<|17.44|>": 51236,
475
+ "<|17.46|>": 51237,
476
+ "<|17.48|>": 51238,
477
+ "<|17.50|>": 51239,
478
+ "<|17.52|>": 51240,
479
+ "<|17.54|>": 51241,
480
+ "<|17.56|>": 51242,
481
+ "<|17.58|>": 51243,
482
+ "<|17.60|>": 51244,
483
+ "<|17.62|>": 51245,
484
+ "<|17.64|>": 51246,
485
+ "<|17.66|>": 51247,
486
+ "<|17.68|>": 51248,
487
+ "<|17.70|>": 51249,
488
+ "<|17.72|>": 51250,
489
+ "<|17.74|>": 51251,
490
+ "<|17.76|>": 51252,
491
+ "<|17.78|>": 51253,
492
+ "<|17.80|>": 51254,
493
+ "<|17.82|>": 51255,
494
+ "<|17.84|>": 51256,
495
+ "<|17.86|>": 51257,
496
+ "<|17.88|>": 51258,
497
+ "<|17.90|>": 51259,
498
+ "<|17.92|>": 51260,
499
+ "<|17.94|>": 51261,
500
+ "<|17.96|>": 51262,
501
+ "<|17.98|>": 51263,
502
+ "<|18.00|>": 51264,
503
+ "<|18.02|>": 51265,
504
+ "<|18.04|>": 51266,
505
+ "<|18.06|>": 51267,
506
+ "<|18.08|>": 51268,
507
+ "<|18.10|>": 51269,
508
+ "<|18.12|>": 51270,
509
+ "<|18.14|>": 51271,
510
+ "<|18.16|>": 51272,
511
+ "<|18.18|>": 51273,
512
+ "<|18.20|>": 51274,
513
+ "<|18.22|>": 51275,
514
+ "<|18.24|>": 51276,
515
+ "<|18.26|>": 51277,
516
+ "<|18.28|>": 51278,
517
+ "<|18.30|>": 51279,
518
+ "<|18.32|>": 51280,
519
+ "<|18.34|>": 51281,
520
+ "<|18.36|>": 51282,
521
+ "<|18.38|>": 51283,
522
+ "<|18.40|>": 51284,
523
+ "<|18.42|>": 51285,
524
+ "<|18.44|>": 51286,
525
+ "<|18.46|>": 51287,
526
+ "<|18.48|>": 51288,
527
+ "<|18.50|>": 51289,
528
+ "<|18.52|>": 51290,
529
+ "<|18.54|>": 51291,
530
+ "<|18.56|>": 51292,
531
+ "<|18.58|>": 51293,
532
+ "<|18.60|>": 51294,
533
+ "<|18.62|>": 51295,
534
+ "<|18.64|>": 51296,
535
+ "<|18.66|>": 51297,
536
+ "<|18.68|>": 51298,
537
+ "<|18.70|>": 51299,
538
+ "<|18.72|>": 51300,
539
+ "<|18.74|>": 51301,
540
+ "<|18.76|>": 51302,
541
+ "<|18.78|>": 51303,
542
+ "<|18.80|>": 51304,
543
+ "<|18.82|>": 51305,
544
+ "<|18.84|>": 51306,
545
+ "<|18.86|>": 51307,
546
+ "<|18.88|>": 51308,
547
+ "<|18.90|>": 51309,
548
+ "<|18.92|>": 51310,
549
+ "<|18.94|>": 51311,
550
+ "<|18.96|>": 51312,
551
+ "<|18.98|>": 51313,
552
+ "<|19.00|>": 51314,
553
+ "<|19.02|>": 51315,
554
+ "<|19.04|>": 51316,
555
+ "<|19.06|>": 51317,
556
+ "<|19.08|>": 51318,
557
+ "<|19.10|>": 51319,
558
+ "<|19.12|>": 51320,
559
+ "<|19.14|>": 51321,
560
+ "<|19.16|>": 51322,
561
+ "<|19.18|>": 51323,
562
+ "<|19.20|>": 51324,
563
+ "<|19.22|>": 51325,
564
+ "<|19.24|>": 51326,
565
+ "<|19.26|>": 51327,
566
+ "<|19.28|>": 51328,
567
+ "<|19.30|>": 51329,
568
+ "<|19.32|>": 51330,
569
+ "<|19.34|>": 51331,
570
+ "<|19.36|>": 51332,
571
+ "<|19.38|>": 51333,
572
+ "<|19.40|>": 51334,
573
+ "<|19.42|>": 51335,
574
+ "<|19.44|>": 51336,
575
+ "<|19.46|>": 51337,
576
+ "<|19.48|>": 51338,
577
+ "<|19.50|>": 51339,
578
+ "<|19.52|>": 51340,
579
+ "<|19.54|>": 51341,
580
+ "<|19.56|>": 51342,
581
+ "<|19.58|>": 51343,
582
+ "<|19.60|>": 51344,
583
+ "<|19.62|>": 51345,
584
+ "<|19.64|>": 51346,
585
+ "<|19.66|>": 51347,
586
+ "<|19.68|>": 51348,
587
+ "<|19.70|>": 51349,
588
+ "<|19.72|>": 51350,
589
+ "<|19.74|>": 51351,
590
+ "<|19.76|>": 51352,
591
+ "<|19.78|>": 51353,
592
+ "<|19.80|>": 51354,
593
+ "<|19.82|>": 51355,
594
+ "<|19.84|>": 51356,
595
+ "<|19.86|>": 51357,
596
+ "<|19.88|>": 51358,
597
+ "<|19.90|>": 51359,
598
+ "<|19.92|>": 51360,
599
+ "<|19.94|>": 51361,
600
+ "<|19.96|>": 51362,
601
+ "<|19.98|>": 51363,
602
+ "<|2.00|>": 50464,
603
+ "<|2.02|>": 50465,
604
+ "<|2.04|>": 50466,
605
+ "<|2.06|>": 50467,
606
+ "<|2.08|>": 50468,
607
+ "<|2.10|>": 50469,
608
+ "<|2.12|>": 50470,
609
+ "<|2.14|>": 50471,
610
+ "<|2.16|>": 50472,
611
+ "<|2.18|>": 50473,
612
+ "<|2.20|>": 50474,
613
+ "<|2.22|>": 50475,
614
+ "<|2.24|>": 50476,
615
+ "<|2.26|>": 50477,
616
+ "<|2.28|>": 50478,
617
+ "<|2.30|>": 50479,
618
+ "<|2.32|>": 50480,
619
+ "<|2.34|>": 50481,
620
+ "<|2.36|>": 50482,
621
+ "<|2.38|>": 50483,
622
+ "<|2.40|>": 50484,
623
+ "<|2.42|>": 50485,
624
+ "<|2.44|>": 50486,
625
+ "<|2.46|>": 50487,
626
+ "<|2.48|>": 50488,
627
+ "<|2.50|>": 50489,
628
+ "<|2.52|>": 50490,
629
+ "<|2.54|>": 50491,
630
+ "<|2.56|>": 50492,
631
+ "<|2.58|>": 50493,
632
+ "<|2.60|>": 50494,
633
+ "<|2.62|>": 50495,
634
+ "<|2.64|>": 50496,
635
+ "<|2.66|>": 50497,
636
+ "<|2.68|>": 50498,
637
+ "<|2.70|>": 50499,
638
+ "<|2.72|>": 50500,
639
+ "<|2.74|>": 50501,
640
+ "<|2.76|>": 50502,
641
+ "<|2.78|>": 50503,
642
+ "<|2.80|>": 50504,
643
+ "<|2.82|>": 50505,
644
+ "<|2.84|>": 50506,
645
+ "<|2.86|>": 50507,
646
+ "<|2.88|>": 50508,
647
+ "<|2.90|>": 50509,
648
+ "<|2.92|>": 50510,
649
+ "<|2.94|>": 50511,
650
+ "<|2.96|>": 50512,
651
+ "<|2.98|>": 50513,
652
+ "<|20.00|>": 51364,
653
+ "<|20.02|>": 51365,
654
+ "<|20.04|>": 51366,
655
+ "<|20.06|>": 51367,
656
+ "<|20.08|>": 51368,
657
+ "<|20.10|>": 51369,
658
+ "<|20.12|>": 51370,
659
+ "<|20.14|>": 51371,
660
+ "<|20.16|>": 51372,
661
+ "<|20.18|>": 51373,
662
+ "<|20.20|>": 51374,
663
+ "<|20.22|>": 51375,
664
+ "<|20.24|>": 51376,
665
+ "<|20.26|>": 51377,
666
+ "<|20.28|>": 51378,
667
+ "<|20.30|>": 51379,
668
+ "<|20.32|>": 51380,
669
+ "<|20.34|>": 51381,
670
+ "<|20.36|>": 51382,
671
+ "<|20.38|>": 51383,
672
+ "<|20.40|>": 51384,
673
+ "<|20.42|>": 51385,
674
+ "<|20.44|>": 51386,
675
+ "<|20.46|>": 51387,
676
+ "<|20.48|>": 51388,
677
+ "<|20.50|>": 51389,
678
+ "<|20.52|>": 51390,
679
+ "<|20.54|>": 51391,
680
+ "<|20.56|>": 51392,
681
+ "<|20.58|>": 51393,
682
+ "<|20.60|>": 51394,
683
+ "<|20.62|>": 51395,
684
+ "<|20.64|>": 51396,
685
+ "<|20.66|>": 51397,
686
+ "<|20.68|>": 51398,
687
+ "<|20.70|>": 51399,
688
+ "<|20.72|>": 51400,
689
+ "<|20.74|>": 51401,
690
+ "<|20.76|>": 51402,
691
+ "<|20.78|>": 51403,
692
+ "<|20.80|>": 51404,
693
+ "<|20.82|>": 51405,
694
+ "<|20.84|>": 51406,
695
+ "<|20.86|>": 51407,
696
+ "<|20.88|>": 51408,
697
+ "<|20.90|>": 51409,
698
+ "<|20.92|>": 51410,
699
+ "<|20.94|>": 51411,
700
+ "<|20.96|>": 51412,
701
+ "<|20.98|>": 51413,
702
+ "<|21.00|>": 51414,
703
+ "<|21.02|>": 51415,
704
+ "<|21.04|>": 51416,
705
+ "<|21.06|>": 51417,
706
+ "<|21.08|>": 51418,
707
+ "<|21.10|>": 51419,
708
+ "<|21.12|>": 51420,
709
+ "<|21.14|>": 51421,
710
+ "<|21.16|>": 51422,
711
+ "<|21.18|>": 51423,
712
+ "<|21.20|>": 51424,
713
+ "<|21.22|>": 51425,
714
+ "<|21.24|>": 51426,
715
+ "<|21.26|>": 51427,
716
+ "<|21.28|>": 51428,
717
+ "<|21.30|>": 51429,
718
+ "<|21.32|>": 51430,
719
+ "<|21.34|>": 51431,
720
+ "<|21.36|>": 51432,
721
+ "<|21.38|>": 51433,
722
+ "<|21.40|>": 51434,
723
+ "<|21.42|>": 51435,
724
+ "<|21.44|>": 51436,
725
+ "<|21.46|>": 51437,
726
+ "<|21.48|>": 51438,
727
+ "<|21.50|>": 51439,
728
+ "<|21.52|>": 51440,
729
+ "<|21.54|>": 51441,
730
+ "<|21.56|>": 51442,
731
+ "<|21.58|>": 51443,
732
+ "<|21.60|>": 51444,
733
+ "<|21.62|>": 51445,
734
+ "<|21.64|>": 51446,
735
+ "<|21.66|>": 51447,
736
+ "<|21.68|>": 51448,
737
+ "<|21.70|>": 51449,
738
+ "<|21.72|>": 51450,
739
+ "<|21.74|>": 51451,
740
+ "<|21.76|>": 51452,
741
+ "<|21.78|>": 51453,
742
+ "<|21.80|>": 51454,
743
+ "<|21.82|>": 51455,
744
+ "<|21.84|>": 51456,
745
+ "<|21.86|>": 51457,
746
+ "<|21.88|>": 51458,
747
+ "<|21.90|>": 51459,
748
+ "<|21.92|>": 51460,
749
+ "<|21.94|>": 51461,
750
+ "<|21.96|>": 51462,
751
+ "<|21.98|>": 51463,
752
+ "<|22.00|>": 51464,
753
+ "<|22.02|>": 51465,
754
+ "<|22.04|>": 51466,
755
+ "<|22.06|>": 51467,
756
+ "<|22.08|>": 51468,
757
+ "<|22.10|>": 51469,
758
+ "<|22.12|>": 51470,
759
+ "<|22.14|>": 51471,
760
+ "<|22.16|>": 51472,
761
+ "<|22.18|>": 51473,
762
+ "<|22.20|>": 51474,
763
+ "<|22.22|>": 51475,
764
+ "<|22.24|>": 51476,
765
+ "<|22.26|>": 51477,
766
+ "<|22.28|>": 51478,
767
+ "<|22.30|>": 51479,
768
+ "<|22.32|>": 51480,
769
+ "<|22.34|>": 51481,
770
+ "<|22.36|>": 51482,
771
+ "<|22.38|>": 51483,
772
+ "<|22.40|>": 51484,
773
+ "<|22.42|>": 51485,
774
+ "<|22.44|>": 51486,
775
+ "<|22.46|>": 51487,
776
+ "<|22.48|>": 51488,
777
+ "<|22.50|>": 51489,
778
+ "<|22.52|>": 51490,
779
+ "<|22.54|>": 51491,
780
+ "<|22.56|>": 51492,
781
+ "<|22.58|>": 51493,
782
+ "<|22.60|>": 51494,
783
+ "<|22.62|>": 51495,
784
+ "<|22.64|>": 51496,
785
+ "<|22.66|>": 51497,
786
+ "<|22.68|>": 51498,
787
+ "<|22.70|>": 51499,
788
+ "<|22.72|>": 51500,
789
+ "<|22.74|>": 51501,
790
+ "<|22.76|>": 51502,
791
+ "<|22.78|>": 51503,
792
+ "<|22.80|>": 51504,
793
+ "<|22.82|>": 51505,
794
+ "<|22.84|>": 51506,
795
+ "<|22.86|>": 51507,
796
+ "<|22.88|>": 51508,
797
+ "<|22.90|>": 51509,
798
+ "<|22.92|>": 51510,
799
+ "<|22.94|>": 51511,
800
+ "<|22.96|>": 51512,
801
+ "<|22.98|>": 51513,
802
+ "<|23.00|>": 51514,
803
+ "<|23.02|>": 51515,
804
+ "<|23.04|>": 51516,
805
+ "<|23.06|>": 51517,
806
+ "<|23.08|>": 51518,
807
+ "<|23.10|>": 51519,
808
+ "<|23.12|>": 51520,
809
+ "<|23.14|>": 51521,
810
+ "<|23.16|>": 51522,
811
+ "<|23.18|>": 51523,
812
+ "<|23.20|>": 51524,
813
+ "<|23.22|>": 51525,
814
+ "<|23.24|>": 51526,
815
+ "<|23.26|>": 51527,
816
+ "<|23.28|>": 51528,
817
+ "<|23.30|>": 51529,
818
+ "<|23.32|>": 51530,
819
+ "<|23.34|>": 51531,
820
+ "<|23.36|>": 51532,
821
+ "<|23.38|>": 51533,
822
+ "<|23.40|>": 51534,
823
+ "<|23.42|>": 51535,
824
+ "<|23.44|>": 51536,
825
+ "<|23.46|>": 51537,
826
+ "<|23.48|>": 51538,
827
+ "<|23.50|>": 51539,
828
+ "<|23.52|>": 51540,
829
+ "<|23.54|>": 51541,
830
+ "<|23.56|>": 51542,
831
+ "<|23.58|>": 51543,
832
+ "<|23.60|>": 51544,
833
+ "<|23.62|>": 51545,
834
+ "<|23.64|>": 51546,
835
+ "<|23.66|>": 51547,
836
+ "<|23.68|>": 51548,
837
+ "<|23.70|>": 51549,
838
+ "<|23.72|>": 51550,
839
+ "<|23.74|>": 51551,
840
+ "<|23.76|>": 51552,
841
+ "<|23.78|>": 51553,
842
+ "<|23.80|>": 51554,
843
+ "<|23.82|>": 51555,
844
+ "<|23.84|>": 51556,
845
+ "<|23.86|>": 51557,
846
+ "<|23.88|>": 51558,
847
+ "<|23.90|>": 51559,
848
+ "<|23.92|>": 51560,
849
+ "<|23.94|>": 51561,
850
+ "<|23.96|>": 51562,
851
+ "<|23.98|>": 51563,
852
+ "<|24.00|>": 51564,
853
+ "<|24.02|>": 51565,
854
+ "<|24.04|>": 51566,
855
+ "<|24.06|>": 51567,
856
+ "<|24.08|>": 51568,
857
+ "<|24.10|>": 51569,
858
+ "<|24.12|>": 51570,
859
+ "<|24.14|>": 51571,
860
+ "<|24.16|>": 51572,
861
+ "<|24.18|>": 51573,
862
+ "<|24.20|>": 51574,
863
+ "<|24.22|>": 51575,
864
+ "<|24.24|>": 51576,
865
+ "<|24.26|>": 51577,
866
+ "<|24.28|>": 51578,
867
+ "<|24.30|>": 51579,
868
+ "<|24.32|>": 51580,
869
+ "<|24.34|>": 51581,
870
+ "<|24.36|>": 51582,
871
+ "<|24.38|>": 51583,
872
+ "<|24.40|>": 51584,
873
+ "<|24.42|>": 51585,
874
+ "<|24.44|>": 51586,
875
+ "<|24.46|>": 51587,
876
+ "<|24.48|>": 51588,
877
+ "<|24.50|>": 51589,
878
+ "<|24.52|>": 51590,
879
+ "<|24.54|>": 51591,
880
+ "<|24.56|>": 51592,
881
+ "<|24.58|>": 51593,
882
+ "<|24.60|>": 51594,
883
+ "<|24.62|>": 51595,
884
+ "<|24.64|>": 51596,
885
+ "<|24.66|>": 51597,
886
+ "<|24.68|>": 51598,
887
+ "<|24.70|>": 51599,
888
+ "<|24.72|>": 51600,
889
+ "<|24.74|>": 51601,
890
+ "<|24.76|>": 51602,
891
+ "<|24.78|>": 51603,
892
+ "<|24.80|>": 51604,
893
+ "<|24.82|>": 51605,
894
+ "<|24.84|>": 51606,
895
+ "<|24.86|>": 51607,
896
+ "<|24.88|>": 51608,
897
+ "<|24.90|>": 51609,
898
+ "<|24.92|>": 51610,
899
+ "<|24.94|>": 51611,
900
+ "<|24.96|>": 51612,
901
+ "<|24.98|>": 51613,
902
+ "<|25.00|>": 51614,
903
+ "<|25.02|>": 51615,
904
+ "<|25.04|>": 51616,
905
+ "<|25.06|>": 51617,
906
+ "<|25.08|>": 51618,
907
+ "<|25.10|>": 51619,
908
+ "<|25.12|>": 51620,
909
+ "<|25.14|>": 51621,
910
+ "<|25.16|>": 51622,
911
+ "<|25.18|>": 51623,
912
+ "<|25.20|>": 51624,
913
+ "<|25.22|>": 51625,
914
+ "<|25.24|>": 51626,
915
+ "<|25.26|>": 51627,
916
+ "<|25.28|>": 51628,
917
+ "<|25.30|>": 51629,
918
+ "<|25.32|>": 51630,
919
+ "<|25.34|>": 51631,
920
+ "<|25.36|>": 51632,
921
+ "<|25.38|>": 51633,
922
+ "<|25.40|>": 51634,
923
+ "<|25.42|>": 51635,
924
+ "<|25.44|>": 51636,
925
+ "<|25.46|>": 51637,
926
+ "<|25.48|>": 51638,
927
+ "<|25.50|>": 51639,
928
+ "<|25.52|>": 51640,
929
+ "<|25.54|>": 51641,
930
+ "<|25.56|>": 51642,
931
+ "<|25.58|>": 51643,
932
+ "<|25.60|>": 51644,
933
+ "<|25.62|>": 51645,
934
+ "<|25.64|>": 51646,
935
+ "<|25.66|>": 51647,
936
+ "<|25.68|>": 51648,
937
+ "<|25.70|>": 51649,
938
+ "<|25.72|>": 51650,
939
+ "<|25.74|>": 51651,
940
+ "<|25.76|>": 51652,
941
+ "<|25.78|>": 51653,
942
+ "<|25.80|>": 51654,
943
+ "<|25.82|>": 51655,
944
+ "<|25.84|>": 51656,
945
+ "<|25.86|>": 51657,
946
+ "<|25.88|>": 51658,
947
+ "<|25.90|>": 51659,
948
+ "<|25.92|>": 51660,
949
+ "<|25.94|>": 51661,
950
+ "<|25.96|>": 51662,
951
+ "<|25.98|>": 51663,
952
+ "<|26.00|>": 51664,
953
+ "<|26.02|>": 51665,
954
+ "<|26.04|>": 51666,
955
+ "<|26.06|>": 51667,
956
+ "<|26.08|>": 51668,
957
+ "<|26.10|>": 51669,
958
+ "<|26.12|>": 51670,
959
+ "<|26.14|>": 51671,
960
+ "<|26.16|>": 51672,
961
+ "<|26.18|>": 51673,
962
+ "<|26.20|>": 51674,
963
+ "<|26.22|>": 51675,
964
+ "<|26.24|>": 51676,
965
+ "<|26.26|>": 51677,
966
+ "<|26.28|>": 51678,
967
+ "<|26.30|>": 51679,
968
+ "<|26.32|>": 51680,
969
+ "<|26.34|>": 51681,
970
+ "<|26.36|>": 51682,
971
+ "<|26.38|>": 51683,
972
+ "<|26.40|>": 51684,
973
+ "<|26.42|>": 51685,
974
+ "<|26.44|>": 51686,
975
+ "<|26.46|>": 51687,
976
+ "<|26.48|>": 51688,
977
+ "<|26.50|>": 51689,
978
+ "<|26.52|>": 51690,
979
+ "<|26.54|>": 51691,
980
+ "<|26.56|>": 51692,
981
+ "<|26.58|>": 51693,
982
+ "<|26.60|>": 51694,
983
+ "<|26.62|>": 51695,
984
+ "<|26.64|>": 51696,
985
+ "<|26.66|>": 51697,
986
+ "<|26.68|>": 51698,
987
+ "<|26.70|>": 51699,
988
+ "<|26.72|>": 51700,
989
+ "<|26.74|>": 51701,
990
+ "<|26.76|>": 51702,
991
+ "<|26.78|>": 51703,
992
+ "<|26.80|>": 51704,
993
+ "<|26.82|>": 51705,
994
+ "<|26.84|>": 51706,
995
+ "<|26.86|>": 51707,
996
+ "<|26.88|>": 51708,
997
+ "<|26.90|>": 51709,
998
+ "<|26.92|>": 51710,
999
+ "<|26.94|>": 51711,
1000
+ "<|26.96|>": 51712,
1001
+ "<|26.98|>": 51713,
1002
+ "<|27.00|>": 51714,
1003
+ "<|27.02|>": 51715,
1004
+ "<|27.04|>": 51716,
1005
+ "<|27.06|>": 51717,
1006
+ "<|27.08|>": 51718,
1007
+ "<|27.10|>": 51719,
1008
+ "<|27.12|>": 51720,
1009
+ "<|27.14|>": 51721,
1010
+ "<|27.16|>": 51722,
1011
+ "<|27.18|>": 51723,
1012
+ "<|27.20|>": 51724,
1013
+ "<|27.22|>": 51725,
1014
+ "<|27.24|>": 51726,
1015
+ "<|27.26|>": 51727,
1016
+ "<|27.28|>": 51728,
1017
+ "<|27.30|>": 51729,
1018
+ "<|27.32|>": 51730,
1019
+ "<|27.34|>": 51731,
1020
+ "<|27.36|>": 51732,
1021
+ "<|27.38|>": 51733,
1022
+ "<|27.40|>": 51734,
1023
+ "<|27.42|>": 51735,
1024
+ "<|27.44|>": 51736,
1025
+ "<|27.46|>": 51737,
1026
+ "<|27.48|>": 51738,
1027
+ "<|27.50|>": 51739,
1028
+ "<|27.52|>": 51740,
1029
+ "<|27.54|>": 51741,
1030
+ "<|27.56|>": 51742,
1031
+ "<|27.58|>": 51743,
1032
+ "<|27.60|>": 51744,
1033
+ "<|27.62|>": 51745,
1034
+ "<|27.64|>": 51746,
1035
+ "<|27.66|>": 51747,
1036
+ "<|27.68|>": 51748,
1037
+ "<|27.70|>": 51749,
1038
+ "<|27.72|>": 51750,
1039
+ "<|27.74|>": 51751,
1040
+ "<|27.76|>": 51752,
1041
+ "<|27.78|>": 51753,
1042
+ "<|27.80|>": 51754,
1043
+ "<|27.82|>": 51755,
1044
+ "<|27.84|>": 51756,
1045
+ "<|27.86|>": 51757,
1046
+ "<|27.88|>": 51758,
1047
+ "<|27.90|>": 51759,
1048
+ "<|27.92|>": 51760,
1049
+ "<|27.94|>": 51761,
1050
+ "<|27.96|>": 51762,
1051
+ "<|27.98|>": 51763,
1052
+ "<|28.00|>": 51764,
1053
+ "<|28.02|>": 51765,
1054
+ "<|28.04|>": 51766,
1055
+ "<|28.06|>": 51767,
1056
+ "<|28.08|>": 51768,
1057
+ "<|28.10|>": 51769,
1058
+ "<|28.12|>": 51770,
1059
+ "<|28.14|>": 51771,
1060
+ "<|28.16|>": 51772,
1061
+ "<|28.18|>": 51773,
1062
+ "<|28.20|>": 51774,
1063
+ "<|28.22|>": 51775,
1064
+ "<|28.24|>": 51776,
1065
+ "<|28.26|>": 51777,
1066
+ "<|28.28|>": 51778,
1067
+ "<|28.30|>": 51779,
1068
+ "<|28.32|>": 51780,
1069
+ "<|28.34|>": 51781,
1070
+ "<|28.36|>": 51782,
1071
+ "<|28.38|>": 51783,
1072
+ "<|28.40|>": 51784,
1073
+ "<|28.42|>": 51785,
1074
+ "<|28.44|>": 51786,
1075
+ "<|28.46|>": 51787,
1076
+ "<|28.48|>": 51788,
1077
+ "<|28.50|>": 51789,
1078
+ "<|28.52|>": 51790,
1079
+ "<|28.54|>": 51791,
1080
+ "<|28.56|>": 51792,
1081
+ "<|28.58|>": 51793,
1082
+ "<|28.60|>": 51794,
1083
+ "<|28.62|>": 51795,
1084
+ "<|28.64|>": 51796,
1085
+ "<|28.66|>": 51797,
1086
+ "<|28.68|>": 51798,
1087
+ "<|28.70|>": 51799,
1088
+ "<|28.72|>": 51800,
1089
+ "<|28.74|>": 51801,
1090
+ "<|28.76|>": 51802,
1091
+ "<|28.78|>": 51803,
1092
+ "<|28.80|>": 51804,
1093
+ "<|28.82|>": 51805,
1094
+ "<|28.84|>": 51806,
1095
+ "<|28.86|>": 51807,
1096
+ "<|28.88|>": 51808,
1097
+ "<|28.90|>": 51809,
1098
+ "<|28.92|>": 51810,
1099
+ "<|28.94|>": 51811,
1100
+ "<|28.96|>": 51812,
1101
+ "<|28.98|>": 51813,
1102
+ "<|29.00|>": 51814,
1103
+ "<|29.02|>": 51815,
1104
+ "<|29.04|>": 51816,
1105
+ "<|29.06|>": 51817,
1106
+ "<|29.08|>": 51818,
1107
+ "<|29.10|>": 51819,
1108
+ "<|29.12|>": 51820,
1109
+ "<|29.14|>": 51821,
1110
+ "<|29.16|>": 51822,
1111
+ "<|29.18|>": 51823,
1112
+ "<|29.20|>": 51824,
1113
+ "<|29.22|>": 51825,
1114
+ "<|29.24|>": 51826,
1115
+ "<|29.26|>": 51827,
1116
+ "<|29.28|>": 51828,
1117
+ "<|29.30|>": 51829,
1118
+ "<|29.32|>": 51830,
1119
+ "<|29.34|>": 51831,
1120
+ "<|29.36|>": 51832,
1121
+ "<|29.38|>": 51833,
1122
+ "<|29.40|>": 51834,
1123
+ "<|29.42|>": 51835,
1124
+ "<|29.44|>": 51836,
1125
+ "<|29.46|>": 51837,
1126
+ "<|29.48|>": 51838,
1127
+ "<|29.50|>": 51839,
1128
+ "<|29.52|>": 51840,
1129
+ "<|29.54|>": 51841,
1130
+ "<|29.56|>": 51842,
1131
+ "<|29.58|>": 51843,
1132
+ "<|29.60|>": 51844,
1133
+ "<|29.62|>": 51845,
1134
+ "<|29.64|>": 51846,
1135
+ "<|29.66|>": 51847,
1136
+ "<|29.68|>": 51848,
1137
+ "<|29.70|>": 51849,
1138
+ "<|29.72|>": 51850,
1139
+ "<|29.74|>": 51851,
1140
+ "<|29.76|>": 51852,
1141
+ "<|29.78|>": 51853,
1142
+ "<|29.80|>": 51854,
1143
+ "<|29.82|>": 51855,
1144
+ "<|29.84|>": 51856,
1145
+ "<|29.86|>": 51857,
1146
+ "<|29.88|>": 51858,
1147
+ "<|29.90|>": 51859,
1148
+ "<|29.92|>": 51860,
1149
+ "<|29.94|>": 51861,
1150
+ "<|29.96|>": 51862,
1151
+ "<|29.98|>": 51863,
1152
+ "<|3.00|>": 50514,
1153
+ "<|3.02|>": 50515,
1154
+ "<|3.04|>": 50516,
1155
+ "<|3.06|>": 50517,
1156
+ "<|3.08|>": 50518,
1157
+ "<|3.10|>": 50519,
1158
+ "<|3.12|>": 50520,
1159
+ "<|3.14|>": 50521,
1160
+ "<|3.16|>": 50522,
1161
+ "<|3.18|>": 50523,
1162
+ "<|3.20|>": 50524,
1163
+ "<|3.22|>": 50525,
1164
+ "<|3.24|>": 50526,
1165
+ "<|3.26|>": 50527,
1166
+ "<|3.28|>": 50528,
1167
+ "<|3.30|>": 50529,
1168
+ "<|3.32|>": 50530,
1169
+ "<|3.34|>": 50531,
1170
+ "<|3.36|>": 50532,
1171
+ "<|3.38|>": 50533,
1172
+ "<|3.40|>": 50534,
1173
+ "<|3.42|>": 50535,
1174
+ "<|3.44|>": 50536,
1175
+ "<|3.46|>": 50537,
1176
+ "<|3.48|>": 50538,
1177
+ "<|3.50|>": 50539,
1178
+ "<|3.52|>": 50540,
1179
+ "<|3.54|>": 50541,
1180
+ "<|3.56|>": 50542,
1181
+ "<|3.58|>": 50543,
1182
+ "<|3.60|>": 50544,
1183
+ "<|3.62|>": 50545,
1184
+ "<|3.64|>": 50546,
1185
+ "<|3.66|>": 50547,
1186
+ "<|3.68|>": 50548,
1187
+ "<|3.70|>": 50549,
1188
+ "<|3.72|>": 50550,
1189
+ "<|3.74|>": 50551,
1190
+ "<|3.76|>": 50552,
1191
+ "<|3.78|>": 50553,
1192
+ "<|3.80|>": 50554,
1193
+ "<|3.82|>": 50555,
1194
+ "<|3.84|>": 50556,
1195
+ "<|3.86|>": 50557,
1196
+ "<|3.88|>": 50558,
1197
+ "<|3.90|>": 50559,
1198
+ "<|3.92|>": 50560,
1199
+ "<|3.94|>": 50561,
1200
+ "<|3.96|>": 50562,
1201
+ "<|3.98|>": 50563,
1202
+ "<|30.00|>": 51864,
1203
+ "<|4.00|>": 50564,
1204
+ "<|4.02|>": 50565,
1205
+ "<|4.04|>": 50566,
1206
+ "<|4.06|>": 50567,
1207
+ "<|4.08|>": 50568,
1208
+ "<|4.10|>": 50569,
1209
+ "<|4.12|>": 50570,
1210
+ "<|4.14|>": 50571,
1211
+ "<|4.16|>": 50572,
1212
+ "<|4.18|>": 50573,
1213
+ "<|4.20|>": 50574,
1214
+ "<|4.22|>": 50575,
1215
+ "<|4.24|>": 50576,
1216
+ "<|4.26|>": 50577,
1217
+ "<|4.28|>": 50578,
1218
+ "<|4.30|>": 50579,
1219
+ "<|4.32|>": 50580,
1220
+ "<|4.34|>": 50581,
1221
+ "<|4.36|>": 50582,
1222
+ "<|4.38|>": 50583,
1223
+ "<|4.40|>": 50584,
1224
+ "<|4.42|>": 50585,
1225
+ "<|4.44|>": 50586,
1226
+ "<|4.46|>": 50587,
1227
+ "<|4.48|>": 50588,
1228
+ "<|4.50|>": 50589,
1229
+ "<|4.52|>": 50590,
1230
+ "<|4.54|>": 50591,
1231
+ "<|4.56|>": 50592,
1232
+ "<|4.58|>": 50593,
1233
+ "<|4.60|>": 50594,
1234
+ "<|4.62|>": 50595,
1235
+ "<|4.64|>": 50596,
1236
+ "<|4.66|>": 50597,
1237
+ "<|4.68|>": 50598,
1238
+ "<|4.70|>": 50599,
1239
+ "<|4.72|>": 50600,
1240
+ "<|4.74|>": 50601,
1241
+ "<|4.76|>": 50602,
1242
+ "<|4.78|>": 50603,
1243
+ "<|4.80|>": 50604,
1244
+ "<|4.82|>": 50605,
1245
+ "<|4.84|>": 50606,
1246
+ "<|4.86|>": 50607,
1247
+ "<|4.88|>": 50608,
1248
+ "<|4.90|>": 50609,
1249
+ "<|4.92|>": 50610,
1250
+ "<|4.94|>": 50611,
1251
+ "<|4.96|>": 50612,
1252
+ "<|4.98|>": 50613,
1253
+ "<|5.00|>": 50614,
1254
+ "<|5.02|>": 50615,
1255
+ "<|5.04|>": 50616,
1256
+ "<|5.06|>": 50617,
1257
+ "<|5.08|>": 50618,
1258
+ "<|5.10|>": 50619,
1259
+ "<|5.12|>": 50620,
1260
+ "<|5.14|>": 50621,
1261
+ "<|5.16|>": 50622,
1262
+ "<|5.18|>": 50623,
1263
+ "<|5.20|>": 50624,
1264
+ "<|5.22|>": 50625,
1265
+ "<|5.24|>": 50626,
1266
+ "<|5.26|>": 50627,
1267
+ "<|5.28|>": 50628,
1268
+ "<|5.30|>": 50629,
1269
+ "<|5.32|>": 50630,
1270
+ "<|5.34|>": 50631,
1271
+ "<|5.36|>": 50632,
1272
+ "<|5.38|>": 50633,
1273
+ "<|5.40|>": 50634,
1274
+ "<|5.42|>": 50635,
1275
+ "<|5.44|>": 50636,
1276
+ "<|5.46|>": 50637,
1277
+ "<|5.48|>": 50638,
1278
+ "<|5.50|>": 50639,
1279
+ "<|5.52|>": 50640,
1280
+ "<|5.54|>": 50641,
1281
+ "<|5.56|>": 50642,
1282
+ "<|5.58|>": 50643,
1283
+ "<|5.60|>": 50644,
1284
+ "<|5.62|>": 50645,
1285
+ "<|5.64|>": 50646,
1286
+ "<|5.66|>": 50647,
1287
+ "<|5.68|>": 50648,
1288
+ "<|5.70|>": 50649,
1289
+ "<|5.72|>": 50650,
1290
+ "<|5.74|>": 50651,
1291
+ "<|5.76|>": 50652,
1292
+ "<|5.78|>": 50653,
1293
+ "<|5.80|>": 50654,
1294
+ "<|5.82|>": 50655,
1295
+ "<|5.84|>": 50656,
1296
+ "<|5.86|>": 50657,
1297
+ "<|5.88|>": 50658,
1298
+ "<|5.90|>": 50659,
1299
+ "<|5.92|>": 50660,
1300
+ "<|5.94|>": 50661,
1301
+ "<|5.96|>": 50662,
1302
+ "<|5.98|>": 50663,
1303
+ "<|6.00|>": 50664,
1304
+ "<|6.02|>": 50665,
1305
+ "<|6.04|>": 50666,
1306
+ "<|6.06|>": 50667,
1307
+ "<|6.08|>": 50668,
1308
+ "<|6.10|>": 50669,
1309
+ "<|6.12|>": 50670,
1310
+ "<|6.14|>": 50671,
1311
+ "<|6.16|>": 50672,
1312
+ "<|6.18|>": 50673,
1313
+ "<|6.20|>": 50674,
1314
+ "<|6.22|>": 50675,
1315
+ "<|6.24|>": 50676,
1316
+ "<|6.26|>": 50677,
1317
+ "<|6.28|>": 50678,
1318
+ "<|6.30|>": 50679,
1319
+ "<|6.32|>": 50680,
1320
+ "<|6.34|>": 50681,
1321
+ "<|6.36|>": 50682,
1322
+ "<|6.38|>": 50683,
1323
+ "<|6.40|>": 50684,
1324
+ "<|6.42|>": 50685,
1325
+ "<|6.44|>": 50686,
1326
+ "<|6.46|>": 50687,
1327
+ "<|6.48|>": 50688,
1328
+ "<|6.50|>": 50689,
1329
+ "<|6.52|>": 50690,
1330
+ "<|6.54|>": 50691,
1331
+ "<|6.56|>": 50692,
1332
+ "<|6.58|>": 50693,
1333
+ "<|6.60|>": 50694,
1334
+ "<|6.62|>": 50695,
1335
+ "<|6.64|>": 50696,
1336
+ "<|6.66|>": 50697,
1337
+ "<|6.68|>": 50698,
1338
+ "<|6.70|>": 50699,
1339
+ "<|6.72|>": 50700,
1340
+ "<|6.74|>": 50701,
1341
+ "<|6.76|>": 50702,
1342
+ "<|6.78|>": 50703,
1343
+ "<|6.80|>": 50704,
1344
+ "<|6.82|>": 50705,
1345
+ "<|6.84|>": 50706,
1346
+ "<|6.86|>": 50707,
1347
+ "<|6.88|>": 50708,
1348
+ "<|6.90|>": 50709,
1349
+ "<|6.92|>": 50710,
1350
+ "<|6.94|>": 50711,
1351
+ "<|6.96|>": 50712,
1352
+ "<|6.98|>": 50713,
1353
+ "<|7.00|>": 50714,
1354
+ "<|7.02|>": 50715,
1355
+ "<|7.04|>": 50716,
1356
+ "<|7.06|>": 50717,
1357
+ "<|7.08|>": 50718,
1358
+ "<|7.10|>": 50719,
1359
+ "<|7.12|>": 50720,
1360
+ "<|7.14|>": 50721,
1361
+ "<|7.16|>": 50722,
1362
+ "<|7.18|>": 50723,
1363
+ "<|7.20|>": 50724,
1364
+ "<|7.22|>": 50725,
1365
+ "<|7.24|>": 50726,
1366
+ "<|7.26|>": 50727,
1367
+ "<|7.28|>": 50728,
1368
+ "<|7.30|>": 50729,
1369
+ "<|7.32|>": 50730,
1370
+ "<|7.34|>": 50731,
1371
+ "<|7.36|>": 50732,
1372
+ "<|7.38|>": 50733,
1373
+ "<|7.40|>": 50734,
1374
+ "<|7.42|>": 50735,
1375
+ "<|7.44|>": 50736,
1376
+ "<|7.46|>": 50737,
1377
+ "<|7.48|>": 50738,
1378
+ "<|7.50|>": 50739,
1379
+ "<|7.52|>": 50740,
1380
+ "<|7.54|>": 50741,
1381
+ "<|7.56|>": 50742,
1382
+ "<|7.58|>": 50743,
1383
+ "<|7.60|>": 50744,
1384
+ "<|7.62|>": 50745,
1385
+ "<|7.64|>": 50746,
1386
+ "<|7.66|>": 50747,
1387
+ "<|7.68|>": 50748,
1388
+ "<|7.70|>": 50749,
1389
+ "<|7.72|>": 50750,
1390
+ "<|7.74|>": 50751,
1391
+ "<|7.76|>": 50752,
1392
+ "<|7.78|>": 50753,
1393
+ "<|7.80|>": 50754,
1394
+ "<|7.82|>": 50755,
1395
+ "<|7.84|>": 50756,
1396
+ "<|7.86|>": 50757,
1397
+ "<|7.88|>": 50758,
1398
+ "<|7.90|>": 50759,
1399
+ "<|7.92|>": 50760,
1400
+ "<|7.94|>": 50761,
1401
+ "<|7.96|>": 50762,
1402
+ "<|7.98|>": 50763,
1403
+ "<|8.00|>": 50764,
1404
+ "<|8.02|>": 50765,
1405
+ "<|8.04|>": 50766,
1406
+ "<|8.06|>": 50767,
1407
+ "<|8.08|>": 50768,
1408
+ "<|8.10|>": 50769,
1409
+ "<|8.12|>": 50770,
1410
+ "<|8.14|>": 50771,
1411
+ "<|8.16|>": 50772,
1412
+ "<|8.18|>": 50773,
1413
+ "<|8.20|>": 50774,
1414
+ "<|8.22|>": 50775,
1415
+ "<|8.24|>": 50776,
1416
+ "<|8.26|>": 50777,
1417
+ "<|8.28|>": 50778,
1418
+ "<|8.30|>": 50779,
1419
+ "<|8.32|>": 50780,
1420
+ "<|8.34|>": 50781,
1421
+ "<|8.36|>": 50782,
1422
+ "<|8.38|>": 50783,
1423
+ "<|8.40|>": 50784,
1424
+ "<|8.42|>": 50785,
1425
+ "<|8.44|>": 50786,
1426
+ "<|8.46|>": 50787,
1427
+ "<|8.48|>": 50788,
1428
+ "<|8.50|>": 50789,
1429
+ "<|8.52|>": 50790,
1430
+ "<|8.54|>": 50791,
1431
+ "<|8.56|>": 50792,
1432
+ "<|8.58|>": 50793,
1433
+ "<|8.60|>": 50794,
1434
+ "<|8.62|>": 50795,
1435
+ "<|8.64|>": 50796,
1436
+ "<|8.66|>": 50797,
1437
+ "<|8.68|>": 50798,
1438
+ "<|8.70|>": 50799,
1439
+ "<|8.72|>": 50800,
1440
+ "<|8.74|>": 50801,
1441
+ "<|8.76|>": 50802,
1442
+ "<|8.78|>": 50803,
1443
+ "<|8.80|>": 50804,
1444
+ "<|8.82|>": 50805,
1445
+ "<|8.84|>": 50806,
1446
+ "<|8.86|>": 50807,
1447
+ "<|8.88|>": 50808,
1448
+ "<|8.90|>": 50809,
1449
+ "<|8.92|>": 50810,
1450
+ "<|8.94|>": 50811,
1451
+ "<|8.96|>": 50812,
1452
+ "<|8.98|>": 50813,
1453
+ "<|9.00|>": 50814,
1454
+ "<|9.02|>": 50815,
1455
+ "<|9.04|>": 50816,
1456
+ "<|9.06|>": 50817,
1457
+ "<|9.08|>": 50818,
1458
+ "<|9.10|>": 50819,
1459
+ "<|9.12|>": 50820,
1460
+ "<|9.14|>": 50821,
1461
+ "<|9.16|>": 50822,
1462
+ "<|9.18|>": 50823,
1463
+ "<|9.20|>": 50824,
1464
+ "<|9.22|>": 50825,
1465
+ "<|9.24|>": 50826,
1466
+ "<|9.26|>": 50827,
1467
+ "<|9.28|>": 50828,
1468
+ "<|9.30|>": 50829,
1469
+ "<|9.32|>": 50830,
1470
+ "<|9.34|>": 50831,
1471
+ "<|9.36|>": 50832,
1472
+ "<|9.38|>": 50833,
1473
+ "<|9.40|>": 50834,
1474
+ "<|9.42|>": 50835,
1475
+ "<|9.44|>": 50836,
1476
+ "<|9.46|>": 50837,
1477
+ "<|9.48|>": 50838,
1478
+ "<|9.50|>": 50839,
1479
+ "<|9.52|>": 50840,
1480
+ "<|9.54|>": 50841,
1481
+ "<|9.56|>": 50842,
1482
+ "<|9.58|>": 50843,
1483
+ "<|9.60|>": 50844,
1484
+ "<|9.62|>": 50845,
1485
+ "<|9.64|>": 50846,
1486
+ "<|9.66|>": 50847,
1487
+ "<|9.68|>": 50848,
1488
+ "<|9.70|>": 50849,
1489
+ "<|9.72|>": 50850,
1490
+ "<|9.74|>": 50851,
1491
+ "<|9.76|>": 50852,
1492
+ "<|9.78|>": 50853,
1493
+ "<|9.80|>": 50854,
1494
+ "<|9.82|>": 50855,
1495
+ "<|9.84|>": 50856,
1496
+ "<|9.86|>": 50857,
1497
+ "<|9.88|>": 50858,
1498
+ "<|9.90|>": 50859,
1499
+ "<|9.92|>": 50860,
1500
+ "<|9.94|>": 50861,
1501
+ "<|9.96|>": 50862,
1502
+ "<|9.98|>": 50863,
1503
+ "<|af|>": 50327,
1504
+ "<|am|>": 50334,
1505
+ "<|ar|>": 50272,
1506
+ "<|as|>": 50350,
1507
+ "<|az|>": 50304,
1508
+ "<|ba|>": 50355,
1509
+ "<|be|>": 50330,
1510
+ "<|bg|>": 50292,
1511
+ "<|bn|>": 50302,
1512
+ "<|bo|>": 50347,
1513
+ "<|br|>": 50309,
1514
+ "<|bs|>": 50315,
1515
+ "<|ca|>": 50270,
1516
+ "<|cs|>": 50283,
1517
+ "<|cy|>": 50297,
1518
+ "<|da|>": 50285,
1519
+ "<|de|>": 50261,
1520
+ "<|el|>": 50281,
1521
+ "<|en|>": 50259,
1522
+ "<|es|>": 50262,
1523
+ "<|et|>": 50307,
1524
+ "<|eu|>": 50310,
1525
+ "<|fa|>": 50300,
1526
+ "<|fi|>": 50277,
1527
+ "<|fo|>": 50338,
1528
+ "<|fr|>": 50265,
1529
+ "<|gl|>": 50319,
1530
+ "<|gu|>": 50333,
1531
+ "<|haw|>": 50352,
1532
+ "<|ha|>": 50354,
1533
+ "<|he|>": 50279,
1534
+ "<|hi|>": 50276,
1535
+ "<|hr|>": 50291,
1536
+ "<|ht|>": 50339,
1537
+ "<|hu|>": 50286,
1538
+ "<|hy|>": 50312,
1539
+ "<|id|>": 50275,
1540
+ "<|is|>": 50311,
1541
+ "<|it|>": 50274,
1542
+ "<|ja|>": 50266,
1543
+ "<|jw|>": 50356,
1544
+ "<|ka|>": 50329,
1545
+ "<|kk|>": 50316,
1546
+ "<|km|>": 50323,
1547
+ "<|kn|>": 50306,
1548
+ "<|ko|>": 50264,
1549
+ "<|la|>": 50294,
1550
+ "<|lb|>": 50345,
1551
+ "<|ln|>": 50353,
1552
+ "<|lo|>": 50336,
1553
+ "<|lt|>": 50293,
1554
+ "<|lv|>": 50301,
1555
+ "<|mg|>": 50349,
1556
+ "<|mi|>": 50295,
1557
+ "<|mk|>": 50308,
1558
+ "<|ml|>": 50296,
1559
+ "<|mn|>": 50314,
1560
+ "<|mr|>": 50320,
1561
+ "<|ms|>": 50282,
1562
+ "<|mt|>": 50343,
1563
+ "<|my|>": 50346,
1564
+ "<|ne|>": 50313,
1565
+ "<|nl|>": 50271,
1566
+ "<|nn|>": 50342,
1567
+ "<|nocaptions|>": 50362,
1568
+ "<|notimestamps|>": 50363,
1569
+ "<|no|>": 50288,
1570
+ "<|oc|>": 50328,
1571
+ "<|pa|>": 50321,
1572
+ "<|pl|>": 50269,
1573
+ "<|ps|>": 50340,
1574
+ "<|pt|>": 50267,
1575
+ "<|ro|>": 50284,
1576
+ "<|ru|>": 50263,
1577
+ "<|sa|>": 50344,
1578
+ "<|sd|>": 50332,
1579
+ "<|si|>": 50322,
1580
+ "<|sk|>": 50298,
1581
+ "<|sl|>": 50305,
1582
+ "<|sn|>": 50324,
1583
+ "<|so|>": 50326,
1584
+ "<|sq|>": 50317,
1585
+ "<|sr|>": 50303,
1586
+ "<|startoflm|>": 50360,
1587
+ "<|startofprev|>": 50361,
1588
+ "<|startoftranscript|>": 50258,
1589
+ "<|su|>": 50357,
1590
+ "<|sv|>": 50273,
1591
+ "<|sw|>": 50318,
1592
+ "<|ta|>": 50287,
1593
+ "<|te|>": 50299,
1594
+ "<|tg|>": 50331,
1595
+ "<|th|>": 50289,
1596
+ "<|tk|>": 50341,
1597
+ "<|tl|>": 50348,
1598
+ "<|transcribe|>": 50359,
1599
+ "<|translate|>": 50358,
1600
+ "<|tr|>": 50268,
1601
+ "<|tt|>": 50351,
1602
+ "<|uk|>": 50280,
1603
+ "<|ur|>": 50290,
1604
+ "<|uz|>": 50337,
1605
+ "<|vi|>": 50278,
1606
+ "<|yi|>": 50335,
1607
+ "<|yo|>": 50325,
1608
+ "<|zh|>": 50260
1609
+ }
distil-small-init/config.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "NbAiLab/nb-whisper-small",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "alignment_heads": [
6
+ [
7
+ 5,
8
+ 3
9
+ ],
10
+ [
11
+ 5,
12
+ 9
13
+ ],
14
+ [
15
+ 8,
16
+ 0
17
+ ],
18
+ [
19
+ 8,
20
+ 4
21
+ ],
22
+ [
23
+ 8,
24
+ 7
25
+ ],
26
+ [
27
+ 8,
28
+ 8
29
+ ],
30
+ [
31
+ 9,
32
+ 0
33
+ ],
34
+ [
35
+ 9,
36
+ 7
37
+ ],
38
+ [
39
+ 9,
40
+ 9
41
+ ],
42
+ [
43
+ 10,
44
+ 5
45
+ ]
46
+ ],
47
+ "apply_spec_augment": false,
48
+ "architectures": [
49
+ "WhisperForConditionalGeneration"
50
+ ],
51
+ "attention_dropout": 0,
52
+ "begin_suppress_tokens": null,
53
+ "bos_token_id": 50257,
54
+ "classifier_proj_size": 256,
55
+ "d_model": 768,
56
+ "decoder_attention_heads": 12,
57
+ "decoder_ffn_dim": 3072,
58
+ "decoder_layerdrop": 0,
59
+ "decoder_layers": 2,
60
+ "decoder_start_token_id": 50258,
61
+ "dropout": 0,
62
+ "encoder_attention_heads": 12,
63
+ "encoder_ffn_dim": 3072,
64
+ "encoder_layerdrop": 0,
65
+ "encoder_layers": 12,
66
+ "eos_token_id": 50257,
67
+ "forced_decoder_ids": [
68
+ [
69
+ 1,
70
+ 50259
71
+ ],
72
+ [
73
+ 2,
74
+ 50359
75
+ ],
76
+ [
77
+ 3,
78
+ 50363
79
+ ]
80
+ ],
81
+ "init_std": 0.02,
82
+ "is_encoder_decoder": true,
83
+ "lang_ids": [
84
+ 50259,
85
+ 50260,
86
+ 50261,
87
+ 50262,
88
+ 50263,
89
+ 50264,
90
+ 50265,
91
+ 50266,
92
+ 50267,
93
+ 50268,
94
+ 50269,
95
+ 50270,
96
+ 50271,
97
+ 50272,
98
+ 50273,
99
+ 50274,
100
+ 50275,
101
+ 50276,
102
+ 50277,
103
+ 50278,
104
+ 50279,
105
+ 50280,
106
+ 50281,
107
+ 50282,
108
+ 50283,
109
+ 50284,
110
+ 50285,
111
+ 50286,
112
+ 50287,
113
+ 50288,
114
+ 50289,
115
+ 50290,
116
+ 50291,
117
+ 50292,
118
+ 50293,
119
+ 50294,
120
+ 50295,
121
+ 50296,
122
+ 50297,
123
+ 50298,
124
+ 50299,
125
+ 50300,
126
+ 50301,
127
+ 50302,
128
+ 50303,
129
+ 50304,
130
+ 50305,
131
+ 50306,
132
+ 50307,
133
+ 50308,
134
+ 50309,
135
+ 50310,
136
+ 50311,
137
+ 50312,
138
+ 50313,
139
+ 50314,
140
+ 50315,
141
+ 50316,
142
+ 50317,
143
+ 50318,
144
+ 50319,
145
+ 50320,
146
+ 50321,
147
+ 50322,
148
+ 50323,
149
+ 50324,
150
+ 50325,
151
+ 50326,
152
+ 50327,
153
+ 50328,
154
+ 50329,
155
+ 50330,
156
+ 50331,
157
+ 50332,
158
+ 50333,
159
+ 50334,
160
+ 50335,
161
+ 50336,
162
+ 50337,
163
+ 50338,
164
+ 50339,
165
+ 50340,
166
+ 50341,
167
+ 50342,
168
+ 50343,
169
+ 50344,
170
+ 50345,
171
+ 50346,
172
+ 50347,
173
+ 50348,
174
+ 50349,
175
+ 50350,
176
+ 50351,
177
+ 50352,
178
+ 50353,
179
+ 50354,
180
+ 50355,
181
+ 50356,
182
+ 50357
183
+ ],
184
+ "mask_feature_length": 10,
185
+ "mask_feature_min_masks": 0,
186
+ "mask_feature_prob": 0,
187
+ "mask_time_length": 10,
188
+ "mask_time_min_masks": 2,
189
+ "mask_time_prob": 0.05,
190
+ "max_length": null,
191
+ "max_source_positions": 1500,
192
+ "max_target_positions": 448,
193
+ "median_filter_width": 7,
194
+ "model_type": "whisper",
195
+ "num_hidden_layers": 12,
196
+ "num_mel_bins": 80,
197
+ "pad_token_id": 50257,
198
+ "scale_embedding": false,
199
+ "suppress_ids": [
200
+ 1,
201
+ 2,
202
+ 7,
203
+ 8,
204
+ 9,
205
+ 10,
206
+ 14,
207
+ 25,
208
+ 26,
209
+ 27,
210
+ 28,
211
+ 29,
212
+ 31,
213
+ 58,
214
+ 59,
215
+ 60,
216
+ 61,
217
+ 62,
218
+ 63,
219
+ 90,
220
+ 91,
221
+ 92,
222
+ 93,
223
+ 359,
224
+ 503,
225
+ 522,
226
+ 542,
227
+ 873,
228
+ 893,
229
+ 902,
230
+ 918,
231
+ 922,
232
+ 931,
233
+ 1350,
234
+ 1853,
235
+ 1982,
236
+ 2460,
237
+ 2627,
238
+ 3246,
239
+ 3253,
240
+ 3268,
241
+ 3536,
242
+ 3846,
243
+ 3961,
244
+ 4183,
245
+ 4667,
246
+ 6585,
247
+ 6647,
248
+ 7273,
249
+ 9061,
250
+ 9383,
251
+ 10428,
252
+ 10929,
253
+ 11938,
254
+ 12033,
255
+ 12331,
256
+ 12562,
257
+ 13793,
258
+ 14157,
259
+ 14635,
260
+ 15265,
261
+ 15618,
262
+ 16553,
263
+ 16604,
264
+ 18362,
265
+ 18956,
266
+ 20075,
267
+ 21675,
268
+ 22520,
269
+ 26130,
270
+ 26161,
271
+ 26435,
272
+ 28279,
273
+ 29464,
274
+ 31650,
275
+ 32302,
276
+ 32470,
277
+ 36865,
278
+ 42863,
279
+ 47425,
280
+ 49870,
281
+ 50254,
282
+ 50258,
283
+ 50358,
284
+ 50359,
285
+ 50360,
286
+ 50361,
287
+ 50362
288
+ ],
289
+ "suppress_ids_begin": [
290
+ 220,
291
+ 50257
292
+ ],
293
+ "torch_dtype": "float32",
294
+ "transformers_version": "4.45.2",
295
+ "use_cache": true,
296
+ "use_weighted_layer_sum": false,
297
+ "vocab_size": 51865
298
+ }
distil-small-init/generation_config.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 5,
5
+ 3
6
+ ],
7
+ [
8
+ 5,
9
+ 9
10
+ ],
11
+ [
12
+ 8,
13
+ 0
14
+ ],
15
+ [
16
+ 8,
17
+ 4
18
+ ],
19
+ [
20
+ 8,
21
+ 7
22
+ ],
23
+ [
24
+ 8,
25
+ 8
26
+ ],
27
+ [
28
+ 9,
29
+ 0
30
+ ],
31
+ [
32
+ 9,
33
+ 7
34
+ ],
35
+ [
36
+ 9,
37
+ 9
38
+ ],
39
+ [
40
+ 10,
41
+ 5
42
+ ]
43
+ ],
44
+ "begin_suppress_tokens": [
45
+ 220,
46
+ 50257
47
+ ],
48
+ "bos_token_id": 50257,
49
+ "decoder_start_token_id": 50258,
50
+ "eos_token_id": 50257,
51
+ "is_multilingual": true,
52
+ "lang_to_id": {
53
+ "<|af|>": 50327,
54
+ "<|am|>": 50334,
55
+ "<|ar|>": 50272,
56
+ "<|as|>": 50350,
57
+ "<|az|>": 50304,
58
+ "<|ba|>": 50355,
59
+ "<|be|>": 50330,
60
+ "<|bg|>": 50292,
61
+ "<|bn|>": 50302,
62
+ "<|bo|>": 50347,
63
+ "<|br|>": 50309,
64
+ "<|bs|>": 50315,
65
+ "<|ca|>": 50270,
66
+ "<|cs|>": 50283,
67
+ "<|cy|>": 50297,
68
+ "<|da|>": 50285,
69
+ "<|de|>": 50261,
70
+ "<|el|>": 50281,
71
+ "<|en|>": 50259,
72
+ "<|es|>": 50262,
73
+ "<|et|>": 50307,
74
+ "<|eu|>": 50310,
75
+ "<|fa|>": 50300,
76
+ "<|fi|>": 50277,
77
+ "<|fo|>": 50338,
78
+ "<|fr|>": 50265,
79
+ "<|gl|>": 50319,
80
+ "<|gu|>": 50333,
81
+ "<|haw|>": 50352,
82
+ "<|ha|>": 50354,
83
+ "<|he|>": 50279,
84
+ "<|hi|>": 50276,
85
+ "<|hr|>": 50291,
86
+ "<|ht|>": 50339,
87
+ "<|hu|>": 50286,
88
+ "<|hy|>": 50312,
89
+ "<|id|>": 50275,
90
+ "<|is|>": 50311,
91
+ "<|it|>": 50274,
92
+ "<|ja|>": 50266,
93
+ "<|jw|>": 50356,
94
+ "<|ka|>": 50329,
95
+ "<|kk|>": 50316,
96
+ "<|km|>": 50323,
97
+ "<|kn|>": 50306,
98
+ "<|ko|>": 50264,
99
+ "<|la|>": 50294,
100
+ "<|lb|>": 50345,
101
+ "<|ln|>": 50353,
102
+ "<|lo|>": 50336,
103
+ "<|lt|>": 50293,
104
+ "<|lv|>": 50301,
105
+ "<|mg|>": 50349,
106
+ "<|mi|>": 50295,
107
+ "<|mk|>": 50308,
108
+ "<|ml|>": 50296,
109
+ "<|mn|>": 50314,
110
+ "<|mr|>": 50320,
111
+ "<|ms|>": 50282,
112
+ "<|mt|>": 50343,
113
+ "<|my|>": 50346,
114
+ "<|ne|>": 50313,
115
+ "<|nl|>": 50271,
116
+ "<|nn|>": 50342,
117
+ "<|no|>": 50288,
118
+ "<|oc|>": 50328,
119
+ "<|pa|>": 50321,
120
+ "<|pl|>": 50269,
121
+ "<|ps|>": 50340,
122
+ "<|pt|>": 50267,
123
+ "<|ro|>": 50284,
124
+ "<|ru|>": 50263,
125
+ "<|sa|>": 50344,
126
+ "<|sd|>": 50332,
127
+ "<|si|>": 50322,
128
+ "<|sk|>": 50298,
129
+ "<|sl|>": 50305,
130
+ "<|sn|>": 50324,
131
+ "<|so|>": 50326,
132
+ "<|sq|>": 50317,
133
+ "<|sr|>": 50303,
134
+ "<|su|>": 50357,
135
+ "<|sv|>": 50273,
136
+ "<|sw|>": 50318,
137
+ "<|ta|>": 50287,
138
+ "<|te|>": 50299,
139
+ "<|tg|>": 50331,
140
+ "<|th|>": 50289,
141
+ "<|tk|>": 50341,
142
+ "<|tl|>": 50348,
143
+ "<|tr|>": 50268,
144
+ "<|tt|>": 50351,
145
+ "<|uk|>": 50280,
146
+ "<|ur|>": 50290,
147
+ "<|uz|>": 50337,
148
+ "<|vi|>": 50278,
149
+ "<|yi|>": 50335,
150
+ "<|yo|>": 50325,
151
+ "<|zh|>": 50260
152
+ },
153
+ "language": "<|no|>",
154
+ "max_initial_timestamp_index": 1,
155
+ "max_length": 448,
156
+ "no_timestamps_token_id": 50363,
157
+ "pad_token_id": 50257,
158
+ "return_timestamps": false,
159
+ "suppress_tokens": [
160
+ 1,
161
+ 2,
162
+ 7,
163
+ 8,
164
+ 9,
165
+ 10,
166
+ 14,
167
+ 25,
168
+ 26,
169
+ 27,
170
+ 28,
171
+ 29,
172
+ 31,
173
+ 58,
174
+ 59,
175
+ 60,
176
+ 61,
177
+ 62,
178
+ 63,
179
+ 90,
180
+ 91,
181
+ 92,
182
+ 93,
183
+ 359,
184
+ 503,
185
+ 522,
186
+ 542,
187
+ 873,
188
+ 893,
189
+ 902,
190
+ 918,
191
+ 922,
192
+ 931,
193
+ 1350,
194
+ 1853,
195
+ 1982,
196
+ 2460,
197
+ 2627,
198
+ 3246,
199
+ 3253,
200
+ 3268,
201
+ 3536,
202
+ 3846,
203
+ 3961,
204
+ 4183,
205
+ 4667,
206
+ 6585,
207
+ 6647,
208
+ 7273,
209
+ 9061,
210
+ 9383,
211
+ 10428,
212
+ 10929,
213
+ 11938,
214
+ 12033,
215
+ 12331,
216
+ 12562,
217
+ 13793,
218
+ 14157,
219
+ 14635,
220
+ 15265,
221
+ 15618,
222
+ 16553,
223
+ 16604,
224
+ 18362,
225
+ 18956,
226
+ 20075,
227
+ 21675,
228
+ 22520,
229
+ 26130,
230
+ 26161,
231
+ 26435,
232
+ 28279,
233
+ 29464,
234
+ 31650,
235
+ 32302,
236
+ 32470,
237
+ 36865,
238
+ 42863,
239
+ 47425,
240
+ 49870,
241
+ 50254,
242
+ 50258,
243
+ 50358,
244
+ 50359,
245
+ 50360,
246
+ 50361,
247
+ 50362
248
+ ],
249
+ "task": "transcribe",
250
+ "task_to_id": {
251
+ "transcribe": 50359,
252
+ "translate": 50358
253
+ },
254
+ "transformers_version": "4.45.2"
255
+ }
distil-small-init/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
distil-small-init/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cd1a620cf91eec4b2ce66b13a42e09545806dc7ef4ecf65d0beb28675bafc1a
3
+ size 588957392
distil-small-init/normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
distil-small-init/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
distil-small-init/special_tokens_map.json ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": {
126
+ "content": "<|endoftext|>",
127
+ "lstrip": false,
128
+ "normalized": true,
129
+ "rstrip": false,
130
+ "single_word": false
131
+ },
132
+ "unk_token": {
133
+ "content": "<|endoftext|>",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false
138
+ }
139
+ }
distil-small-init/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
distil-small-init/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
distil-whisper/events.out.tfevents.1729254277.dante.10002.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:816c9accf263e8bc928b7f7780e251948c7e330109154eef30396ebf58e00937
3
+ size 88
distil-whisper/events.out.tfevents.1729254378.dante.10276.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce9023210e0109662de247ffe170c80836eec8e5f42a0561a5a64c14416d6fdb
3
+ size 1304
generation_config.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 5,
5
+ 3
6
+ ],
7
+ [
8
+ 5,
9
+ 9
10
+ ],
11
+ [
12
+ 8,
13
+ 0
14
+ ],
15
+ [
16
+ 8,
17
+ 4
18
+ ],
19
+ [
20
+ 8,
21
+ 7
22
+ ],
23
+ [
24
+ 8,
25
+ 8
26
+ ],
27
+ [
28
+ 9,
29
+ 0
30
+ ],
31
+ [
32
+ 9,
33
+ 7
34
+ ],
35
+ [
36
+ 9,
37
+ 9
38
+ ],
39
+ [
40
+ 10,
41
+ 5
42
+ ]
43
+ ],
44
+ "begin_suppress_tokens": [
45
+ 220,
46
+ 50257
47
+ ],
48
+ "bos_token_id": 50257,
49
+ "decoder_start_token_id": 50258,
50
+ "eos_token_id": 50257,
51
+ "is_multilingual": true,
52
+ "lang_to_id": {
53
+ "<|af|>": 50327,
54
+ "<|am|>": 50334,
55
+ "<|ar|>": 50272,
56
+ "<|as|>": 50350,
57
+ "<|az|>": 50304,
58
+ "<|ba|>": 50355,
59
+ "<|be|>": 50330,
60
+ "<|bg|>": 50292,
61
+ "<|bn|>": 50302,
62
+ "<|bo|>": 50347,
63
+ "<|br|>": 50309,
64
+ "<|bs|>": 50315,
65
+ "<|ca|>": 50270,
66
+ "<|cs|>": 50283,
67
+ "<|cy|>": 50297,
68
+ "<|da|>": 50285,
69
+ "<|de|>": 50261,
70
+ "<|el|>": 50281,
71
+ "<|en|>": 50259,
72
+ "<|es|>": 50262,
73
+ "<|et|>": 50307,
74
+ "<|eu|>": 50310,
75
+ "<|fa|>": 50300,
76
+ "<|fi|>": 50277,
77
+ "<|fo|>": 50338,
78
+ "<|fr|>": 50265,
79
+ "<|gl|>": 50319,
80
+ "<|gu|>": 50333,
81
+ "<|haw|>": 50352,
82
+ "<|ha|>": 50354,
83
+ "<|he|>": 50279,
84
+ "<|hi|>": 50276,
85
+ "<|hr|>": 50291,
86
+ "<|ht|>": 50339,
87
+ "<|hu|>": 50286,
88
+ "<|hy|>": 50312,
89
+ "<|id|>": 50275,
90
+ "<|is|>": 50311,
91
+ "<|it|>": 50274,
92
+ "<|ja|>": 50266,
93
+ "<|jw|>": 50356,
94
+ "<|ka|>": 50329,
95
+ "<|kk|>": 50316,
96
+ "<|km|>": 50323,
97
+ "<|kn|>": 50306,
98
+ "<|ko|>": 50264,
99
+ "<|la|>": 50294,
100
+ "<|lb|>": 50345,
101
+ "<|ln|>": 50353,
102
+ "<|lo|>": 50336,
103
+ "<|lt|>": 50293,
104
+ "<|lv|>": 50301,
105
+ "<|mg|>": 50349,
106
+ "<|mi|>": 50295,
107
+ "<|mk|>": 50308,
108
+ "<|ml|>": 50296,
109
+ "<|mn|>": 50314,
110
+ "<|mr|>": 50320,
111
+ "<|ms|>": 50282,
112
+ "<|mt|>": 50343,
113
+ "<|my|>": 50346,
114
+ "<|ne|>": 50313,
115
+ "<|nl|>": 50271,
116
+ "<|nn|>": 50342,
117
+ "<|no|>": 50288,
118
+ "<|oc|>": 50328,
119
+ "<|pa|>": 50321,
120
+ "<|pl|>": 50269,
121
+ "<|ps|>": 50340,
122
+ "<|pt|>": 50267,
123
+ "<|ro|>": 50284,
124
+ "<|ru|>": 50263,
125
+ "<|sa|>": 50344,
126
+ "<|sd|>": 50332,
127
+ "<|si|>": 50322,
128
+ "<|sk|>": 50298,
129
+ "<|sl|>": 50305,
130
+ "<|sn|>": 50324,
131
+ "<|so|>": 50326,
132
+ "<|sq|>": 50317,
133
+ "<|sr|>": 50303,
134
+ "<|su|>": 50357,
135
+ "<|sv|>": 50273,
136
+ "<|sw|>": 50318,
137
+ "<|ta|>": 50287,
138
+ "<|te|>": 50299,
139
+ "<|tg|>": 50331,
140
+ "<|th|>": 50289,
141
+ "<|tk|>": 50341,
142
+ "<|tl|>": 50348,
143
+ "<|tr|>": 50268,
144
+ "<|tt|>": 50351,
145
+ "<|uk|>": 50280,
146
+ "<|ur|>": 50290,
147
+ "<|uz|>": 50337,
148
+ "<|vi|>": 50278,
149
+ "<|yi|>": 50335,
150
+ "<|yo|>": 50325,
151
+ "<|zh|>": 50260
152
+ },
153
+ "language": "no",
154
+ "max_initial_timestamp_index": 1,
155
+ "max_length": 448,
156
+ "no_timestamps_token_id": 50363,
157
+ "pad_token_id": 50257,
158
+ "return_timestamps": false,
159
+ "suppress_tokens": [
160
+ 1,
161
+ 2,
162
+ 7,
163
+ 8,
164
+ 9,
165
+ 10,
166
+ 14,
167
+ 25,
168
+ 26,
169
+ 27,
170
+ 28,
171
+ 29,
172
+ 31,
173
+ 58,
174
+ 59,
175
+ 60,
176
+ 61,
177
+ 62,
178
+ 63,
179
+ 90,
180
+ 91,
181
+ 92,
182
+ 93,
183
+ 359,
184
+ 503,
185
+ 522,
186
+ 542,
187
+ 873,
188
+ 893,
189
+ 902,
190
+ 918,
191
+ 922,
192
+ 931,
193
+ 1350,
194
+ 1853,
195
+ 1982,
196
+ 2460,
197
+ 2627,
198
+ 3246,
199
+ 3253,
200
+ 3268,
201
+ 3536,
202
+ 3846,
203
+ 3961,
204
+ 4183,
205
+ 4667,
206
+ 6585,
207
+ 6647,
208
+ 7273,
209
+ 9061,
210
+ 9383,
211
+ 10428,
212
+ 10929,
213
+ 11938,
214
+ 12033,
215
+ 12331,
216
+ 12562,
217
+ 13793,
218
+ 14157,
219
+ 14635,
220
+ 15265,
221
+ 15618,
222
+ 16553,
223
+ 16604,
224
+ 18362,
225
+ 18956,
226
+ 20075,
227
+ 21675,
228
+ 22520,
229
+ 26130,
230
+ 26161,
231
+ 26435,
232
+ 28279,
233
+ 29464,
234
+ 31650,
235
+ 32302,
236
+ 32470,
237
+ 36865,
238
+ 42863,
239
+ 47425,
240
+ 49870,
241
+ 50254,
242
+ 50258,
243
+ 50358,
244
+ 50359,
245
+ 50360,
246
+ 50361,
247
+ 50362
248
+ ],
249
+ "task": "transcribe",
250
+ "task_to_id": {
251
+ "transcribe": 50359,
252
+ "translate": 50358
253
+ },
254
+ "transformers_version": "4.45.2"
255
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
run_distillation.py ADDED
@@ -0,0 +1,1811 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
18
+ """
19
+ # You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.
20
+
21
+ import logging
22
+ import os
23
+ import re
24
+ import shutil
25
+ import sys
26
+ import time
27
+ from dataclasses import dataclass, field
28
+ from functools import partial
29
+ from pathlib import Path
30
+ from typing import Any, Dict, List, Optional, Union
31
+
32
+ import datasets
33
+ import evaluate
34
+ import numpy as np
35
+ import torch
36
+ import torch.nn as nn
37
+ import transformers
38
+ from accelerate import Accelerator
39
+ from accelerate.logging import get_logger
40
+ from accelerate.utils import set_seed
41
+ from datasets import (
42
+ DatasetDict,
43
+ IterableDataset,
44
+ IterableDatasetDict,
45
+ concatenate_datasets,
46
+ interleave_datasets,
47
+ load_dataset,
48
+ )
49
+ from huggingface_hub import create_repo, get_full_repo_name, upload_folder
50
+ from torch.utils.data import DataLoader
51
+ from tqdm import tqdm
52
+ from transformers import (
53
+ AddedToken,
54
+ HfArgumentParser,
55
+ Seq2SeqTrainingArguments,
56
+ WhisperConfig,
57
+ WhisperFeatureExtractor,
58
+ WhisperForConditionalGeneration,
59
+ WhisperProcessor,
60
+ WhisperTokenizerFast,
61
+ get_scheduler
62
+ )
63
+ from transformers.modeling_outputs import BaseModelOutput
64
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer
65
+ from transformers.utils import check_min_version
66
+ from transformers.utils.versions import require_version
67
+
68
+
69
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
70
+ check_min_version("4.34.0.dev0")
71
+
72
+ require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")
73
+
74
+ logger = get_logger(__name__)
75
+
76
+
77
+ @dataclass
78
+ class ModelArguments:
79
+ """
80
+ Arguments pertaining to which model/config/tokenizer we are going to distill from.
81
+ """
82
+
83
+ model_name_or_path: str = field(
84
+ metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"}
85
+ )
86
+ teacher_model_name_or_path: str = field(
87
+ metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"}
88
+ )
89
+ config_name: Optional[str] = field(
90
+ default=None,
91
+ metadata={"help": "Pretrained config name or path if not the same as model_name"},
92
+ )
93
+ tokenizer_name: Optional[str] = field(
94
+ default=None,
95
+ metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
96
+ )
97
+ feature_extractor_name: Optional[str] = field(
98
+ default=None,
99
+ metadata={"help": "feature extractor name or path if not the same as model_name"},
100
+ )
101
+ cache_dir: Optional[str] = field(
102
+ default=None,
103
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
104
+ )
105
+ use_fast_tokenizer: bool = field(
106
+ default=True,
107
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
108
+ )
109
+ model_revision: str = field(
110
+ default="main",
111
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
112
+ )
113
+ subfolder: str = field(
114
+ default="",
115
+ metadata={
116
+ "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
117
+ "specify the folder name here."
118
+ },
119
+ )
120
+ token: str = field(
121
+ default=None,
122
+ metadata={
123
+ "help": (
124
+ "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
125
+ "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
126
+ )
127
+ },
128
+ )
129
+ attn_implementation: Optional[str] = field(
130
+ default=None,
131
+ metadata={
132
+ "help": (
133
+ "Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n"
134
+ "1. `eager` or `None`: default Transformers attention implementation.\n"
135
+ "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
136
+ "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
137
+ )
138
+ },
139
+ )
140
+
141
+ def __post_init__(self):
142
+ if self.attn_implementation not in [None, "eager", "sdpa", "flash_attention_2"]:
143
+ raise ValueError(
144
+ f"Got `--attn_implementation={self.attn_implementation}`, which is an invalid attention type. Should be one of:\n"
145
+ "1. `eager` or `None`: default Transformers attention implementation.\n"
146
+ "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
147
+ "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
148
+ )
149
+
150
+
151
+ @dataclass
152
+ class DataTrainingArguments:
153
+ """
154
+ Arguments pertaining to what data we are going to input our model for training and eval.
155
+ """
156
+
157
+ train_dataset_name: str = field(
158
+ default=None,
159
+ metadata={
160
+ "help": "The name of the training dataset to use (via the datasets library). Load and combine "
161
+ "multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech "
162
+ "and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`."
163
+ },
164
+ )
165
+ train_dataset_config_name: Optional[str] = field(
166
+ default=None,
167
+ metadata={
168
+ "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
169
+ "multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should "
170
+ "match the order of the datasets."
171
+ },
172
+ )
173
+ train_dataset_samples: str = field(
174
+ default=None,
175
+ metadata={
176
+ "help": "Number of samples in each dataset when loading multiple datasets with streaming mode. "
177
+ "Not required when using one dataset or non-streaming mode. The sample values provide the sampling "
178
+ "probability for each dataset. Setting them equal to the number of sample values ensures that every "
179
+ "sample from every dataset is used once per epoch."
180
+ },
181
+ )
182
+ eval_dataset_name: str = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training "
186
+ "dataset name if unspecified. Load multiple evaluation datasets by separating dataset "
187
+ "ids by a '+' symbol."
188
+ },
189
+ )
190
+ eval_dataset_config_name: Optional[str] = field(
191
+ default=None,
192
+ metadata={
193
+ "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the "
194
+ "training dataset config name if unspecified."
195
+ },
196
+ )
197
+ dataset_cache_dir: Optional[str] = field(
198
+ default=None,
199
+ metadata={"help": "Path to cache directory for saving and loading datasets"},
200
+ )
201
+ overwrite_cache: bool = field(
202
+ default=False,
203
+ metadata={"help": "Overwrite the cached training and evaluation sets"},
204
+ )
205
+ preprocessing_num_workers: Optional[int] = field(
206
+ default=None,
207
+ metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."},
208
+ )
209
+ preprocessing_batch_size: Optional[int] = field(
210
+ default=256,
211
+ metadata={"help": "Number of examples per batch provided to the `prepare_dataset` function."},
212
+ )
213
+ max_train_samples: Optional[int] = field(
214
+ default=None,
215
+ metadata={
216
+ "help": (
217
+ "For debugging purposes or quicker training, truncate the number of training examples to this value if set."
218
+ )
219
+ },
220
+ )
221
+ max_eval_samples: Optional[int] = field(
222
+ default=None,
223
+ metadata={
224
+ "help": (
225
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set."
226
+ )
227
+ },
228
+ )
229
+ audio_column_name: str = field(
230
+ default="audio",
231
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
232
+ )
233
+ text_column_name: str = field(
234
+ default=None,
235
+ metadata={"help": "The name of the dataset column containing the text data in the training set."},
236
+ )
237
+ eval_text_column_name: str = field(
238
+ default="text",
239
+ metadata={"help": ("The name of the dataset column containing the text data in the evaluation set.")},
240
+ )
241
+ max_duration_in_seconds: float = field(
242
+ default=30.0,
243
+ metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"},
244
+ )
245
+ min_duration_in_seconds: float = field(
246
+ default=0.0,
247
+ metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"},
248
+ )
249
+ max_label_length: int = field(
250
+ default=448,
251
+ metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
252
+ )
253
+ pad_target_to_multiple_of: Optional[int] = field(
254
+ default=None,
255
+ metadata={
256
+ "help": (
257
+ "If set will pad the target sequence to a multiple of the provided"
258
+ " value. This is important to avoid triggering recompilations on TPU."
259
+ " If unspecified, will default to padding the targets to max length."
260
+ )
261
+ },
262
+ )
263
+ preprocessing_only: bool = field(
264
+ default=False,
265
+ metadata={
266
+ "help": (
267
+ "Whether to only do data preprocessing and skip training. This is"
268
+ " especially useful when data preprocessing errors out in distributed"
269
+ " training due to timeout. In this case, one should run the"
270
+ " preprocessing in a non-distributed setup with"
271
+ " `preprocessing_only=True` so that the cached datasets can"
272
+ " consequently be loaded in distributed training"
273
+ )
274
+ },
275
+ )
276
+ train_split_name: str = field(
277
+ default="train",
278
+ metadata={
279
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
280
+ },
281
+ )
282
+ eval_split_name: str = field(
283
+ default="validation",
284
+ metadata={
285
+ "help": (
286
+ "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
287
+ )
288
+ },
289
+ )
290
+ streaming: bool = field(
291
+ default=True,
292
+ metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."},
293
+ )
294
+ wer_threshold: float = field(
295
+ default=None,
296
+ metadata={
297
+ "help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
298
+ "WER with the normalised transcriptions. This only takes effect if training on pseudo-labels targets."
299
+ "If `--use_pseudo_labels=False`, then no WER filtering is performed, since we train directly on the text"
300
+ "transcriptions."
301
+ },
302
+ )
303
+ use_pseudo_labels: bool = field(
304
+ default=True,
305
+ metadata={
306
+ "help": "Whether or not to use pseudo-label transcriptions as the targets. If True, the pseudo-labels "
307
+ "must be in the dataset column `whisper_transcript` from the previous pseudo-labelling step. This is "
308
+ "not currently yet configurable."
309
+ },
310
+ )
311
+ timestamp_probability: float = field(
312
+ default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
313
+ )
314
+ condition_on_prev_probability: float = field(
315
+ default=0.2, metadata={"help": "Probability for conditioning on the previous text example."}
316
+ )
317
+ return_timestamps: bool = field(
318
+ default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
319
+ )
320
+ language: str = field(
321
+ default=None,
322
+ metadata={
323
+ "help": (
324
+ "Language for multilingual distillation. This argument should be set for multilingual distillation "
325
+ "only. For English speech recognition, it should be left as `None`."
326
+ )
327
+ },
328
+ )
329
+ task: str = field(
330
+ default="transcribe",
331
+ metadata={
332
+ "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
333
+ "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`."
334
+ },
335
+ )
336
+ wandb_project: str = field(
337
+ default="distil-whisper",
338
+ metadata={"help": "The name of the wandb project."},
339
+ )
340
+ wandb_name: str = field(
341
+ default=None,
342
+ metadata={"help": "The name of the wandb run."},
343
+ )
344
+ wandb_dir: str = field(
345
+ default="./wandb",
346
+ metadata={"help": "The dir where wandb metadata will be stored."},
347
+ )
348
+
349
+
350
+ @dataclass
351
+ class DistillationTrainingArguments(Seq2SeqTrainingArguments):
352
+ freeze_encoder: Optional[bool] = field(
353
+ default=False,
354
+ metadata={
355
+ "help": (
356
+ "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
357
+ "copied from the teacher model."
358
+ )
359
+ },
360
+ )
361
+ freeze_decoder: Optional[bool] = field(
362
+ default=False,
363
+ metadata={
364
+ "help": (
365
+ "Whether to freeze the entire decoder model. Note that the decoder input embeddings are **not** frozen, since they are tied to the LM head."
366
+ )
367
+ },
368
+ )
369
+ freeze_embed_positions: Optional[bool] = field(
370
+ default=False,
371
+ metadata={"help": "Whether to freeze the decoder embedding positions."},
372
+ )
373
+ temperature: Optional[float] = field(
374
+ default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
375
+ )
376
+ kl_weight: Optional[float] = field(
377
+ default=1.0,
378
+ metadata={
379
+ "help": (
380
+ "Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
381
+ "computed between the teacher-student hidden states and attentions."
382
+ )
383
+ },
384
+ )
385
+ dtype: Optional[str] = field(
386
+ default="float32",
387
+ metadata={
388
+ "help": (
389
+ "The data type (dtype) in which to run training. One of `float32` (full-precision), "
390
+ "`float16` or `bfloat16` (both half-precision)."
391
+ )
392
+ },
393
+ )
394
+ save_best_total_limit: Optional[int] = field(
395
+ default=1,
396
+ metadata={
397
+ "help": (
398
+ "Number of best models to be saved."
399
+ )
400
+ }
401
+ )
402
+
403
+
404
+ @dataclass
405
+ class DataCollatorSpeechSeq2SeqWithPadding:
406
+ """
407
+ Data collator that will dynamically pad the inputs received.
408
+ Args:
409
+ processor ([`Wav2Vec2Processor`])
410
+ The processor used for proccessing the data.
411
+ decoder_start_token_id (:obj: `int`)
412
+ The start-of-sequence token id of the decoder.
413
+ decoder_prev_token_id (:obj: `int`)
414
+ The start-of-prompt token id of the decoder
415
+ input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
416
+ Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
417
+ among:
418
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
419
+ sequence if provided).
420
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
421
+ maximum acceptable input length for the model if that argument is not provided.
422
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
423
+ different lengths).
424
+ target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
425
+ Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
426
+ See above for details.
427
+ max_target_length (:obj:`int`, `optional`):
428
+ Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
429
+ """
430
+
431
+ processor: Any
432
+ decoder_start_token_id: int
433
+ decoder_prev_token_id: int
434
+ input_padding: Union[bool, str] = "max_length"
435
+ target_padding: Union[bool, str] = "max_length"
436
+ max_target_length: Optional[int] = None
437
+
438
+ def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
439
+ # split inputs and labels since they have to be of different lengths and need
440
+ # different padding methods
441
+
442
+ # dataloader returns a list of features which we convert to a dict
443
+ input_features = {"input_features": [feature["input_features"] for feature in features]}
444
+ label_features = {"input_ids": [feature["labels"] for feature in features]}
445
+
446
+ # reformat list to dict and set to pytorch format
447
+ batch = self.processor.feature_extractor.pad(
448
+ input_features,
449
+ padding=self.input_padding,
450
+ return_tensors="pt",
451
+ )
452
+
453
+ labels_batch = self.processor.tokenizer.pad(
454
+ label_features,
455
+ max_length=self.max_target_length,
456
+ padding=self.target_padding,
457
+ return_tensors="pt",
458
+ )
459
+
460
+ # shift labels to the right to get decoder input ids
461
+ labels = labels_batch["input_ids"]
462
+ decoder_input_ids = labels[:, :-1]
463
+ labels = labels[:, 1:]
464
+ labels_mask = labels_batch.attention_mask[:, 1:]
465
+
466
+ # replace padding with -100 to ignore correctly when computing the loss
467
+ labels = labels.masked_fill(labels_mask.ne(1), -100)
468
+
469
+ # replace initial prompt tokens with -100 to ignore correctly when computing the loss
470
+ bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1)
471
+ bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index)
472
+ prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None]
473
+ labels = torch.where(prompt_mask, -100, labels)
474
+
475
+ batch["labels"] = labels
476
+ batch["decoder_input_ids"] = decoder_input_ids
477
+
478
+ return batch
479
+
480
+
481
+ def log_metric(
482
+ accelerator,
483
+ metrics: Dict,
484
+ train_time: float,
485
+ step: int,
486
+ epoch: int,
487
+ learning_rate: float = None,
488
+ prefix: str = "train",
489
+ ):
490
+ """Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
491
+ log_metrics = {}
492
+ for k, v in metrics.items():
493
+ log_metrics[f"{prefix}/{k}"] = v
494
+ log_metrics[f"{prefix}/time"] = train_time
495
+ log_metrics[f"{prefix}/epoch"] = epoch
496
+ if learning_rate is not None:
497
+ log_metrics[f"{prefix}/learning_rate"] = learning_rate
498
+ accelerator.log(log_metrics, step=step)
499
+
500
+
501
+ def log_pred(
502
+ accelerator,
503
+ pred_str: List[str],
504
+ label_str: List[str],
505
+ norm_pred_str: List[str],
506
+ norm_label_str: List[str],
507
+ step: int,
508
+ prefix: str = "eval",
509
+ num_lines: int = 200000,
510
+ ):
511
+ """Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
512
+ if accelerator.is_main_process:
513
+ wandb_tracker = accelerator.get_tracker("wandb")
514
+ # pretty name for current step: step 50000 -> step 50k
515
+ cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
516
+ prefix_pretty = prefix.replace("/", "-")
517
+
518
+ # convert str data to a wandb compatible format
519
+ str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
520
+ # log as a table with the appropriate headers
521
+ wandb_tracker.log_table(
522
+ table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
523
+ columns=["Target", "Pred", "Norm Target", "Norm Pred"],
524
+ data=str_data[:num_lines],
525
+ step=step,
526
+ )
527
+
528
+ # log incorrect normalised predictions
529
+ str_data = np.asarray(str_data)
530
+ str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
531
+ # log as a table with the appropriate headers
532
+ wandb_tracker.log_table(
533
+ table_name=f"incorrect_predictions/{prefix_pretty}-step-{cur_step_pretty}",
534
+ columns=["Target", "Pred", "Norm Target", "Norm Pred"],
535
+ data=str_data_incorrect[:num_lines],
536
+ step=step,
537
+ )
538
+
539
+
540
+ def convert_dataset_str_to_list(
541
+ dataset_names,
542
+ dataset_config_names,
543
+ splits=None,
544
+ text_column_names=None,
545
+ dataset_samples=None,
546
+ default_split="train",
547
+ ) -> List[Dict]:
548
+ """
549
+ Given three lists of dataset names, configs and splits, this function groups the corresponding
550
+ names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the
551
+ function returns a list of dictionaries, one for each dataset.
552
+ """
553
+ if isinstance(dataset_names, str):
554
+ dataset_names = dataset_names.split("+")
555
+ dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None
556
+ splits = splits.split("+") if splits is not None else None
557
+ text_column_names = text_column_names.split("+") if text_column_names is not None else None
558
+ dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
559
+
560
+ # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
561
+ if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names):
562
+ raise ValueError(
563
+ f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
564
+ f" {len(dataset_config_names)} configs."
565
+ )
566
+
567
+ if splits is not None and len(splits) != len(dataset_names):
568
+ raise ValueError(
569
+ f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
570
+ )
571
+
572
+ if text_column_names is not None and len(text_column_names) != len(dataset_names):
573
+ raise ValueError(
574
+ f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
575
+ f" {len(text_column_names)} text column names."
576
+ )
577
+
578
+ if dataset_samples is not None:
579
+ if len(dataset_samples) != len(dataset_names):
580
+ raise ValueError(
581
+ f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
582
+ f"{len(dataset_samples)} samples."
583
+ )
584
+ dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
585
+ else:
586
+ dataset_samples = [None] * len(dataset_names)
587
+
588
+ dataset_config_names = (
589
+ dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))]
590
+ )
591
+ text_column_names = (
592
+ text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
593
+ )
594
+ splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
595
+
596
+ dataset_names_dict = []
597
+ for i, ds_name in enumerate(dataset_names):
598
+ dataset_names_dict.append(
599
+ {
600
+ "name": ds_name,
601
+ "config": dataset_config_names[i],
602
+ "split": splits[i],
603
+ "text_column_name": text_column_names[i],
604
+ "samples": dataset_samples[i],
605
+ }
606
+ )
607
+ return dataset_names_dict
608
+
609
+
610
+ def load_multiple_datasets(
611
+ dataset_names: Union[List, str],
612
+ dataset_config_names: Union[List, str],
613
+ splits: Optional[Union[List, str]] = None,
614
+ text_column_names: Optional[List] = None,
615
+ sampling_rate: Optional[int] = 16000,
616
+ stopping_strategy: Optional[str] = "first_exhausted",
617
+ dataset_samples: Optional[Union[List, np.array]] = None,
618
+ streaming: Optional[bool] = True,
619
+ seed: Optional[int] = None,
620
+ accelerator: Optional[Accelerator] = None,
621
+ use_pseudo_labels: float = None,
622
+ **kwargs,
623
+ ) -> IterableDataset:
624
+ dataset_names_dict = convert_dataset_str_to_list(
625
+ dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
626
+ )
627
+
628
+ if dataset_samples is not None:
629
+ dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
630
+ probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
631
+ else:
632
+ probabilities = None
633
+
634
+ all_datasets = []
635
+ # iterate over the datasets we want to interleave
636
+ for dataset_dict in tqdm(
637
+ dataset_names_dict,
638
+ desc="Combining datasets...",
639
+ disable=not accelerator.is_local_main_process if accelerator is not None else False,
640
+ ):
641
+ dataset = load_dataset(
642
+ dataset_dict["name"],
643
+ dataset_dict["config"],
644
+ split=dataset_dict["split"],
645
+ streaming=streaming,
646
+ **kwargs,
647
+ )
648
+ # resample to specified sampling rate
649
+ dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
650
+ dataset_features = dataset.features.keys()
651
+ columns_to_keep = {"audio", "text"}
652
+
653
+ if dataset_dict["text_column_name"] not in dataset_features:
654
+ raise ValueError(
655
+ f"Text column name {dataset_dict['text_column_name']} not found in dataset"
656
+ f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the"
657
+ f" correct text column - one of {', '.join(dataset_features)}."
658
+ )
659
+
660
+ # blanket renaming of all transcription columns to text
661
+ if dataset_dict["text_column_name"] != "text":
662
+ dataset = dataset.rename_column(dataset_dict["text_column_name"], "text")
663
+
664
+ if use_pseudo_labels:
665
+ if "whisper_transcript" not in dataset_features:
666
+ raise ValueError(
667
+ f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure"
668
+ "pseudo-labels are present in the dataset under this column name, or train directly on the text "
669
+ "labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`."
670
+ )
671
+ columns_to_keep.add("whisper_transcript")
672
+
673
+ if "condition_on_prev" in dataset_features:
674
+ columns_to_keep.add("condition_on_prev")
675
+
676
+ dataset_features = dataset.features.keys()
677
+ dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
678
+ all_datasets.append(dataset)
679
+
680
+ if len(all_datasets) == 1:
681
+ # we have a single dataset so just return it as is
682
+ return all_datasets[0]
683
+
684
+ if streaming:
685
+ interleaved_dataset = interleave_datasets(
686
+ all_datasets,
687
+ stopping_strategy=stopping_strategy,
688
+ probabilities=probabilities,
689
+ seed=seed,
690
+ )
691
+ else:
692
+ interleaved_dataset = concatenate_datasets(all_datasets)
693
+
694
+ return interleaved_dataset
695
+
696
+
697
+ def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
698
+ """Helper function to sort saved checkpoints from oldest to newest."""
699
+ ordering_and_checkpoint_path = []
700
+
701
+ glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
702
+ glob_checkpoints = [path for path in glob_checkpoints if "val-wer" not in path] # filter out best model checkpoints
703
+
704
+ for path in glob_checkpoints:
705
+ regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
706
+ if regex_match is not None and regex_match.groups() is not None:
707
+ ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
708
+
709
+ checkpoints_sorted = sorted(ordering_and_checkpoint_path)
710
+ checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
711
+ return checkpoints_sorted
712
+
713
+
714
+ def sorted_best_checkpoints(output_dir=None, checkpoint_prefix="checkpoint"):
715
+ """Helper function to sort saved best checkpoints."""
716
+ ordering_and_checkpoint_path = []
717
+
718
+ glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
719
+ for path in glob_checkpoints:
720
+ regex_match = re.search(r"val-wer-([0-9]+\.[0-9]+)", path)
721
+ if regex_match is not None and regex_match.groups() is not None:
722
+ ordering_and_checkpoint_path.append((regex_match.groups(1), path))
723
+
724
+ checkpoints_sorted = sorted(ordering_and_checkpoint_path, reverse=True)
725
+ checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
726
+ return checkpoints_sorted
727
+
728
+
729
+ def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint", sorting_fn=sorted_checkpoints) -> None:
730
+ """Helper function to delete old checkpoints."""
731
+ if save_total_limit is None or save_total_limit <= 0:
732
+ return
733
+ # Check if we should delete older checkpoint(s)
734
+ checkpoints_sorted = sorting_fn(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
735
+ if len(checkpoints_sorted) <= save_total_limit:
736
+ return
737
+
738
+ number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
739
+ checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
740
+ for checkpoint in checkpoints_to_be_deleted:
741
+ logger.info(f"Deleting older checkpoint [{checkpoint}].")
742
+ shutil.rmtree(checkpoint, ignore_errors=True)
743
+
744
+
745
+ _RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")
746
+
747
+
748
+ def get_last_checkpoint(folder):
749
+ content = os.listdir(folder)
750
+ checkpoints = [
751
+ path
752
+ for path in content
753
+ if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
754
+ ]
755
+ if len(checkpoints) == 0:
756
+ return
757
+ return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
758
+
759
+
760
+ def get_parameter_names(model, forbidden_layer_types, forbidden_module=None):
761
+ """
762
+ Returns the names of the model parameters that are not inside a forbidden layer or forbidden module.
763
+ Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser
764
+ (e.g. if the module is frozen).
765
+ """
766
+ result = []
767
+ for name, child in model.named_children():
768
+ result += [
769
+ f"{name}.{n}"
770
+ for n in get_parameter_names(child, forbidden_layer_types, forbidden_module)
771
+ if not (
772
+ isinstance(child, tuple(forbidden_layer_types))
773
+ or (child in tuple(forbidden_module) if forbidden_module is not None else False)
774
+ )
775
+ ]
776
+ # Add model specific parameters (defined with nn.Parameter) since they are not in any child.
777
+ result += list(model._parameters.keys())
778
+ return result
779
+
780
+
781
+ def main():
782
+ # 1. Parse input arguments
783
+ # We keep distinct sets of args, for cleaner separation of model/data/training related args
784
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments))
785
+
786
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
787
+ # If we pass only one argument to the script and it's the path to a json file,
788
+ # let's parse it to get our arguments.
789
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
790
+ else:
791
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
792
+
793
+ # 2. Initialize the accelerator
794
+ # We will let the accelerator handle device placement for us in this example
795
+ # We simply have to specify the training precision and any trackers being used
796
+ # We'll use the same dtype arguments as our JAX/Flax training script and convert
797
+ # it to accelerate format
798
+ if training_args.dtype == "float16":
799
+ mixed_precision = "fp16"
800
+ teacher_dtype = torch.float16
801
+ elif training_args.dtype == "bfloat16":
802
+ mixed_precision = "bf16"
803
+ teacher_dtype = torch.bfloat16
804
+ else:
805
+ mixed_precision = "no"
806
+ teacher_dtype = torch.float32
807
+
808
+ accelerator = Accelerator(
809
+ gradient_accumulation_steps=training_args.gradient_accumulation_steps,
810
+ mixed_precision=mixed_precision,
811
+ log_with=training_args.report_to,
812
+ project_dir=training_args.output_dir,
813
+ )
814
+
815
+ accelerator.init_trackers(
816
+ project_name=data_args.wandb_project,
817
+ init_kwargs={
818
+ "wandb": {"name": data_args.wandb_name,
819
+ "dir": data_args.wandb_dir}
820
+ }
821
+
822
+ )
823
+
824
+ # 3. Set-up basic logging
825
+ # Create one log on every process with the configuration for debugging
826
+ logging.basicConfig(
827
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
828
+ datefmt="%m/%d/%Y %H:%M:%S",
829
+ level=logging.INFO,
830
+ )
831
+ # Log a small summary on each proces
832
+ logger.warning(
833
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
834
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
835
+ )
836
+
837
+ # Set the verbosity to info of the Transformers logger (on main process only)
838
+ if accelerator.is_local_main_process:
839
+ datasets.utils.logging.set_verbosity_warning()
840
+ transformers.utils.logging.set_verbosity_info()
841
+ else:
842
+ datasets.utils.logging.set_verbosity_error()
843
+ transformers.utils.logging.set_verbosity_error()
844
+ logger.info("Training/evaluation parameters %s", training_args)
845
+
846
+ # 4. Detecting last checkpoint and eventually continue from last checkpoint
847
+ last_checkpoint = None
848
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
849
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
850
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
851
+ raise ValueError(
852
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
853
+ "Use --overwrite_output_dir to overcome."
854
+ )
855
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
856
+ logger.info(
857
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
858
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
859
+ )
860
+
861
+ # 5. Handle the repository creation
862
+ if accelerator.is_main_process:
863
+ if training_args.push_to_hub:
864
+ if training_args.hub_model_id is None:
865
+ repo_name = get_full_repo_name(
866
+ Path(training_args.output_dir).absolute().name,
867
+ token=training_args.hub_token,
868
+ )
869
+ else:
870
+ repo_name = training_args.hub_model_id
871
+ create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
872
+
873
+ with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
874
+ if "wandb" not in gitignore:
875
+ gitignore.write("wandb\n")
876
+ elif training_args.output_dir is not None:
877
+ os.makedirs(training_args.output_dir, exist_ok=True)
878
+ accelerator.wait_for_everyone()
879
+
880
+ # 6. Load dataset - either streaming or non-streaming (offline)
881
+ raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
882
+
883
+ # set seed for determinism
884
+ set_seed(training_args.seed)
885
+
886
+ if training_args.do_train:
887
+ raw_datasets["train"] = load_multiple_datasets(
888
+ data_args.train_dataset_name,
889
+ data_args.train_dataset_config_name,
890
+ splits=data_args.train_split_name,
891
+ text_column_names=data_args.text_column_name,
892
+ use_pseudo_labels=data_args.use_pseudo_labels,
893
+ streaming=data_args.streaming,
894
+ dataset_samples=data_args.train_dataset_samples,
895
+ seed=training_args.seed,
896
+ accelerator=accelerator,
897
+ cache_dir=data_args.dataset_cache_dir,
898
+ token=model_args.token,
899
+ )
900
+ raw_datasets_train_features = list(raw_datasets["train"].features.keys())
901
+
902
+ if training_args.do_eval:
903
+ dataset_names_dict = convert_dataset_str_to_list(
904
+ data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
905
+ (
906
+ data_args.eval_dataset_config_name
907
+ if data_args.eval_dataset_config_name
908
+ else data_args.train_dataset_config_name
909
+ ),
910
+ splits=data_args.eval_split_name,
911
+ text_column_names=data_args.eval_text_column_name,
912
+ )
913
+ all_eval_splits = []
914
+ if len(dataset_names_dict) == 1:
915
+ # load a single eval set
916
+ dataset_dict = dataset_names_dict[0]
917
+ all_eval_splits.append("eval")
918
+ raw_datasets["eval"] = load_dataset(
919
+ dataset_dict["name"],
920
+ dataset_dict["config"],
921
+ split=dataset_dict["split"],
922
+ cache_dir=data_args.dataset_cache_dir,
923
+ token=model_args.token,
924
+ streaming=data_args.streaming,
925
+ )
926
+ if data_args.eval_text_column_name != "text":
927
+ raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text")
928
+ else:
929
+ # load multiple eval sets
930
+ for dataset_dict in dataset_names_dict:
931
+ if dataset_dict["name"] == "esb/diagnostic-dataset":
932
+ # for the ESB diagnostic dataset, the dataset name is effectively the config
933
+ pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
934
+ else:
935
+ pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
936
+ all_eval_splits.append(pretty_name)
937
+ raw_datasets[pretty_name] = load_dataset(
938
+ dataset_dict["name"],
939
+ dataset_dict["config"],
940
+ split=dataset_dict["split"],
941
+ cache_dir=data_args.dataset_cache_dir,
942
+ token=model_args.token,
943
+ streaming=data_args.streaming,
944
+ )
945
+ # make column names consistent (text, audio)
946
+ if dataset_dict["text_column_name"] != "text":
947
+ raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
948
+ dataset_dict["text_column_name"], "text"
949
+ )
950
+ raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
951
+ set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
952
+ )
953
+
954
+ if not training_args.do_train and not training_args.do_eval:
955
+ raise ValueError(
956
+ "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
957
+ )
958
+
959
+ # 7. Load pretrained model, tokenizer, and feature extractor
960
+ config = WhisperConfig.from_pretrained(
961
+ (model_args.config_name if model_args.config_name else model_args.model_name_or_path),
962
+ cache_dir=model_args.cache_dir,
963
+ revision=model_args.model_revision,
964
+ token=model_args.token,
965
+ )
966
+ feature_extractor = WhisperFeatureExtractor.from_pretrained(
967
+ (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
968
+ cache_dir=model_args.cache_dir,
969
+ revision=model_args.model_revision,
970
+ token=model_args.token,
971
+ )
972
+ tokenizer = WhisperTokenizerFast.from_pretrained(
973
+ (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
974
+ cache_dir=model_args.cache_dir,
975
+ use_fast=model_args.use_fast_tokenizer,
976
+ revision=model_args.model_revision,
977
+ token=model_args.token,
978
+ )
979
+
980
+ # override timestamp tokens until tokenizer issues are fixed in transformers
981
+ timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
982
+ tokenizer.add_tokens(timestamps)
983
+
984
+ # The teacher model can safely be cast to the dtype of training since we don't
985
+ # update the params
986
+ teacher_model = WhisperForConditionalGeneration.from_pretrained(
987
+ model_args.teacher_model_name_or_path,
988
+ cache_dir=model_args.cache_dir,
989
+ token=model_args.token,
990
+ low_cpu_mem_usage=True,
991
+ torch_dtype=teacher_dtype,
992
+ attn_implementation=model_args.attn_implementation,
993
+ )
994
+
995
+ student_model = WhisperForConditionalGeneration.from_pretrained(
996
+ model_args.model_name_or_path,
997
+ config=config,
998
+ cache_dir=model_args.cache_dir,
999
+ revision=model_args.model_revision,
1000
+ subfolder=model_args.subfolder,
1001
+ token=model_args.token,
1002
+ low_cpu_mem_usage=True,
1003
+ attn_implementation=model_args.attn_implementation,
1004
+ )
1005
+
1006
+ if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
1007
+ raise ValueError(
1008
+ f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
1009
+ f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
1010
+ f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
1011
+ )
1012
+
1013
+ # enable gradient checkpointing if necessary
1014
+ if training_args.gradient_checkpointing:
1015
+ student_model.gradient_checkpointing_enable()
1016
+
1017
+ def set_trainable_parameters(module, requires_grad=False):
1018
+ for param in module.parameters():
1019
+ param.requires_grad = requires_grad
1020
+ module._requires_grad = requires_grad
1021
+
1022
+ # freeze student encoder if necessary
1023
+ if training_args.freeze_encoder:
1024
+ set_trainable_parameters(student_model.model.encoder, requires_grad=False)
1025
+ student_model.model.encoder.gradient_checkpointing = False
1026
+
1027
+ if training_args.freeze_decoder:
1028
+ set_trainable_parameters(student_model.model.decoder, requires_grad=False)
1029
+ student_model.model.decoder.gradient_checkpointing = False
1030
+ # un-freeze LM head parameters (and consequently word embeddings), frozen when frozing decoder since tied word embedding and LM head
1031
+ set_trainable_parameters(student_model.proj_out, requires_grad=True)
1032
+
1033
+
1034
+ if training_args.freeze_embed_positions:
1035
+ # set_trainable_parameters(student_model.model.decoder.embed_tokens, requires_grad=False)
1036
+ set_trainable_parameters(student_model.model.decoder.embed_positions, requires_grad=False)
1037
+ if student_model.model.decoder.gradient_checkpointing:
1038
+ logger.info(
1039
+ "Disabling gradient checkpointing in the decoder since it's incompatible with `freeze_embed_positions`."
1040
+ )
1041
+
1042
+ logger.info(
1043
+ f"Number of trainable parameters: {sum(p.numel() for p in student_model.parameters() if p.requires_grad):.3e}"
1044
+ )
1045
+
1046
+ share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model
1047
+ if share_hidden_states:
1048
+ # tie the weights for the teacher encoder if we're freezing the student and it's the same as the teacher
1049
+ teacher_model.model.encoder = student_model.model.encoder
1050
+
1051
+ if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
1052
+ # We need to set the language and task ids for previously multilingual checkpoints
1053
+ is_multilingual = True
1054
+ tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False)
1055
+ student_model.generation_config.update(
1056
+ **{
1057
+ "language": data_args.language,
1058
+ "task": data_args.task,
1059
+ }
1060
+ )
1061
+ elif data_args.language is not None:
1062
+ raise ValueError(
1063
+ "Setting language token for an English-only checkpoint is not permitted. The language argument should "
1064
+ "only be set for multilingual checkpoints."
1065
+ )
1066
+ else:
1067
+ is_multilingual = False
1068
+
1069
+ # 8. Create a single speech processor - make sure all processes wait until data is saved
1070
+ if accelerator.is_main_process:
1071
+ feature_extractor.save_pretrained(training_args.output_dir)
1072
+ tokenizer.save_pretrained(training_args.output_dir)
1073
+ # save the config and generation config as well
1074
+ config.save_pretrained(training_args.output_dir)
1075
+ student_model.generation_config.save_pretrained(training_args.output_dir)
1076
+
1077
+ accelerator.wait_for_everyone()
1078
+ processor = WhisperProcessor.from_pretrained(training_args.output_dir)
1079
+
1080
+ # 9. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
1081
+ # so we just need to set the correct target sampling rate.
1082
+ sampling_rate = feature_extractor.sampling_rate
1083
+ raw_datasets = raw_datasets.cast_column(
1084
+ data_args.audio_column_name,
1085
+ datasets.features.Audio(sampling_rate=sampling_rate),
1086
+ )
1087
+
1088
+ # 10. Preprocessing the datasets: we need to read the audio files as arrays and tokenize the targets.
1089
+ # 10.1: Define the pre-processing constants
1090
+ max_input_length = int(data_args.max_duration_in_seconds * sampling_rate)
1091
+ min_input_length = int(data_args.min_duration_in_seconds * sampling_rate)
1092
+ max_label_length = (
1093
+ data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
1094
+ )
1095
+
1096
+ timestamp_probability = data_args.timestamp_probability
1097
+ condition_on_prev_probability = data_args.condition_on_prev_probability
1098
+ return_timestamps = data_args.return_timestamps if timestamp_probability > 0 else False
1099
+
1100
+ timestamp_ids = tokenizer.timestamp_ids()
1101
+ timestamp_begin = tokenizer.all_special_ids[-1]
1102
+ timestamp_position = 3 if is_multilingual else 1
1103
+
1104
+ decoder_start_token_id = student_model.config.decoder_start_token_id # <|startoftranscript|>
1105
+ decoder_prev_token_id = tokenizer.all_special_ids[-3] # <|startofprev|>
1106
+ prompt_cutoff_length = max_label_length // 2
1107
+
1108
+ num_workers = data_args.preprocessing_num_workers
1109
+ dataloader_num_workers = training_args.dataloader_num_workers
1110
+ prefetch_factor = training_args.dataloader_prefetch_factor
1111
+
1112
+ metric = evaluate.load("wer")
1113
+ normalizer = (
1114
+ BasicTextNormalizer()
1115
+ if data_args.language is not None
1116
+ else EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
1117
+ )
1118
+ wer_threshold = data_args.wer_threshold
1119
+ use_pseudo_labels = data_args.use_pseudo_labels
1120
+ train_text_column_name = "whisper_transcript" if use_pseudo_labels else "text"
1121
+
1122
+ # 10.2: filter based on maximum number of training/evaluation samples
1123
+ if training_args.do_train and data_args.max_train_samples is not None:
1124
+ raw_datasets["train"] = (
1125
+ raw_datasets["train"].take(data_args.max_train_samples)
1126
+ if data_args.streaming
1127
+ else raw_datasets["train"].select(range(data_args.max_train_samples))
1128
+ )
1129
+
1130
+ if training_args.do_eval and data_args.max_eval_samples is not None:
1131
+ for eval_split in all_eval_splits:
1132
+ raw_datasets[eval_split] = (
1133
+ raw_datasets[eval_split].take(data_args.max_eval_samples)
1134
+ if data_args.streaming
1135
+ else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
1136
+ )
1137
+
1138
+ # 10.3: filter training data based on WER threshold -> this is KEY to good distillation performance
1139
+ def is_wer_in_range(ground_truth, whisper_transcript):
1140
+ norm_ground_truth = normalizer(ground_truth)
1141
+ if whisper_transcript is not None and whisper_transcript.upper() == whisper_transcript:
1142
+ # filter entirely upper-case transcriptions: these are erroneous generations from large-v3
1143
+ return False
1144
+ elif len(norm_ground_truth) > 0 and whisper_transcript is not None:
1145
+ norm_whisper_transcript = normalizer(whisper_transcript)
1146
+ wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
1147
+ return wer < wer_threshold
1148
+ else:
1149
+ # filter automatically since we can't know the WER
1150
+ return False
1151
+
1152
+ filter_by_wer_threshold = partial(
1153
+ raw_datasets["train"].filter,
1154
+ function=is_wer_in_range,
1155
+ input_columns=["text", "whisper_transcript"],
1156
+ )
1157
+
1158
+ if wer_threshold is not None and use_pseudo_labels:
1159
+ with accelerator.main_process_first():
1160
+ raw_datasets["train"] = (
1161
+ filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
1162
+ if not data_args.streaming
1163
+ else filter_by_wer_threshold()
1164
+ )
1165
+
1166
+ # 10.4: pre-process training/evaluation datasets
1167
+ def prepare_train_dataset(batch):
1168
+ """
1169
+ Pre-process the raw dataset in a three stage process:
1170
+ 1. Convert the audio arrays to log-mel spectrogram inputs
1171
+ 2. Possibly filter the timestamp tokens from the token ids (depending on the timestamp probability)
1172
+ 3. Possibly add prompt tokens if conditioning on previous text (depending on the conditioning probability)
1173
+ """
1174
+ # process audio input
1175
+ audio = [sample["array"] for sample in batch["audio"]]
1176
+ inputs = feature_extractor(audio, sampling_rate=sampling_rate)
1177
+ batch["input_features"] = inputs.input_features
1178
+ batch["input_length"] = [len(sample) for sample in audio]
1179
+
1180
+ # process text targets - for training these are the Whisper-generated pseudo-labels
1181
+ input_str_batched = batch[train_text_column_name]
1182
+ condition_on_prev_batched = batch.get("condition_on_prev", len(input_str_batched) * [None])
1183
+
1184
+ all_token_ids = []
1185
+ all_token_ids_unprompted = []
1186
+ for prev_ids, input_str in zip(condition_on_prev_batched, input_str_batched):
1187
+ token_ids = tokenizer(input_str, add_special_tokens=not use_pseudo_labels).input_ids
1188
+
1189
+ # check whether we have timestamps in the PLs and filter if required
1190
+ has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0
1191
+ if has_timestamps:
1192
+ # sample from binomial distribution to get probability of training on timestamps
1193
+ predict_timestamps = bool(np.random.binomial(1, timestamp_probability))
1194
+ if not predict_timestamps:
1195
+ # filter timestamps and insert the <|notimestamps|> task token
1196
+ token_ids = [token for token in token_ids if token < timestamp_begin]
1197
+ token_ids.insert(timestamp_position, timestamp_begin)
1198
+
1199
+ all_token_ids_unprompted.append(token_ids)
1200
+ # check whether to condition on previous text - we do this with probability condition_on_prev_probability
1201
+ condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability))
1202
+ if not condition_on_prev:
1203
+ prev_ids = None
1204
+ elif "condition_on_prev" not in batch and len(all_token_ids_unprompted) > 1:
1205
+ # prompt ids are the penultimate token ids in the batch
1206
+ prev_ids = all_token_ids_unprompted[-2]
1207
+
1208
+ if prev_ids is not None:
1209
+ if has_timestamps and not predict_timestamps:
1210
+ # filter timestamp ids from prompt when not predicting timestamps
1211
+ prev_ids = [token for token in prev_ids if token < timestamp_begin]
1212
+
1213
+ # check that the length of the prompt does not exceed more than half the max label length (224)
1214
+ if len(prev_ids) > prompt_cutoff_length:
1215
+ prev_ids = prev_ids[-prompt_cutoff_length + 1 :]
1216
+ prev_ids = [decoder_prev_token_id] + prev_ids
1217
+
1218
+ # and that the total length of the labels does not exceed the max label length (448)
1219
+ if len(prev_ids + token_ids) > max_label_length:
1220
+ trim_length = len(prev_ids + token_ids) - max_label_length + 1
1221
+ prev_ids = prev_ids[trim_length:]
1222
+ prev_ids = [decoder_prev_token_id] + prev_ids
1223
+
1224
+ token_ids = prev_ids + token_ids
1225
+
1226
+ all_token_ids.append(token_ids)
1227
+
1228
+ batch["labels"] = all_token_ids
1229
+ return batch
1230
+
1231
+ def prepare_eval_dataset(batch):
1232
+ # process audio input
1233
+ sample = batch["audio"]
1234
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
1235
+ batch["input_features"] = inputs.input_features[0]
1236
+ batch["input_length"] = len(sample["array"])
1237
+
1238
+ # process targets - for evaluation these are the ground-truth transcriptions
1239
+ input_str = batch["text"]
1240
+ batch["labels"] = tokenizer(input_str).input_ids
1241
+ return batch
1242
+
1243
+ vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
1244
+ if training_args.do_train:
1245
+ # with streaming mode we can only have 1 worker, whereas with non-streaming
1246
+ # we can use `num_workers` (which is much faster)
1247
+ # We gate the pre-processing function accordingly
1248
+ map_fn_train = partial(
1249
+ raw_datasets["train"].map,
1250
+ function=prepare_train_dataset,
1251
+ remove_columns=raw_datasets_train_features,
1252
+ batched=True,
1253
+ batch_size=data_args.preprocessing_batch_size,
1254
+ )
1255
+ with accelerator.main_process_first():
1256
+ vectorized_datasets["train"] = (
1257
+ map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
1258
+ if not data_args.streaming
1259
+ else map_fn_train()
1260
+ )
1261
+ if training_args.do_eval:
1262
+ for eval_split in all_eval_splits:
1263
+ raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
1264
+ map_fn_eval = partial(
1265
+ raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
1266
+ )
1267
+ with accelerator.main_process_first():
1268
+ vectorized_datasets[eval_split] = (
1269
+ map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
1270
+ if not data_args.streaming
1271
+ else map_fn_eval()
1272
+ )
1273
+
1274
+ # 10.5: Filter training data with inputs longer than `max_input_length`
1275
+ def is_audio_in_length_range(length):
1276
+ return min_input_length < length < max_input_length
1277
+
1278
+ filter_by_audio_fn = partial(
1279
+ vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
1280
+ )
1281
+ with accelerator.main_process_first():
1282
+ vectorized_datasets = (
1283
+ filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
1284
+ if not data_args.streaming
1285
+ else filter_by_audio_fn()
1286
+ )
1287
+
1288
+ # 10.6: Filter training data with labels longer than `max_label_length`
1289
+ def is_labels_in_length_range(labels):
1290
+ return 0 < len(labels) <= max_label_length
1291
+
1292
+ filter_by_labels_fn = partial(
1293
+ vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
1294
+ )
1295
+ with accelerator.main_process_first():
1296
+ vectorized_datasets = (
1297
+ filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
1298
+ if not data_args.streaming
1299
+ else filter_by_labels_fn()
1300
+ )
1301
+
1302
+ # Pre-processing complete!
1303
+ # For large datasets it is advised to run the preprocessing on a
1304
+ # single machine first with `--preprocessing_only` since there will mostly likely
1305
+ # be a timeout when running the script in distributed mode.
1306
+ # In a second step, `--preprocessing_only` can then be set to `False` to load the
1307
+ # cached dataset
1308
+ if data_args.preprocessing_only:
1309
+ if data_args.streaming:
1310
+ raise ValueError(
1311
+ "When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion"
1312
+ "of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing "
1313
+ "on the fly with streaming mode."
1314
+ )
1315
+ cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
1316
+ logger.info(f"Data preprocessing finished. Files cached at {cache}.")
1317
+ return
1318
+
1319
+ # 11. Define Evaluation Metrics
1320
+ def compute_metrics(preds, labels):
1321
+ # replace padded labels by the padding token
1322
+ for idx in range(len(labels)):
1323
+ labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
1324
+
1325
+ pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
1326
+ # we do not want to group tokens when computing the metrics
1327
+ label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
1328
+ wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str)
1329
+
1330
+ # normalize everything and re-compute the WER
1331
+ norm_pred_str = [normalizer(pred) for pred in pred_str]
1332
+ norm_label_str = [normalizer(label) for label in label_str]
1333
+ # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
1334
+ pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
1335
+ label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
1336
+ # filtering step to only evaluate the samples that correspond to non-zero normalized references:
1337
+ norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
1338
+ norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
1339
+
1340
+ wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
1341
+ return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str
1342
+
1343
+ # 12. Define Training Schedule
1344
+ # Store some constants
1345
+ per_device_train_batch_size = int(training_args.per_device_train_batch_size)
1346
+ train_batch_size = per_device_train_batch_size * accelerator.num_processes
1347
+ gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
1348
+ per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
1349
+
1350
+ if not data_args.streaming and training_args.max_steps < 0:
1351
+ num_epochs = int(training_args.num_train_epochs)
1352
+ steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
1353
+ total_train_steps = steps_per_epoch * num_epochs
1354
+ elif training_args.max_steps > 0:
1355
+ logger.info("max_steps is given, it will override any value given in num_train_epochs")
1356
+ total_train_steps = int(training_args.max_steps)
1357
+ if not data_args.streaming:
1358
+ steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
1359
+ num_epochs = int(np.ceil(total_train_steps / steps_per_epoch))
1360
+ else:
1361
+ # Setting a very large number of epochs so we go as many times as necessary over the iterator.
1362
+ num_epochs = sys.maxsize
1363
+ steps_per_epoch = total_train_steps
1364
+ else:
1365
+ raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
1366
+
1367
+ if training_args.eval_steps is None:
1368
+ logger.info(
1369
+ f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
1370
+ )
1371
+ eval_steps = steps_per_epoch
1372
+ else:
1373
+ eval_steps = training_args.eval_steps
1374
+
1375
+ # 13. Define optimizer, LR scheduler, collator
1376
+
1377
+ forbidden_module = [
1378
+ module
1379
+ for module, flag in [
1380
+ (student_model.model.encoder, training_args.freeze_encoder),
1381
+ (student_model.model.decoder, training_args.freeze_decoder)
1382
+ ]
1383
+ if flag
1384
+ ] or None
1385
+
1386
+ decay_parameters = get_parameter_names(
1387
+ student_model,
1388
+ [nn.LayerNorm],
1389
+ forbidden_module=forbidden_module,
1390
+ )
1391
+ decay_parameters = [name for name in decay_parameters if "bias" not in name]
1392
+ optimizer_grouped_parameters = [
1393
+ {
1394
+ "params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
1395
+ "weight_decay": training_args.weight_decay,
1396
+ },
1397
+ {
1398
+ "params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
1399
+ "weight_decay": 0.0,
1400
+ },
1401
+ ]
1402
+ optimizer = torch.optim.AdamW(
1403
+ params=optimizer_grouped_parameters,
1404
+ lr=training_args.learning_rate,
1405
+ betas=(training_args.adam_beta1, training_args.adam_beta2),
1406
+ eps=training_args.adam_epsilon,
1407
+ )
1408
+
1409
+ # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
1410
+ lr_scheduler = get_scheduler(
1411
+ name=training_args.lr_scheduler_type,
1412
+ optimizer=optimizer,
1413
+ num_warmup_steps=training_args.warmup_steps * accelerator.num_processes,
1414
+ num_training_steps=total_train_steps * accelerator.num_processes,
1415
+ )
1416
+
1417
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
1418
+ processor=processor,
1419
+ decoder_start_token_id=decoder_start_token_id,
1420
+ decoder_prev_token_id=decoder_prev_token_id,
1421
+ input_padding="longest",
1422
+ target_padding="max_length",
1423
+ max_target_length=max_label_length,
1424
+ )
1425
+
1426
+ # 14. Define generation arguments - we need to do this before we wrap the models in DDP
1427
+ # so that we can still access the configs
1428
+ num_beams = (
1429
+ training_args.generation_num_beams
1430
+ if training_args.generation_num_beams is not None
1431
+ else getattr(student_model.generation_config, "num_beams", 1)
1432
+ )
1433
+
1434
+ gen_kwargs = {
1435
+ "max_length": max_label_length,
1436
+ "num_beams": num_beams,
1437
+ "return_timestamps": return_timestamps,
1438
+ }
1439
+ if is_multilingual:
1440
+ # forcing the language and task tokens helps multilingual models in their generations
1441
+ gen_kwargs.update(
1442
+ {
1443
+ "language": data_args.language,
1444
+ "task": data_args.task,
1445
+ }
1446
+ )
1447
+
1448
+ # 15. Prepare everything with accelerate
1449
+ student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
1450
+ student_model, teacher_model, optimizer, lr_scheduler
1451
+ )
1452
+
1453
+ def kl_divergence(target_distribution, log_predicted_distribution, labels):
1454
+ kl_loss = nn.KLDivLoss(reduction="none")
1455
+ divergence = kl_loss(log_predicted_distribution, target_distribution)
1456
+ # ignore padded tokens from divergence, i.e. where labels are not set to -100
1457
+ padding_mask = labels >= 0
1458
+ padding_mask = padding_mask.unsqueeze(-1)
1459
+ divergence = divergence * padding_mask
1460
+ # take the average over the mini-batch
1461
+ divergence = divergence.sum() / padding_mask.sum()
1462
+ return divergence
1463
+
1464
+ # Define gradient update step fn
1465
+ def train_step(
1466
+ batch,
1467
+ temperature=2.0,
1468
+ ):
1469
+ student_model.train()
1470
+ teacher_model.eval()
1471
+
1472
+ student_outputs = student_model(**batch)
1473
+ with torch.no_grad():
1474
+ if share_hidden_states:
1475
+ # if the student and teacher share the same frozen encoder then we don't have to recompute the
1476
+ # encoder hidden-states for the teacher model, we can just re-use from the student
1477
+ encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
1478
+ teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
1479
+ else:
1480
+ # do the full forward pass for the teacher model (encoder + decoder)
1481
+ teacher_outputs = teacher_model(**batch)
1482
+
1483
+ # CE (data) loss
1484
+ ce_loss = student_outputs.loss
1485
+ # rescale distribution by temperature to ensure gradients scale correctly
1486
+ teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1)
1487
+ # log softmax of student predictions for numerical stability
1488
+ student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1)
1489
+ # KL-divergence loss (scaled by temperature)
1490
+ kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2
1491
+
1492
+ # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
1493
+ loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
1494
+ metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
1495
+ return loss, metrics
1496
+
1497
+ # Define eval fn
1498
+ def eval_step(batch):
1499
+ student_model.eval()
1500
+ teacher_model.eval()
1501
+
1502
+ with torch.no_grad():
1503
+ student_outputs = student_model(**batch)
1504
+ if share_hidden_states:
1505
+ encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
1506
+ teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
1507
+ else:
1508
+ teacher_outputs = teacher_model(**batch)
1509
+
1510
+ # CE (data) loss
1511
+ ce_loss = student_outputs.loss
1512
+
1513
+ # log softmax / softmax for numerical stability
1514
+ student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1)
1515
+ teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1)
1516
+ # temperature is always 1 for eval
1517
+ kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"])
1518
+
1519
+ # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
1520
+ loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
1521
+ metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
1522
+ return metrics
1523
+
1524
+ def generate_step(batch):
1525
+ student_model.eval()
1526
+ output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs)
1527
+ output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
1528
+ return output_ids
1529
+
1530
+ logger.info("***** Running training *****")
1531
+ logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
1532
+ if not data_args.streaming:
1533
+ logger.info(f" Num epochs = {num_epochs}")
1534
+ logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
1535
+ logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
1536
+ logger.info(
1537
+ f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
1538
+ )
1539
+ logger.info(f" Total optimization steps = {total_train_steps}")
1540
+
1541
+ # ======================== Training ================================
1542
+ train_time = 0
1543
+ train_start = time.time()
1544
+ steps_trained_progress_bar = tqdm(
1545
+ range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
1546
+ )
1547
+ continue_training = True
1548
+ epochs_trained = 0
1549
+ cur_step = 0
1550
+ best_val_wer = np.inf
1551
+
1552
+ checkpoint = None
1553
+ if training_args.resume_from_checkpoint is not None:
1554
+ checkpoint = training_args.resume_from_checkpoint
1555
+ elif last_checkpoint is not None:
1556
+ checkpoint = last_checkpoint
1557
+
1558
+ if checkpoint is not None:
1559
+ accelerator.load_state(checkpoint)
1560
+ # Find num steps and epoch from saved state string pattern
1561
+ pattern = r"checkpoint-(\d+)-epoch-(\d+)"
1562
+ match = re.search(pattern, checkpoint)
1563
+ cur_step = int(match.group(1))
1564
+ epochs_trained = int(match.group(2))
1565
+
1566
+ logger.info(" Continuing training from checkpoint, will skip to saved global_step")
1567
+ logger.info(f" Continuing training from epoch {epochs_trained}")
1568
+ logger.info(f" Continuing training from global step {cur_step}")
1569
+
1570
+ steps_trained_progress_bar.update(cur_step)
1571
+
1572
+ for epoch in range(0, epochs_trained):
1573
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
1574
+
1575
+ if not data_args.streaming and training_args.max_steps < 0:
1576
+ # we know exactly the number of steps per epoch, so can skip through the required number of batches
1577
+ resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
1578
+ else:
1579
+ # Currently we don't know how many steps we've taken in the current epoch
1580
+ # So we just shuffle the dataset one extra time and start from a fresh epoch
1581
+ # This is "good enough" for our purposes but not fully correct
1582
+ resume_step = None
1583
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
1584
+ else:
1585
+ resume_step = None
1586
+
1587
+ for epoch in range(epochs_trained, num_epochs):
1588
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
1589
+ train_dataloader = DataLoader(
1590
+ vectorized_datasets["train"],
1591
+ collate_fn=data_collator,
1592
+ batch_size=per_device_train_batch_size,
1593
+ num_workers=dataloader_num_workers,
1594
+ prefetch_factor=prefetch_factor,
1595
+ pin_memory=training_args.dataloader_pin_memory,
1596
+ )
1597
+ train_dataloader = accelerator.prepare(train_dataloader)
1598
+ if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
1599
+ train_dataloader.dataset.set_epoch(epoch)
1600
+
1601
+ if resume_step is not None:
1602
+ # Skip the first N batches in the dataloader when resuming from a checkpoint
1603
+ train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
1604
+ resume_step = None
1605
+
1606
+ for batch in train_dataloader:
1607
+ with accelerator.accumulate(student_model):
1608
+ loss, train_metric = train_step(batch, temperature=training_args.temperature)
1609
+ accelerator.backward(loss)
1610
+ if accelerator.sync_gradients:
1611
+ accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
1612
+ optimizer.step()
1613
+ lr_scheduler.step()
1614
+ optimizer.zero_grad()
1615
+
1616
+ # Check if the accelerator has performed an optimization step behind the scenes
1617
+ if accelerator.sync_gradients:
1618
+ steps_trained_progress_bar.update(1)
1619
+ cur_step += 1
1620
+
1621
+ if cur_step % training_args.logging_steps == 0:
1622
+ steps_trained_progress_bar.write(
1623
+ f"Step... ({cur_step} / {total_train_steps} | Loss:"
1624
+ f" {train_metric['loss']}, Learning Rate:"
1625
+ f" {lr_scheduler.get_last_lr()[0]})"
1626
+ )
1627
+ log_metric(
1628
+ accelerator,
1629
+ metrics=train_metric,
1630
+ learning_rate=lr_scheduler.get_last_lr()[0],
1631
+ train_time=train_time + time.time() - train_start,
1632
+ step=cur_step,
1633
+ epoch=epoch,
1634
+ prefix="train",
1635
+ )
1636
+
1637
+ # save checkpoint and weights after each save_steps and at the end of training
1638
+ if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
1639
+ intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
1640
+ accelerator.save_state(output_dir=intermediate_dir)
1641
+ feature_extractor.save_pretrained(intermediate_dir)
1642
+ tokenizer.save_pretrained(intermediate_dir)
1643
+ config.save_pretrained(intermediate_dir)
1644
+ student_model.generation_config.save_pretrained(intermediate_dir)
1645
+
1646
+ accelerator.wait_for_everyone()
1647
+ if accelerator.is_main_process:
1648
+ rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)
1649
+
1650
+ if training_args.push_to_hub:
1651
+ upload_folder(
1652
+ folder_path=training_args.output_dir,
1653
+ repo_id=repo_name,
1654
+ repo_type="model",
1655
+ commit_message=f"Saving train state of step {cur_step}",
1656
+ )
1657
+
1658
+ if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
1659
+ train_time += time.time() - train_start
1660
+ student_model.eval()
1661
+ wer_l, labels_l = [], []
1662
+ # ======================== Evaluating ==============================
1663
+ for eval_split in all_eval_splits:
1664
+ eval_metrics = []
1665
+ eval_preds = []
1666
+ eval_labels = []
1667
+ eval_start = time.time()
1668
+
1669
+ validation_dataloader = DataLoader(
1670
+ vectorized_datasets[eval_split],
1671
+ collate_fn=data_collator,
1672
+ batch_size=per_device_eval_batch_size,
1673
+ drop_last=False,
1674
+ num_workers=dataloader_num_workers,
1675
+ prefetch_factor=prefetch_factor,
1676
+ pin_memory=training_args.dataloader_pin_memory,
1677
+ )
1678
+ validation_dataloader = accelerator.prepare(validation_dataloader)
1679
+
1680
+ for batch in tqdm(
1681
+ validation_dataloader,
1682
+ desc=f"Evaluating {eval_split}...",
1683
+ position=2,
1684
+ disable=not accelerator.is_local_main_process,
1685
+ ):
1686
+ # Model forward
1687
+ eval_metric = eval_step(batch)
1688
+ eval_metric = accelerator.gather_for_metrics(eval_metric)
1689
+ eval_metrics.append(eval_metric)
1690
+
1691
+ # generation
1692
+ if training_args.predict_with_generate:
1693
+ generated_ids = generate_step(batch)
1694
+ # Gather all predictions and targets
1695
+ generated_ids, labels = accelerator.gather_for_metrics(
1696
+ (generated_ids, batch["labels"])
1697
+ )
1698
+ eval_preds.extend(generated_ids)
1699
+ eval_labels.extend(labels)
1700
+
1701
+ eval_time = time.time() - eval_start
1702
+ # normalize eval metrics
1703
+ eval_metrics = {
1704
+ key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
1705
+ }
1706
+
1707
+ # compute WER metric
1708
+ wer_desc = ""
1709
+ if training_args.predict_with_generate:
1710
+ wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
1711
+ eval_preds, eval_labels
1712
+ )
1713
+ eval_metrics.update(wer_metric)
1714
+ wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
1715
+ log_pred(
1716
+ accelerator,
1717
+ pred_str,
1718
+ label_str,
1719
+ norm_pred_str,
1720
+ norm_label_str,
1721
+ step=cur_step,
1722
+ prefix=eval_split,
1723
+ )
1724
+
1725
+ # Print metrics and update progress bar
1726
+ steps_trained_progress_bar.write(
1727
+ f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
1728
+ f" {wer_desc})"
1729
+ )
1730
+
1731
+ wer_l.append(wer_metric)
1732
+ labels_l.append(norm_label_str)
1733
+
1734
+ log_metric(
1735
+ accelerator,
1736
+ metrics=eval_metrics,
1737
+ train_time=eval_time,
1738
+ step=cur_step,
1739
+ epoch=epoch,
1740
+ prefix=eval_split,
1741
+ )
1742
+
1743
+ # flush the train metrics
1744
+ train_start = time.time()
1745
+
1746
+ # save best checkpoint
1747
+ numerators = [wer['wer'] * len(labs) for wer, labs in zip(wer_l, labels_l)]
1748
+ val_wer = sum(numerators) / sum(len(labs) for labs in labels_l)
1749
+
1750
+ if val_wer < best_val_wer:
1751
+ intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}-val-wer-{val_wer:.3f}")
1752
+ logger.info(f"Saving new best model, validation WER: {val_wer:.3f}")
1753
+ accelerator.save_state(output_dir=intermediate_dir)
1754
+ feature_extractor.save_pretrained(intermediate_dir)
1755
+ tokenizer.save_pretrained(intermediate_dir)
1756
+ config.save_pretrained(intermediate_dir)
1757
+ student_model.generation_config.save_pretrained(intermediate_dir)
1758
+
1759
+ accelerator.wait_for_everyone()
1760
+
1761
+ # remove unnecesary checkpoints, save best model and push to hub
1762
+ if accelerator.is_main_process:
1763
+ rotate_checkpoints(training_args.save_best_total_limit, output_dir=training_args.output_dir, sorting_fn=sorted_best_checkpoints)
1764
+
1765
+ accelerator.unwrap_model(student_model).save_pretrained(training_args.output_dir)
1766
+
1767
+ if training_args.push_to_hub:
1768
+ upload_folder(
1769
+ folder_path=training_args.output_dir,
1770
+ repo_id=repo_name,
1771
+ repo_type="model",
1772
+ commit_message=f"Saving best state, step {cur_step}, val wer {val_wer:.3f}",
1773
+ )
1774
+
1775
+ best_val_wer = val_wer
1776
+
1777
+ # break condition
1778
+ if cur_step == total_train_steps:
1779
+
1780
+ # the model under training_args.output_dir is the best model, let's also save end of training weights
1781
+ final_weights_dir = os.path.join(training_args.output_dir, "end-of-training-weights")
1782
+
1783
+ feature_extractor.save_pretrained(final_weights_dir)
1784
+ tokenizer.save_pretrained(final_weights_dir)
1785
+ # save the config and generation config as well
1786
+ config.save_pretrained(final_weights_dir)
1787
+ student_model.generation_config.save_pretrained(final_weights_dir)
1788
+
1789
+ # un-wrap student model for save
1790
+ student_model = accelerator.unwrap_model(student_model)
1791
+ student_model.save_pretrained(final_weights_dir)
1792
+
1793
+ if training_args.push_to_hub:
1794
+ upload_folder(
1795
+ folder_path=training_args.output_dir,
1796
+ repo_id=repo_name,
1797
+ repo_type="model",
1798
+ commit_message=f"Saving final weights of step {cur_step}",
1799
+ )
1800
+
1801
+ continue_training = False
1802
+ break
1803
+
1804
+ if not continue_training:
1805
+ break
1806
+
1807
+ accelerator.end_training()
1808
+
1809
+
1810
+ if __name__ == "__main__":
1811
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": {
126
+ "content": "<|endoftext|>",
127
+ "lstrip": false,
128
+ "normalized": true,
129
+ "rstrip": false,
130
+ "single_word": false
131
+ },
132
+ "unk_token": {
133
+ "content": "<|endoftext|>",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false
138
+ }
139
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff