pere commited on
Commit
f6e7dba
·
1 Parent(s): a7ab6f8

updated run files

Browse files
run_multi_sup_example.sh ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # In this example, we show how to train SimCSE using multiple GPU cards and PyTorch's distributed data parallel on supervised NLI dataset.
4
+ # Set how many GPUs to use
5
+
6
+ NUM_GPU=4
7
+
8
+ # Randomly set a port number
9
+ # If you encounter "address already used" error, just run again or manually set an available port id.
10
+ PORT_ID=$(expr $RANDOM + 1000)
11
+
12
+ # Allow multiple threads
13
+ export OMP_NUM_THREADS=8
14
+
15
+ # Use distributed data parallel
16
+ # If you only want to use one card, uncomment the following line and comment the line with "torch.distributed.launch"
17
+ # python train.py \
18
+ python -m torch.distributed.launch --nproc_per_node $NUM_GPU --master_port $PORT_ID train.py \
19
+ --model_name_or_path bert-base-uncased \
20
+ --train_file data/nli_for_simcse.csv \
21
+ --output_dir result/my-sup-simcse-bert-base-uncased \
22
+ --num_train_epochs 3 \
23
+ --per_device_train_batch_size 128 \
24
+ --learning_rate 5e-5 \
25
+ --max_seq_length 32 \
26
+ --evaluation_strategy steps \
27
+ --metric_for_best_model stsb_spearman \
28
+ --load_best_model_at_end \
29
+ --eval_steps 125 \
30
+ --pooler_type cls \
31
+ --overwrite_output_dir \
32
+ --temp 0.05 \
33
+ --do_train \
34
+ --do_eval \
35
+ --fp16 \
36
+ "$@"
run_sup_example.sh CHANGED
@@ -1,24 +1,7 @@
1
- #!/bin/bash
2
-
3
- # In this example, we show how to train SimCSE using multiple GPU cards and PyTorch's distributed data parallel on supervised NLI dataset.
4
- # Set how many GPUs to use
5
-
6
- NUM_GPU=4
7
-
8
- # Randomly set a port number
9
- # If you encounter "address already used" error, just run again or manually set an available port id.
10
- PORT_ID=$(expr $RANDOM + 1000)
11
-
12
- # Allow multiple threads
13
- export OMP_NUM_THREADS=8
14
-
15
- # Use distributed data parallel
16
- # If you only want to use one card, uncomment the following line and comment the line with "torch.distributed.launch"
17
- # python train.py \
18
- python -m torch.distributed.launch --nproc_per_node $NUM_GPU --master_port $PORT_ID train.py \
19
- --model_name_or_path bert-base-uncased \
20
- --train_file data/nli_for_simcse.csv \
21
- --output_dir result/my-sup-simcse-bert-base-uncased \
22
  --num_train_epochs 3 \
23
  --per_device_train_batch_size 128 \
24
  --learning_rate 5e-5 \
@@ -32,5 +15,4 @@ python -m torch.distributed.launch --nproc_per_node $NUM_GPU --master_port $PORT
32
  --temp 0.05 \
33
  --do_train \
34
  --do_eval \
35
- --fp16 \
36
  "$@"
 
1
+ python ../../SimCSE/train.py \
2
+ --model_name_or_path NbAiLab/nb-bert-base \
3
+ --train_file data/mnli_no_for_simcse.csv \
4
+ --output_dir result/sup-simcse-nb-bert-base \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  --num_train_epochs 3 \
6
  --per_device_train_batch_size 128 \
7
  --learning_rate 5e-5 \
 
15
  --temp 0.05 \
16
  --do_train \
17
  --do_eval \
 
18
  "$@"
run_unsup_example.sh CHANGED
@@ -6,7 +6,7 @@
6
 
7
  python3 ../../SimCSE/train.py \
8
  --model_name_or_path NbAiLab/nb-bert-base \
9
- --train_file data/wiki1m_for_simcse.txt \
10
  --output_dir result/unsup-simcse-nb-bert-bert-base \
11
  --num_train_epochs 1 \
12
  --per_device_train_batch_size 64 \
 
6
 
7
  python3 ../../SimCSE/train.py \
8
  --model_name_or_path NbAiLab/nb-bert-base \
9
+ --train_file data/nor_news_1998_2019_sentences_1M.txt \
10
  --output_dir result/unsup-simcse-nb-bert-bert-base \
11
  --num_train_epochs 1 \
12
  --per_device_train_batch_size 64 \