perc3ptr0n
commited on
Commit
•
5b5023c
1
Parent(s):
9fd0f54
add initial version of the model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo_lunar_lander_v1.zip +3 -0
- ppo_lunar_lander_v1/_stable_baselines3_version +1 -0
- ppo_lunar_lander_v1/data +94 -0
- ppo_lunar_lander_v1/policy.optimizer.pth +3 -0
- ppo_lunar_lander_v1/policy.pth +3 -0
- ppo_lunar_lander_v1/pytorch_variables.pth +3 -0
- ppo_lunar_lander_v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 262.73 +/- 15.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4137460e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb413746170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb413746200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb413746290>", "_build": "<function ActorCriticPolicy._build at 0x7fb413746320>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4137463b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb413746440>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4137464d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb413746560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4137465f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb413746680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb41378e8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652012756.6292453, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECg/j3pTmi8qMY8Pda1ir09oGg99tiyPgAAgD8AAIA/k9UaPmE0yzu1Ifc2UvSUNAl9eD1JDyC2AACAPwAAgD9tNl4+z6CHP4eFgb6Tj8y+7JFkPQhyib0AAAAAAAAAAAZiQ76EwhE/AliWvJB6pb71owq+6G/UPQAAAAAAAAAAM9tYPDn/hj/ARou8PTuevltACD5Xj587AAAAAAAAAACA6jG+LbROPq9yoT6QTNy95fQXPeD9WD0AAAAAAAAAAGavjzx7gqK6cnN+uZUbbLS8EyC6tnOSOAAAgD8AAIA/U00BPpd5pz8VwiE+/VyNvpS+zD4A5vA9AAAAAAAAAADNj7M8ctjZPiYLyb3zUZy+mWzzvFI0qr0AAAAAAAAAAOZs7T308yE/3qQfvtPll77jBVu8UJBbvQAAAAAAAAAA0xtePm27mD+z1xw/WjJjvvv1BT54M2c+AAAAAAAAAACaC3A8hS7ju8WGhzwALak8SQRWPTMxjb0AAIA/AACAPzNF8jwa3wU+KE/QPY8AXb57bOi8GmVZvAAAAAAAAAAAZrbqumEYpj9Wc2697QSxvmdNZz1DZc49AAAAAAAAAAAa0Sc9uBH7uy27ujssKrE8TqphvRqskj0AAIA/AACAPwDeo72FA9K5bBintQlGB7El5946VMrJNAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILJ/leXDebkCUhpRSlIwBbJRNbwGMAXSUR0CYQUB/I8yOdX2UKGgGaAloD0MISb2ncloob0CUhpRSlGgVTV8BaBZHQJhgqfthNM51fZQoaAZoCWgPQwjqBgq8EwxwQJSGlFKUaBVNKwFoFkdAmGNdp7CzknV9lChoBmgJaA9DCF3g8ljztHBAlIaUUpRoFU0qAWgWR0CYZDn1nM+vdX2UKGgGaAloD0MIotReRBtbcUCUhpRSlGgVTRkBaBZHQJhlqPEKmbd1fZQoaAZoCWgPQwiG4/kM6LpwQJSGlFKUaBVNJgFoFkdAmGWn1vl2eXV9lChoBmgJaA9DCJUrvMvFzm1AlIaUUpRoFU0XAWgWR0CYZesrd30PdX2UKGgGaAloD0MISwLU1HJacECUhpRSlGgVTUQBaBZHQJhmNzzVc2R1fZQoaAZoCWgPQwg9DRgkfX5sQJSGlFKUaBVNbwFoFkdAmGcZW/8EV3V9lChoBmgJaA9DCDuqmiDq021AlIaUUpRoFU0hAWgWR0CYaCOP/7zkdX2UKGgGaAloD0MIX85sV+jvcECUhpRSlGgVTUIBaBZHQJhpPU5MlC11fZQoaAZoCWgPQwhd3hyuFbpwQJSGlFKUaBVNEQFoFkdAmGmTASFoMHV9lChoBmgJaA9DCNulDYelQ3BAlIaUUpRoFU0zAWgWR0CYa0NQTEiudX2UKGgGaAloD0MIGyycpHmdb0CUhpRSlGgVTTABaBZHQJhr0iFCb+d1fZQoaAZoCWgPQwh1AMRdPehuQJSGlFKUaBVNNgFoFkdAmGxXT3IuG3V9lChoBmgJaA9DCBFWYwlrF3FAlIaUUpRoFU1JAWgWR0CYbHgqmTC+dX2UKGgGaAloD0MIMdEgBc+3cECUhpRSlGgVTUcBaBZHQJhtqZy+6Ah1fZQoaAZoCWgPQwi/Q1GgT+hNQJSGlFKUaBVLs2gWR0CYbhFAE+xGdX2UKGgGaAloD0MIzLc+rDcUckCUhpRSlGgVTQ0BaBZHQJhwH3xnWat1fZQoaAZoCWgPQwjgSKDBplo+QJSGlFKUaBVL82gWR0CYcEvTw2ETdX2UKGgGaAloD0MI8aDZda/HcECUhpRSlGgVTSsBaBZHQJhwndhy8z11fZQoaAZoCWgPQwhPsWoQZpdxQJSGlFKUaBVNkwFoFkdAmHJdWp6yB3V9lChoBmgJaA9DCH42ct3UQXBAlIaUUpRoFU0IAWgWR0CYcpTz/ZM+dX2UKGgGaAloD0MITODW3fwxcECUhpRSlGgVTSgBaBZHQJhyvDfm9xp1fZQoaAZoCWgPQwhbe5+qws9xQJSGlFKUaBVNSAFoFkdAmHPMSsbNr3V9lChoBmgJaA9DCLTKTGl9ynBAlIaUUpRoFU0QAWgWR0CYdTZxrBTGdX2UKGgGaAloD0MIVYSbjCq0cECUhpRSlGgVTTUBaBZHQJh1bY150KZ1fZQoaAZoCWgPQwi5isVvCndOQJSGlFKUaBVL2mgWR0CYdwuGsV+JdX2UKGgGaAloD0MIqFMe3QjRcECUhpRSlGgVTR8BaBZHQJh4YdaMaS91fZQoaAZoCWgPQwh6xVOPdLJwQJSGlFKUaBVNWwFoFkdAmHh1dLQHA3V9lChoBmgJaA9DCEdxjjo6+G9AlIaUUpRoFU0yAWgWR0CYeKyYXwb3dX2UKGgGaAloD0MItAJDVjerb0CUhpRSlGgVTR4BaBZHQJh41yyUs4F1fZQoaAZoCWgPQwhs66f/LLBwQJSGlFKUaBVNMQFoFkdAmHmlMuez2XV9lChoBmgJaA9DCNaNd0eGdnFAlIaUUpRoFU0WAWgWR0CYegy0a6z3dX2UKGgGaAloD0MIfXkB9lGEcUCUhpRSlGgVS/BoFkdAmHrF1r6+FnV9lChoBmgJaA9DCPxTqkRZdmtAlIaUUpRoFU09AWgWR0CYfYiCaqjrdX2UKGgGaAloD0MI5dGNsGi8ckCUhpRSlGgVTUEBaBZHQJh96pPykKx1fZQoaAZoCWgPQwg8hPHTODBuQJSGlFKUaBVNKAFoFkdAmH9IcaOxS3V9lChoBmgJaA9DCKTDQxg/fG1AlIaUUpRoFU0oAWgWR0CYf3V4HHFQdX2UKGgGaAloD0MIzjY3pmcbcECUhpRSlGgVTR8BaBZHQJiB0L+glGB1fZQoaAZoCWgPQwhbCkj7X85yQJSGlFKUaBVNTgFoFkdAmIKGrS3LFHV9lChoBmgJaA9DCOJzJ9j//21AlIaUUpRoFU0pAWgWR0CYgprVvuPWdX2UKGgGaAloD0MIXaeRlkpDcUCUhpRSlGgVTX0BaBZHQJiDD9XLeRB1fZQoaAZoCWgPQwhhiJy+HtBxQJSGlFKUaBVNOAFoFkdAmITZN47ihnV9lChoBmgJaA9DCMpOP6iLGEpAlIaUUpRoFUvkaBZHQJiFHTd+G491fZQoaAZoCWgPQwhCCMiXkANyQJSGlFKUaBVNJQFoFkdAmIU4ZuQ6qHV9lChoBmgJaA9DCDFcHQBx33JAlIaUUpRoFU05AWgWR0CYhmt0V8CxdX2UKGgGaAloD0MIUyKJXgaockCUhpRSlGgVTUQBaBZHQJiIlaNdZ7p1fZQoaAZoCWgPQwiskV1pWR9wQJSGlFKUaBVNVgFoFkdAmIj3uJDVpnV9lChoBmgJaA9DCLN5HAZzym1AlIaUUpRoFU0zAWgWR0CYi/5R0lqrdX2UKGgGaAloD0MIVKnZA20IcUCUhpRSlGgVTSwBaBZHQJiMDg1m8NB1fZQoaAZoCWgPQwgEH4MV57JwQJSGlFKUaBVNLwFoFkdAmKzlxXGOuXV9lChoBmgJaA9DCP9eCg+aFm5AlIaUUpRoFU0wAWgWR0CYr7fzz3AVdX2UKGgGaAloD0MIqaROQFP2cECUhpRSlGgVTQQCaBZHQJiv1g7YChh1fZQoaAZoCWgPQwgfv7fpD+BwQJSGlFKUaBVNLgFoFkdAmLBqEnLJS3V9lChoBmgJaA9DCLDjv0AQCXJAlIaUUpRoFU1KAWgWR0CYsd7nPmgbdX2UKGgGaAloD0MIABqlS//jbECUhpRSlGgVTT4BaBZHQJix2/ag2611fZQoaAZoCWgPQwinP/uRYilyQJSGlFKUaBVNEAFoFkdAmLHqJ/G2kXV9lChoBmgJaA9DCLXf2okSz3JAlIaUUpRoFU0UAWgWR0CYs1KZ2IO6dX2UKGgGaAloD0MI/aGZJxfJcECUhpRSlGgVTUABaBZHQJi0HPrv9cd1fZQoaAZoCWgPQwix3NJqSMhxQJSGlFKUaBVNVQFoFkdAmLTT50r9VHV9lChoBmgJaA9DCH7H8NgPBXFAlIaUUpRoFU2CAmgWR0CYtaE3bVSXdX2UKGgGaAloD0MIYcYUrHF8b0CUhpRSlGgVTTABaBZHQJi2wwblzU91fZQoaAZoCWgPQwg+zF62XYZwQJSGlFKUaBVNUwFoFkdAmLiyVKPGQ3V9lChoBmgJaA9DCG2Oc5twv3BAlIaUUpRoFU1JAWgWR0CYuzP2f02+dX2UKGgGaAloD0MIR8oWSbv1cECUhpRSlGgVTU0BaBZHQJi7WDbrTph1fZQoaAZoCWgPQwjO+pRjcuZwQJSGlFKUaBVNKAFoFkdAmLte3trsSnV9lChoBmgJaA9DCIpXWdsUn0ZAlIaUUpRoFUvWaBZHQJi7zXg9/z91fZQoaAZoCWgPQwjAJJUp5s5uQJSGlFKUaBVNEgFoFkdAmLzJVS4vvnV9lChoBmgJaA9DCBa/KawUenFAlIaUUpRoFU0XAWgWR0CYvvdaMaS+dX2UKGgGaAloD0MI4J7nT1smckCUhpRSlGgVTSYBaBZHQJi/y8RL9Mt1fZQoaAZoCWgPQwgdAHFXr+RuQJSGlFKUaBVNZQFoFkdAmMEJCOWBz3V9lChoBmgJaA9DCNGRXP5DonFAlIaUUpRoFU1DAWgWR0CYwripeeFtdX2UKGgGaAloD0MIPIVcqacecECUhpRSlGgVTS0BaBZHQJjDJj7Q9id1fZQoaAZoCWgPQwi8XMR34mFxQJSGlFKUaBVNSgFoFkdAmMPawMYuTXV9lChoBmgJaA9DCMu8Vdehsm5AlIaUUpRoFU0tAWgWR0CYxApN9H+ZdX2UKGgGaAloD0MIwTkjSvvDcECUhpRSlGgVTSQBaBZHQJjG2PHT7VJ1fZQoaAZoCWgPQwgH0zB8hGtxQJSGlFKUaBVNVAFoFkdAmMcTdP+GXXV9lChoBmgJaA9DCKYLsfpjknFAlIaUUpRoFUv9aBZHQJjHcnb7CSB1fZQoaAZoCWgPQwi+3ZIc8EhyQJSGlFKUaBVNCAFoFkdAmMgWNR3u/nV9lChoBmgJaA9DCDGx+bh2rXBAlIaUUpRoFU0FAWgWR0CYyFchTwUhdX2UKGgGaAloD0MILV4sDBFwbECUhpRSlGgVTS8BaBZHQJjJv8EV32V1fZQoaAZoCWgPQwhxr8xbNWNxQJSGlFKUaBVNIQFoFkdAmMpwMYuTR3V9lChoBmgJaA9DCA/Tvrk/rm5AlIaUUpRoFU0vAWgWR0CYzRaPS2H+dX2UKGgGaAloD0MIb0Viglp4cUCUhpRSlGgVTSABaBZHQJjNH2bobGZ1fZQoaAZoCWgPQwjdRZii3DBlQJSGlFKUaBVN6ANoFkdAmM3wksz2vnV9lChoBmgJaA9DCPrUsUrps0NAlIaUUpRoFUv4aBZHQJjO25/b0vp1fZQoaAZoCWgPQwg9Y1+ycVJxQJSGlFKUaBVNSwFoFkdAmM/mReTmn3V9lChoBmgJaA9DCCLeOv/2/nBAlIaUUpRoFU0zAWgWR0CY0Gcd5prUdX2UKGgGaAloD0MIoUs49Bb6bUCUhpRSlGgVTSUBaBZHQJjQ4J1JUYN1fZQoaAZoCWgPQwjPhCaJ5TJxQJSGlFKUaBVNSQFoFkdAmNGZPM0P6XV9lChoBmgJaA9DCJJdaRnpsXJAlIaUUpRoFU0jAWgWR0CY0zgAZKnOdX2UKGgGaAloD0MInN8w0eDScECUhpRSlGgVTSQBaBZHQJjTcMw1zhh1fZQoaAZoCWgPQwh3LLZJBRpyQJSGlFKUaBVNRQFoFkdAmNW+Z1FH8XV9lChoBmgJaA9DCNzY7Eh1w3BAlIaUUpRoFU0wAWgWR0CY1onx8UmEdX2UKGgGaAloD0MI02uzsRJKcUCUhpRSlGgVTWgBaBZHQJjWrZK3/gl1fZQoaAZoCWgPQwhxcyoZwEhxQJSGlFKUaBVNIgFoFkdAmNlcDKYAsHV9lChoBmgJaA9DCCyDaoMTq0NAlIaUUpRoFU0QAWgWR0CY2XDjBEa3dX2UKGgGaAloD0MIL4fdd4y2cECUhpRSlGgVTZkBaBZHQJjZ5Jbt7a91fZQoaAZoCWgPQwgGE38UNXVyQJSGlFKUaBVNeAFoFkdAmNqUiY9gW3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunar_lander_v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48d6efe2b8f7fa43af18ed7efe59043a7e3dcc2fc7525cb621c212cd489f68d3
|
3 |
+
size 144042
|
ppo_lunar_lander_v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_lunar_lander_v1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4137460e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb413746170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb413746200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb413746290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb413746320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb4137463b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb413746440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb4137464d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb413746560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4137465f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb413746680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb41378e8d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652012756.6292453,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECg/j3pTmi8qMY8Pda1ir09oGg99tiyPgAAgD8AAIA/k9UaPmE0yzu1Ifc2UvSUNAl9eD1JDyC2AACAPwAAgD9tNl4+z6CHP4eFgb6Tj8y+7JFkPQhyib0AAAAAAAAAAAZiQ76EwhE/AliWvJB6pb71owq+6G/UPQAAAAAAAAAAM9tYPDn/hj/ARou8PTuevltACD5Xj587AAAAAAAAAACA6jG+LbROPq9yoT6QTNy95fQXPeD9WD0AAAAAAAAAAGavjzx7gqK6cnN+uZUbbLS8EyC6tnOSOAAAgD8AAIA/U00BPpd5pz8VwiE+/VyNvpS+zD4A5vA9AAAAAAAAAADNj7M8ctjZPiYLyb3zUZy+mWzzvFI0qr0AAAAAAAAAAOZs7T308yE/3qQfvtPll77jBVu8UJBbvQAAAAAAAAAA0xtePm27mD+z1xw/WjJjvvv1BT54M2c+AAAAAAAAAACaC3A8hS7ju8WGhzwALak8SQRWPTMxjb0AAIA/AACAPzNF8jwa3wU+KE/QPY8AXb57bOi8GmVZvAAAAAAAAAAAZrbqumEYpj9Wc2697QSxvmdNZz1DZc49AAAAAAAAAAAa0Sc9uBH7uy27ujssKrE8TqphvRqskj0AAIA/AACAPwDeo72FA9K5bBintQlGB7El5946VMrJNAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILJ/leXDebkCUhpRSlIwBbJRNbwGMAXSUR0CYQUB/I8yOdX2UKGgGaAloD0MISb2ncloob0CUhpRSlGgVTV8BaBZHQJhgqfthNM51fZQoaAZoCWgPQwjqBgq8EwxwQJSGlFKUaBVNKwFoFkdAmGNdp7CzknV9lChoBmgJaA9DCF3g8ljztHBAlIaUUpRoFU0qAWgWR0CYZDn1nM+vdX2UKGgGaAloD0MIotReRBtbcUCUhpRSlGgVTRkBaBZHQJhlqPEKmbd1fZQoaAZoCWgPQwiG4/kM6LpwQJSGlFKUaBVNJgFoFkdAmGWn1vl2eXV9lChoBmgJaA9DCJUrvMvFzm1AlIaUUpRoFU0XAWgWR0CYZesrd30PdX2UKGgGaAloD0MISwLU1HJacECUhpRSlGgVTUQBaBZHQJhmNzzVc2R1fZQoaAZoCWgPQwg9DRgkfX5sQJSGlFKUaBVNbwFoFkdAmGcZW/8EV3V9lChoBmgJaA9DCDuqmiDq021AlIaUUpRoFU0hAWgWR0CYaCOP/7zkdX2UKGgGaAloD0MIX85sV+jvcECUhpRSlGgVTUIBaBZHQJhpPU5MlC11fZQoaAZoCWgPQwhd3hyuFbpwQJSGlFKUaBVNEQFoFkdAmGmTASFoMHV9lChoBmgJaA9DCNulDYelQ3BAlIaUUpRoFU0zAWgWR0CYa0NQTEiudX2UKGgGaAloD0MIGyycpHmdb0CUhpRSlGgVTTABaBZHQJhr0iFCb+d1fZQoaAZoCWgPQwh1AMRdPehuQJSGlFKUaBVNNgFoFkdAmGxXT3IuG3V9lChoBmgJaA9DCBFWYwlrF3FAlIaUUpRoFU1JAWgWR0CYbHgqmTC+dX2UKGgGaAloD0MIMdEgBc+3cECUhpRSlGgVTUcBaBZHQJhtqZy+6Ah1fZQoaAZoCWgPQwi/Q1GgT+hNQJSGlFKUaBVLs2gWR0CYbhFAE+xGdX2UKGgGaAloD0MIzLc+rDcUckCUhpRSlGgVTQ0BaBZHQJhwH3xnWat1fZQoaAZoCWgPQwjgSKDBplo+QJSGlFKUaBVL82gWR0CYcEvTw2ETdX2UKGgGaAloD0MI8aDZda/HcECUhpRSlGgVTSsBaBZHQJhwndhy8z11fZQoaAZoCWgPQwhPsWoQZpdxQJSGlFKUaBVNkwFoFkdAmHJdWp6yB3V9lChoBmgJaA9DCH42ct3UQXBAlIaUUpRoFU0IAWgWR0CYcpTz/ZM+dX2UKGgGaAloD0MITODW3fwxcECUhpRSlGgVTSgBaBZHQJhyvDfm9xp1fZQoaAZoCWgPQwhbe5+qws9xQJSGlFKUaBVNSAFoFkdAmHPMSsbNr3V9lChoBmgJaA9DCLTKTGl9ynBAlIaUUpRoFU0QAWgWR0CYdTZxrBTGdX2UKGgGaAloD0MIVYSbjCq0cECUhpRSlGgVTTUBaBZHQJh1bY150KZ1fZQoaAZoCWgPQwi5isVvCndOQJSGlFKUaBVL2mgWR0CYdwuGsV+JdX2UKGgGaAloD0MIqFMe3QjRcECUhpRSlGgVTR8BaBZHQJh4YdaMaS91fZQoaAZoCWgPQwh6xVOPdLJwQJSGlFKUaBVNWwFoFkdAmHh1dLQHA3V9lChoBmgJaA9DCEdxjjo6+G9AlIaUUpRoFU0yAWgWR0CYeKyYXwb3dX2UKGgGaAloD0MItAJDVjerb0CUhpRSlGgVTR4BaBZHQJh41yyUs4F1fZQoaAZoCWgPQwhs66f/LLBwQJSGlFKUaBVNMQFoFkdAmHmlMuez2XV9lChoBmgJaA9DCNaNd0eGdnFAlIaUUpRoFU0WAWgWR0CYegy0a6z3dX2UKGgGaAloD0MIfXkB9lGEcUCUhpRSlGgVS/BoFkdAmHrF1r6+FnV9lChoBmgJaA9DCPxTqkRZdmtAlIaUUpRoFU09AWgWR0CYfYiCaqjrdX2UKGgGaAloD0MI5dGNsGi8ckCUhpRSlGgVTUEBaBZHQJh96pPykKx1fZQoaAZoCWgPQwg8hPHTODBuQJSGlFKUaBVNKAFoFkdAmH9IcaOxS3V9lChoBmgJaA9DCKTDQxg/fG1AlIaUUpRoFU0oAWgWR0CYf3V4HHFQdX2UKGgGaAloD0MIzjY3pmcbcECUhpRSlGgVTR8BaBZHQJiB0L+glGB1fZQoaAZoCWgPQwhbCkj7X85yQJSGlFKUaBVNTgFoFkdAmIKGrS3LFHV9lChoBmgJaA9DCOJzJ9j//21AlIaUUpRoFU0pAWgWR0CYgprVvuPWdX2UKGgGaAloD0MIXaeRlkpDcUCUhpRSlGgVTX0BaBZHQJiDD9XLeRB1fZQoaAZoCWgPQwhhiJy+HtBxQJSGlFKUaBVNOAFoFkdAmITZN47ihnV9lChoBmgJaA9DCMpOP6iLGEpAlIaUUpRoFUvkaBZHQJiFHTd+G491fZQoaAZoCWgPQwhCCMiXkANyQJSGlFKUaBVNJQFoFkdAmIU4ZuQ6qHV9lChoBmgJaA9DCDFcHQBx33JAlIaUUpRoFU05AWgWR0CYhmt0V8CxdX2UKGgGaAloD0MIUyKJXgaockCUhpRSlGgVTUQBaBZHQJiIlaNdZ7p1fZQoaAZoCWgPQwiskV1pWR9wQJSGlFKUaBVNVgFoFkdAmIj3uJDVpnV9lChoBmgJaA9DCLN5HAZzym1AlIaUUpRoFU0zAWgWR0CYi/5R0lqrdX2UKGgGaAloD0MIVKnZA20IcUCUhpRSlGgVTSwBaBZHQJiMDg1m8NB1fZQoaAZoCWgPQwgEH4MV57JwQJSGlFKUaBVNLwFoFkdAmKzlxXGOuXV9lChoBmgJaA9DCP9eCg+aFm5AlIaUUpRoFU0wAWgWR0CYr7fzz3AVdX2UKGgGaAloD0MIqaROQFP2cECUhpRSlGgVTQQCaBZHQJiv1g7YChh1fZQoaAZoCWgPQwgfv7fpD+BwQJSGlFKUaBVNLgFoFkdAmLBqEnLJS3V9lChoBmgJaA9DCLDjv0AQCXJAlIaUUpRoFU1KAWgWR0CYsd7nPmgbdX2UKGgGaAloD0MIABqlS//jbECUhpRSlGgVTT4BaBZHQJix2/ag2611fZQoaAZoCWgPQwinP/uRYilyQJSGlFKUaBVNEAFoFkdAmLHqJ/G2kXV9lChoBmgJaA9DCLXf2okSz3JAlIaUUpRoFU0UAWgWR0CYs1KZ2IO6dX2UKGgGaAloD0MI/aGZJxfJcECUhpRSlGgVTUABaBZHQJi0HPrv9cd1fZQoaAZoCWgPQwix3NJqSMhxQJSGlFKUaBVNVQFoFkdAmLTT50r9VHV9lChoBmgJaA9DCH7H8NgPBXFAlIaUUpRoFU2CAmgWR0CYtaE3bVSXdX2UKGgGaAloD0MIYcYUrHF8b0CUhpRSlGgVTTABaBZHQJi2wwblzU91fZQoaAZoCWgPQwg+zF62XYZwQJSGlFKUaBVNUwFoFkdAmLiyVKPGQ3V9lChoBmgJaA9DCG2Oc5twv3BAlIaUUpRoFU1JAWgWR0CYuzP2f02+dX2UKGgGaAloD0MIR8oWSbv1cECUhpRSlGgVTU0BaBZHQJi7WDbrTph1fZQoaAZoCWgPQwjO+pRjcuZwQJSGlFKUaBVNKAFoFkdAmLte3trsSnV9lChoBmgJaA9DCIpXWdsUn0ZAlIaUUpRoFUvWaBZHQJi7zXg9/z91fZQoaAZoCWgPQwjAJJUp5s5uQJSGlFKUaBVNEgFoFkdAmLzJVS4vvnV9lChoBmgJaA9DCBa/KawUenFAlIaUUpRoFU0XAWgWR0CYvvdaMaS+dX2UKGgGaAloD0MI4J7nT1smckCUhpRSlGgVTSYBaBZHQJi/y8RL9Mt1fZQoaAZoCWgPQwgdAHFXr+RuQJSGlFKUaBVNZQFoFkdAmMEJCOWBz3V9lChoBmgJaA9DCNGRXP5DonFAlIaUUpRoFU1DAWgWR0CYwripeeFtdX2UKGgGaAloD0MIPIVcqacecECUhpRSlGgVTS0BaBZHQJjDJj7Q9id1fZQoaAZoCWgPQwi8XMR34mFxQJSGlFKUaBVNSgFoFkdAmMPawMYuTXV9lChoBmgJaA9DCMu8Vdehsm5AlIaUUpRoFU0tAWgWR0CYxApN9H+ZdX2UKGgGaAloD0MIwTkjSvvDcECUhpRSlGgVTSQBaBZHQJjG2PHT7VJ1fZQoaAZoCWgPQwgH0zB8hGtxQJSGlFKUaBVNVAFoFkdAmMcTdP+GXXV9lChoBmgJaA9DCKYLsfpjknFAlIaUUpRoFUv9aBZHQJjHcnb7CSB1fZQoaAZoCWgPQwi+3ZIc8EhyQJSGlFKUaBVNCAFoFkdAmMgWNR3u/nV9lChoBmgJaA9DCDGx+bh2rXBAlIaUUpRoFU0FAWgWR0CYyFchTwUhdX2UKGgGaAloD0MILV4sDBFwbECUhpRSlGgVTS8BaBZHQJjJv8EV32V1fZQoaAZoCWgPQwhxr8xbNWNxQJSGlFKUaBVNIQFoFkdAmMpwMYuTR3V9lChoBmgJaA9DCA/Tvrk/rm5AlIaUUpRoFU0vAWgWR0CYzRaPS2H+dX2UKGgGaAloD0MIb0Viglp4cUCUhpRSlGgVTSABaBZHQJjNH2bobGZ1fZQoaAZoCWgPQwjdRZii3DBlQJSGlFKUaBVN6ANoFkdAmM3wksz2vnV9lChoBmgJaA9DCPrUsUrps0NAlIaUUpRoFUv4aBZHQJjO25/b0vp1fZQoaAZoCWgPQwg9Y1+ycVJxQJSGlFKUaBVNSwFoFkdAmM/mReTmn3V9lChoBmgJaA9DCCLeOv/2/nBAlIaUUpRoFU0zAWgWR0CY0Gcd5prUdX2UKGgGaAloD0MIoUs49Bb6bUCUhpRSlGgVTSUBaBZHQJjQ4J1JUYN1fZQoaAZoCWgPQwjPhCaJ5TJxQJSGlFKUaBVNSQFoFkdAmNGZPM0P6XV9lChoBmgJaA9DCJJdaRnpsXJAlIaUUpRoFU0jAWgWR0CY0zgAZKnOdX2UKGgGaAloD0MInN8w0eDScECUhpRSlGgVTSQBaBZHQJjTcMw1zhh1fZQoaAZoCWgPQwh3LLZJBRpyQJSGlFKUaBVNRQFoFkdAmNW+Z1FH8XV9lChoBmgJaA9DCNzY7Eh1w3BAlIaUUpRoFU0wAWgWR0CY1onx8UmEdX2UKGgGaAloD0MI02uzsRJKcUCUhpRSlGgVTWgBaBZHQJjWrZK3/gl1fZQoaAZoCWgPQwhxcyoZwEhxQJSGlFKUaBVNIgFoFkdAmNlcDKYAsHV9lChoBmgJaA9DCCyDaoMTq0NAlIaUUpRoFU0QAWgWR0CY2XDjBEa3dX2UKGgGaAloD0MIL4fdd4y2cECUhpRSlGgVTZkBaBZHQJjZ5Jbt7a91fZQoaAZoCWgPQwgGE38UNXVyQJSGlFKUaBVNeAFoFkdAmNqUiY9gW3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_lunar_lander_v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c225909ff1f7b63fe9fb4535f54b15cd46e96c4b4a496a4908654491db52c5e
|
3 |
+
size 84829
|
ppo_lunar_lander_v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:274df02cc4de09269395d492bd9644104b3772c36dfcf084dae0bda9b00e855d
|
3 |
+
size 43201
|
ppo_lunar_lander_v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_lander_v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6c729eedde63c00f39f1226319dc1a013558fbb5a8de0886a3a17b548635948
|
3 |
+
size 240327
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.72829032488943, "std_reward": 15.817137794238601, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T12:57:07.556282"}
|