pepperjirakit commited on
Commit
fe7d315
·
1 Parent(s): eb7317a

Update requirements.txt

Browse files
Files changed (1) hide show
  1. requirements.txt +39 -4
requirements.txt CHANGED
@@ -1,4 +1,39 @@
1
- joblib
2
- scikit-learn==1.0.2
3
- pandas
4
- LinearRegression
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ import pandas as pd
3
+ import streamlit as st
4
+
5
+ model = joblib.load("daimondx.joblib") unique_values = joblib.load("unique_values (1).joblib")
6
+
7
+ unique_cut = unique_values["cut"] unique_color = unique_values["color"] unique_clarity = unique_values["clarity"]
8
+
9
+ def main(): st.title("Diamond Prices")
10
+
11
+ with st.form("questionaire"):
12
+ carat = st.slider("Carat",min_value=0.00,max_value=5.00)
13
+ cut = st.selectbox("Cut", options=unique_cut)
14
+ color = st.selectbox("Color", options=unique_color)
15
+ clarity = st.selectbox("Clarity", options=unique_clarity)
16
+ depth = st.slider("Depth",min_value=0.00,max_value=100.00)
17
+ table = st.slider("table",min_value=0.00,max_value=100.00)
18
+ x = st.slider("length(mm)",min_value=0.01,max_value=10.00)
19
+ y = st.slider("width(mm)",min_value=0.01,max_value=10.00)
20
+ z = st.slider("depth(mm)",min_value=0.01,max_value=10.00)
21
+
22
+
23
+ # clicked==True only when the button is clicked
24
+ clicked = st.form_submit_button("Predict Price")
25
+ if clicked:
26
+ result=model.predict(pd.DataFrame({"carat": [carat],
27
+ "cut": [cut],
28
+ "color": [color],
29
+ "clarity": [clarity],
30
+ "depth":[depth],
31
+ "table": [table],
32
+ "size": [size],
33
+ "length(mm)":[x],
34
+ "width(mm)":[y],
35
+ "depth(mm)":[z]}))
36
+ # Show prediction
37
+ st.success("Your predicted income is"+result)
38
+ if name == "main"
39
+ main()