pengdadaaa commited on
Commit
fe5964a
·
verified ·
1 Parent(s): 9863371

Upload 2 files

Browse files
Files changed (2) hide show
  1. SnakeCLEF2024-TestMetadata.csv +0 -0
  2. script.py +88 -0
SnakeCLEF2024-TestMetadata.csv ADDED
The diff for this file is too large to render. See raw diff
 
script.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from PIL import Image
4
+ import onnxruntime as ort
5
+ import os
6
+ from tqdm import tqdm
7
+
8
+
9
+ def is_gpu_available():
10
+ """Check if the python package `onnxruntime-gpu` is installed."""
11
+ return ort.get_device() == "GPU"
12
+
13
+
14
+ class ONNXWorker:
15
+ """Run inference using ONNX runtime."""
16
+
17
+ def __init__(self, onnx_path: str):
18
+ print("Setting up ONNX runtime session.")
19
+ self.use_gpu = is_gpu_available()
20
+ if self.use_gpu:
21
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
22
+ else:
23
+ providers = ["CPUExecutionProvider"]
24
+
25
+ print(f"Using {providers}")
26
+ self.ort_session = ort.InferenceSession(onnx_path, providers=providers)
27
+
28
+ def _resize_image(self, image: np.ndarray) -> np.ndarray:
29
+ """
30
+
31
+ :param image:
32
+ :return:
33
+ """
34
+
35
+ newsize = (300, 300)
36
+ im1 = im1.resize(newsize)
37
+
38
+ def predict_image(self, image: np.ndarray) -> list():
39
+ """Run inference using ONNX runtime.
40
+
41
+ :param image: Input image as numpy array.
42
+ :return: A list with logits and confidences.
43
+ """
44
+
45
+ logits, _ = self.ort_session.run(None, {"input": image.astype(dtype=np.uint8)})
46
+
47
+ return logits.tolist()
48
+
49
+
50
+ def make_submission(test_metadata, model_path, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
51
+ """Make submission with given """
52
+
53
+ model = ONNXWorker(model_path)
54
+
55
+ predictions = []
56
+
57
+ for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
58
+ image_path = os.path.join(images_root_path, row.filename)
59
+
60
+ test_image = Image.open(image_path).convert("RGB")
61
+ test_image_resized = np.asarray(test_image.resize((256, 256)))
62
+
63
+ logits = model.predict_image(test_image_resized)
64
+
65
+ predictions.append(np.argmax(logits))
66
+
67
+ test_metadata["class_id"] = predictions
68
+
69
+ user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
70
+ user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
71
+
72
+
73
+ if __name__ == "__main__":
74
+
75
+ import zipfile
76
+
77
+ with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
78
+ zip_ref.extractall("/tmp/data")
79
+
80
+ ONNX_MODEL_PATH = "./swinv2_tiny_window16_256.onnx"
81
+
82
+ metadata_file_path = "./SnakeCLEF2024-TestMetadata.csv"
83
+ test_metadata = pd.read_csv(metadata_file_path)
84
+
85
+ make_submission(
86
+ test_metadata=test_metadata,
87
+ model_path=ONNX_MODEL_PATH,
88
+ )