|
import math |
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class AdaBelief(Optimizer): |
|
r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-16) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) |
|
decoupled_decay (boolean, optional): (default: True) If set as True, then |
|
the optimizer uses decoupled weight decay as in AdamW |
|
fixed_decay (boolean, optional): (default: False) This is used when weight_decouple |
|
is set as True. |
|
When fixed_decay == True, the weight decay is performed as |
|
$W_{new} = W_{old} - W_{old} \times decay$. |
|
When fixed_decay == False, the weight decay is performed as |
|
$W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the |
|
weight decay ratio decreases with learning rate (lr). |
|
rectify (boolean, optional): (default: True) If set as True, then perform the rectified |
|
update similar to RAdam |
|
degenerated_to_sgd (boolean, optional) (default:True) If set as True, then perform SGD update |
|
when variance of gradient is high |
|
reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients, NeurIPS 2020 |
|
|
|
For a complete table of recommended hyperparameters, see https://github.com/juntang-zhuang/Adabelief-Optimizer' |
|
For example train/args for EfficientNet see these gists |
|
- link to train_scipt: https://gist.github.com/juntang-zhuang/0a501dd51c02278d952cf159bc233037 |
|
- link to args.yaml: https://gist.github.com/juntang-zhuang/517ce3c27022b908bb93f78e4f786dc3 |
|
""" |
|
|
|
def __init__( |
|
self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16, weight_decay=0, amsgrad=False, |
|
decoupled_decay=True, fixed_decay=False, rectify=True, degenerated_to_sgd=True): |
|
|
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
|
|
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): |
|
for param in params: |
|
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): |
|
param['buffer'] = [[None, None, None] for _ in range(10)] |
|
|
|
defaults = dict( |
|
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, |
|
degenerated_to_sgd=degenerated_to_sgd, decoupled_decay=decoupled_decay, rectify=rectify, |
|
fixed_decay=fixed_decay, buffer=[[None, None, None] for _ in range(10)]) |
|
super(AdaBelief, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(AdaBelief, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('amsgrad', False) |
|
|
|
@torch.no_grad() |
|
def reset(self): |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
state = self.state[p] |
|
amsgrad = group['amsgrad'] |
|
|
|
|
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p) |
|
|
|
|
|
state['exp_avg_var'] = torch.zeros_like(p) |
|
if amsgrad: |
|
|
|
state['max_exp_avg_var'] = torch.zeros_like(p) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.dtype in {torch.float16, torch.bfloat16}: |
|
grad = grad.float() |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
'AdaBelief does not support sparse gradients, please consider SparseAdam instead') |
|
|
|
p_fp32 = p |
|
if p.dtype in {torch.float16, torch.bfloat16}: |
|
p_fp32 = p_fp32.float() |
|
|
|
amsgrad = group['amsgrad'] |
|
beta1, beta2 = group['betas'] |
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p_fp32) |
|
|
|
state['exp_avg_var'] = torch.zeros_like(p_fp32) |
|
if amsgrad: |
|
|
|
state['max_exp_avg_var'] = torch.zeros_like(p_fp32) |
|
|
|
|
|
if group['decoupled_decay']: |
|
if not group['fixed_decay']: |
|
p_fp32.mul_(1.0 - group['lr'] * group['weight_decay']) |
|
else: |
|
p_fp32.mul_(1.0 - group['weight_decay']) |
|
else: |
|
if group['weight_decay'] != 0: |
|
grad.add_(p_fp32, alpha=group['weight_decay']) |
|
|
|
|
|
exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var'] |
|
|
|
state['step'] += 1 |
|
bias_correction1 = 1 - beta1 ** state['step'] |
|
bias_correction2 = 1 - beta2 ** state['step'] |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
grad_residual = grad - exp_avg |
|
exp_avg_var.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2) |
|
|
|
if amsgrad: |
|
max_exp_avg_var = state['max_exp_avg_var'] |
|
|
|
torch.max(max_exp_avg_var, exp_avg_var.add_(group['eps']), out=max_exp_avg_var) |
|
|
|
|
|
denom = (max_exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
else: |
|
denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
|
|
|
|
if not group['rectify']: |
|
|
|
step_size = group['lr'] / bias_correction1 |
|
p_fp32.addcdiv_(exp_avg, denom, value=-step_size) |
|
else: |
|
|
|
buffered = group['buffer'][int(state['step'] % 10)] |
|
if state['step'] == buffered[0]: |
|
num_sma, step_size = buffered[1], buffered[2] |
|
else: |
|
buffered[0] = state['step'] |
|
beta2_t = beta2 ** state['step'] |
|
num_sma_max = 2 / (1 - beta2) - 1 |
|
num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) |
|
buffered[1] = num_sma |
|
|
|
|
|
if num_sma >= 5: |
|
step_size = math.sqrt( |
|
(1 - beta2_t) * |
|
(num_sma - 4) / (num_sma_max - 4) * |
|
(num_sma - 2) / num_sma * |
|
num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step']) |
|
elif group['degenerated_to_sgd']: |
|
step_size = 1.0 / (1 - beta1 ** state['step']) |
|
else: |
|
step_size = -1 |
|
buffered[2] = step_size |
|
|
|
if num_sma >= 5: |
|
denom = exp_avg_var.sqrt().add_(group['eps']) |
|
p_fp32.addcdiv_(exp_avg, denom, value=-step_size * group['lr']) |
|
elif step_size > 0: |
|
p_fp32.add_(exp_avg, alpha=-step_size * group['lr']) |
|
|
|
if p.dtype in {torch.float16, torch.bfloat16}: |
|
p.copy_(p_fp32) |
|
|
|
return loss |
|
|