|
import math |
|
import torch |
|
from torch.utils.data import Sampler |
|
import torch.distributed as dist |
|
|
|
|
|
class OrderedDistributedSampler(Sampler): |
|
"""Sampler that restricts data loading to a subset of the dataset. |
|
It is especially useful in conjunction with |
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each |
|
process can pass a DistributedSampler instance as a DataLoader sampler, |
|
and load a subset of the original dataset that is exclusive to it. |
|
.. note:: |
|
Dataset is assumed to be of constant size. |
|
Arguments: |
|
dataset: Dataset used for sampling. |
|
num_replicas (optional): Number of processes participating in |
|
distributed training. |
|
rank (optional): Rank of the current process within num_replicas. |
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) |
|
self.total_size = self.num_samples * self.num_replicas |
|
|
|
def __iter__(self): |
|
indices = list(range(len(self.dataset))) |
|
|
|
|
|
indices += indices[:(self.total_size - len(indices))] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
indices = indices[self.rank:self.total_size:self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
|
|
class RepeatAugSampler(Sampler): |
|
"""Sampler that restricts data loading to a subset of the dataset for distributed, |
|
with repeated augmentation. |
|
It ensures that different each augmented version of a sample will be visible to a |
|
different process (GPU). Heavily based on torch.utils.data.DistributedSampler |
|
|
|
This sampler was taken from https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py |
|
Used in |
|
Copyright (c) 2015-present, Facebook, Inc. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
num_replicas=None, |
|
rank=None, |
|
shuffle=True, |
|
num_repeats=3, |
|
selected_round=256, |
|
selected_ratio=0, |
|
): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.shuffle = shuffle |
|
self.num_repeats = num_repeats |
|
self.epoch = 0 |
|
self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas)) |
|
self.total_size = self.num_samples * self.num_replicas |
|
|
|
|
|
|
|
selected_ratio = selected_ratio or num_replicas |
|
if selected_round: |
|
self.num_selected_samples = int(math.floor( |
|
len(self.dataset) // selected_round * selected_round / selected_ratio)) |
|
else: |
|
self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio)) |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
if self.shuffle: |
|
indices = torch.randperm(len(self.dataset), generator=g) |
|
else: |
|
indices = torch.arange(start=0, end=len(self.dataset)) |
|
|
|
|
|
if isinstance(self.num_repeats, float) and not self.num_repeats.is_integer(): |
|
|
|
repeat_size = math.ceil(self.num_repeats * len(self.dataset)) |
|
indices = indices[torch.tensor([int(i // self.num_repeats) for i in range(repeat_size)])] |
|
else: |
|
indices = torch.repeat_interleave(indices, repeats=int(self.num_repeats), dim=0) |
|
indices = indices.tolist() |
|
|
|
padding_size = self.total_size - len(indices) |
|
if padding_size > 0: |
|
indices += indices[:padding_size] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
indices = indices[self.rank:self.total_size:self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
|
|
return iter(indices[:self.num_selected_samples]) |
|
|
|
def __len__(self): |
|
return self.num_selected_samples |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|