End of training
Browse files- README.md +86 -198
- config.json +88 -0
- model.safetensors +3 -0
- runs/Mar04_10-20-38_8c6b454fb8be/events.out.tfevents.1709547642.8c6b454fb8be.26.0 +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,201 +1,89 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/segformer-b5-finetuned-cityscapes-1024-1024
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b5-cityscapes-finetuned-coastTrain
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b5-cityscapes-finetuned-coastTrain
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/segformer-b5-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b5-finetuned-cityscapes-1024-1024) on the peldrak/coastTrain dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4253
|
21 |
+
- Mean Iou: 0.5585
|
22 |
+
- Mean Accuracy: 0.6197
|
23 |
+
- Overall Accuracy: 0.8740
|
24 |
+
- Accuracy Water: 0.9765
|
25 |
+
- Accuracy Whitewater: 0.0159
|
26 |
+
- Accuracy Sediment: 0.6122
|
27 |
+
- Accuracy Other Natural Terrain: 0.0
|
28 |
+
- Accuracy Vegetation: 0.9255
|
29 |
+
- Accuracy Development: 0.8619
|
30 |
+
- Accuracy Unknown: 0.9457
|
31 |
+
- Iou Water: 0.8021
|
32 |
+
- Iou Whitewater: 0.0158
|
33 |
+
- Iou Sediment: 0.5787
|
34 |
+
- Iou Other Natural Terrain: 0.0
|
35 |
+
- Iou Vegetation: 0.8069
|
36 |
+
- Iou Development: 0.7835
|
37 |
+
- Iou Unknown: 0.9224
|
38 |
+
- F1 Score: 0.8596
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 6e-05
|
58 |
+
- train_batch_size: 4
|
59 |
+
- eval_batch_size: 4
|
60 |
+
- seed: 42
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 20
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown | F1 Score |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-----------------:|:------------------------------:|:-------------------:|:--------------------:|:----------------:|:---------:|:--------------:|:------------:|:-------------------------:|:--------------:|:---------------:|:-----------:|:--------:|
|
69 |
+
| 1.7218 | 0.16 | 20 | 1.5229 | 0.3639 | 0.4826 | 0.6959 | 0.6530 | 0.0033 | 0.6952 | 0.0067 | 0.8127 | 0.2824 | 0.9249 | 0.5955 | 0.0030 | 0.3817 | 0.0063 | 0.5740 | 0.2453 | 0.7415 | 0.6829 |
|
70 |
+
| 1.3084 | 0.31 | 40 | 1.1275 | 0.4131 | 0.5060 | 0.7566 | 0.7956 | 0.0011 | 0.5967 | 0.0 | 0.9496 | 0.3131 | 0.8858 | 0.6821 | 0.0011 | 0.4697 | 0.0 | 0.6092 | 0.2891 | 0.8406 | 0.7379 |
|
71 |
+
| 1.1538 | 0.47 | 60 | 0.8108 | 0.4722 | 0.5593 | 0.8123 | 0.8802 | 0.0001 | 0.6946 | 0.0 | 0.9169 | 0.5078 | 0.9153 | 0.7833 | 0.0001 | 0.4768 | 0.0 | 0.7188 | 0.4376 | 0.8889 | 0.8002 |
|
72 |
+
| 0.9791 | 0.62 | 80 | 0.6995 | 0.5264 | 0.6143 | 0.8518 | 0.9168 | 0.0000 | 0.7471 | 0.0 | 0.8479 | 0.8453 | 0.9433 | 0.8301 | 0.0000 | 0.5727 | 0.0 | 0.7406 | 0.6249 | 0.9164 | 0.8421 |
|
73 |
+
| 1.0426 | 0.78 | 100 | 0.5931 | 0.5280 | 0.6063 | 0.8523 | 0.8932 | 0.0003 | 0.6361 | 0.0 | 0.9550 | 0.8282 | 0.9309 | 0.8097 | 0.0003 | 0.5481 | 0.0 | 0.7440 | 0.6697 | 0.9243 | 0.8402 |
|
74 |
+
| 0.8008 | 0.93 | 120 | 0.4687 | 0.5485 | 0.6225 | 0.8706 | 0.9263 | 0.0 | 0.7444 | 0.0 | 0.9248 | 0.8212 | 0.9410 | 0.8404 | 0.0 | 0.5924 | 0.0 | 0.7871 | 0.6857 | 0.9337 | 0.8595 |
|
75 |
+
| 1.0298 | 1.09 | 140 | 0.4732 | 0.5527 | 0.6244 | 0.8726 | 0.9421 | 0.0000 | 0.8164 | 0.0 | 0.9047 | 0.7891 | 0.9185 | 0.8289 | 0.0000 | 0.6400 | 0.0 | 0.7976 | 0.6991 | 0.9036 | 0.8617 |
|
76 |
+
| 0.4902 | 1.24 | 160 | 0.3911 | 0.5713 | 0.6310 | 0.8868 | 0.9694 | 0.0 | 0.7543 | 0.0 | 0.9348 | 0.8241 | 0.9344 | 0.8366 | 0.0 | 0.6816 | 0.0 | 0.8102 | 0.7408 | 0.9295 | 0.8744 |
|
77 |
+
| 0.8204 | 1.4 | 180 | 0.4865 | 0.5210 | 0.5894 | 0.8522 | 0.9765 | 0.0 | 0.4534 | 0.0 | 0.9521 | 0.8103 | 0.9336 | 0.7833 | 0.0 | 0.4303 | 0.0 | 0.7921 | 0.7097 | 0.9313 | 0.8322 |
|
78 |
+
| 1.1865 | 1.55 | 200 | 0.3980 | 0.5668 | 0.6352 | 0.8838 | 0.9644 | 0.0000 | 0.7632 | 0.0 | 0.8985 | 0.8816 | 0.9385 | 0.8442 | 0.0000 | 0.6333 | 0.0 | 0.8133 | 0.7431 | 0.9338 | 0.8722 |
|
79 |
+
| 0.5676 | 1.71 | 220 | 0.3955 | 0.5598 | 0.6352 | 0.8750 | 0.9299 | 0.0 | 0.8440 | 0.0 | 0.9085 | 0.8890 | 0.8747 | 0.8160 | 0.0 | 0.6601 | 0.0 | 0.8209 | 0.7499 | 0.8721 | 0.8647 |
|
80 |
+
| 0.9343 | 1.86 | 240 | 0.3969 | 0.5809 | 0.6445 | 0.8944 | 0.9593 | 0.0001 | 0.8201 | 0.0 | 0.9120 | 0.8658 | 0.9539 | 0.8589 | 0.0001 | 0.6678 | 0.0 | 0.8327 | 0.7744 | 0.9326 | 0.8829 |
|
81 |
+
| 0.5811 | 2.02 | 260 | 0.4253 | 0.5585 | 0.6197 | 0.8740 | 0.9765 | 0.0159 | 0.6122 | 0.0 | 0.9255 | 0.8619 | 0.9457 | 0.8021 | 0.0158 | 0.5787 | 0.0 | 0.8069 | 0.7835 | 0.9224 | 0.8596 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.37.0
|
87 |
+
- Pytorch 2.1.2
|
88 |
+
- Datasets 2.18.0
|
89 |
+
- Tokenizers 0.15.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/segformer-b5-finetuned-cityscapes-1024-1024",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "water",
|
32 |
+
"1": "whitewater",
|
33 |
+
"2": "sediment",
|
34 |
+
"3": "other_natural_terrain",
|
35 |
+
"4": "vegetation",
|
36 |
+
"5": "development",
|
37 |
+
"6": "unknown"
|
38 |
+
},
|
39 |
+
"image_size": 224,
|
40 |
+
"initializer_range": 0.02,
|
41 |
+
"label2id": {
|
42 |
+
"development": 5,
|
43 |
+
"other_natural_terrain": 3,
|
44 |
+
"sediment": 2,
|
45 |
+
"unknown": 6,
|
46 |
+
"vegetation": 4,
|
47 |
+
"water": 0,
|
48 |
+
"whitewater": 1
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-06,
|
51 |
+
"mlp_ratios": [
|
52 |
+
4,
|
53 |
+
4,
|
54 |
+
4,
|
55 |
+
4
|
56 |
+
],
|
57 |
+
"model_type": "segformer",
|
58 |
+
"num_attention_heads": [
|
59 |
+
1,
|
60 |
+
2,
|
61 |
+
5,
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"num_channels": 3,
|
65 |
+
"num_encoder_blocks": 4,
|
66 |
+
"patch_sizes": [
|
67 |
+
7,
|
68 |
+
3,
|
69 |
+
3,
|
70 |
+
3
|
71 |
+
],
|
72 |
+
"reshape_last_stage": true,
|
73 |
+
"semantic_loss_ignore_index": 255,
|
74 |
+
"sr_ratios": [
|
75 |
+
8,
|
76 |
+
4,
|
77 |
+
2,
|
78 |
+
1
|
79 |
+
],
|
80 |
+
"strides": [
|
81 |
+
4,
|
82 |
+
2,
|
83 |
+
2,
|
84 |
+
2
|
85 |
+
],
|
86 |
+
"torch_dtype": "float32",
|
87 |
+
"transformers_version": "4.37.0"
|
88 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da17431580bca814cedacc2c00bce5a9541db71a8ae4a6f9c1c475e56ff8d144
|
3 |
+
size 338543820
|
runs/Mar04_10-20-38_8c6b454fb8be/events.out.tfevents.1709547642.8c6b454fb8be.26.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10776cf617d330ef88b82bb28a36f1a561cc89810509f72f484d7f64aeb63fbf
|
3 |
+
size 63324
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b80406e8d0d254636f9cab73cd490826302bd31476ae91c10e8e9d63c528d98
|
3 |
+
size 4792
|