BrainFM / utils /misc.py
peirong26's picture
Upload 187 files
2571f24 verified
"""
Misc functions, including distributed helpers.
Mostly copy-paste from torchvision references.
"""
import os
import math
import time
import datetime
import pickle
import shutil
import subprocess
import warnings
from argparse import Namespace
from typing import List, Optional
import numpy as np
import nibabel as nib
from pathlib import Path
import SimpleITK as sitk
import matplotlib.pyplot as plt
import utils.logging as logging
import utils.multiprocessing as mpu
from utils.process_cfg import load_config
from collections import defaultdict, deque
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F
# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
from torch import Tensor
from visdom import Visdom
logger = logging.get_logger(__name__)
'''if float(torchvision.__version__[:3]) < 0.7:
from torchvision.ops import _new_empty_tensor
from torchvision.ops.misc import _output_size'''
def make_dir(dir_name, parents = True, exist_ok = True, reset = False):
if reset and os.path.isdir(dir_name):
shutil.rmtree(dir_name)
dir_name = Path(dir_name)
dir_name.mkdir(parents=parents, exist_ok=exist_ok)
return dir_name
def read_image(img_path, save_path = None):
img = nib.load(img_path)
nda = img.get_fdata()
affine = img.affine
if save_path:
ni_img = nib.Nifti1Image(nda, affine)
nib.save(ni_img, save_path)
return np.squeeze(nda), affine
def save_image(nda, affine, save_path):
ni_img = nib.Nifti1Image(nda, affine)
nib.save(ni_img, save_path)
return save_path
def img2nda(img_path, save_path = None):
img = sitk.ReadImage(img_path)
nda = sitk.GetArrayFromImage(img)
if save_path:
np.save(save_path, nda)
return nda, img.GetOrigin(), img.GetSpacing(), img.GetDirection()
def to3d(img_path, save_path = None):
nda, o, s, d = img2nda(img_path)
save_path = img_path if save_path is None else save_path
if len(o) > 3:
nda2img(nda, o[:3], s[:3], d[:3] + d[4:7] + d[8:11], save_path)
return save_path
def nda2img(nda, origin = None, spacing = None, direction = None, save_path = None, isVector = None):
if type(nda) == torch.Tensor:
nda = nda.cpu().detach().numpy()
nda = np.squeeze(np.array(nda))
isVector = isVector if isVector else len(nda.shape) > 3
img = sitk.GetImageFromArray(nda, isVector = isVector)
if origin:
img.SetOrigin(origin)
if spacing:
img.SetSpacing(spacing)
if direction:
img.SetDirection(direction)
if save_path:
sitk.WriteImage(img, save_path)
return img
def cropping(img_path, tol = 0, crop_range_lst = None, spare = 0, save_path = None):
img = sitk.ReadImage(img_path)
orig_nda = sitk.GetArrayFromImage(img)
if len(orig_nda.shape) > 3: # 4D data: last axis (t=0) as time dimension
nda = orig_nda[..., 0]
else:
nda = np.copy(orig_nda)
if crop_range_lst is None:
# Mask of non-black pixels (assuming image has a single channel).
mask = nda > tol
# Coordinates of non-black pixels.
coords = np.argwhere(mask)
# Bounding box of non-black pixels.
x0, y0, z0 = coords.min(axis=0)
x1, y1, z1 = coords.max(axis=0) + 1 # slices are exclusive at the top
# add sparing gap if needed
x0 = x0 - spare if x0 > spare else x0
y0 = y0 - spare if y0 > spare else y0
z0 = z0 - spare if z0 > spare else z0
x1 = x1 + spare if x1 < orig_nda.shape[0] - spare else x1
y1 = y1 + spare if y1 < orig_nda.shape[1] - spare else y1
z1 = z1 + spare if z1 < orig_nda.shape[2] - spare else z1
# Check the the bounding box #
#print(' Cropping Slice [%d, %d)' % (x0, x1))
#print(' Cropping Row [%d, %d)' % (y0, y1))
#print(' Cropping Column [%d, %d)' % (z0, z1))
else:
[[x0, y0, z0], [x1, y1, z1]] = crop_range_lst
cropped_nda = orig_nda[x0 : x1, y0 : y1, z0 : z1]
new_origin = [img.GetOrigin()[0] + img.GetSpacing()[0] * z0,\
img.GetOrigin()[1] + img.GetSpacing()[1] * y0,\
img.GetOrigin()[2] + img.GetSpacing()[2] * x0] # numpy reverse to sitk'''
cropped_img = sitk.GetImageFromArray(cropped_nda, isVector = len(orig_nda.shape) > 3)
cropped_img.SetOrigin(new_origin)
#cropped_img.SetOrigin(img.GetOrigin())
cropped_img.SetSpacing(img.GetSpacing())
cropped_img.SetDirection(img.GetDirection())
if save_path:
sitk.WriteImage(cropped_img, save_path)
return cropped_img, [[x0, y0, z0], [x1, y1, z1]], new_origin
def memory_stats():
logger.info(torch.cuda.memory_allocated()/1024**2)
logger.info(torch.cuda.memory_reserved()/1024**2)
#########################################
#########################################
def viewVolume(x, aff=None, prefix='', postfix='', names=[], ext='.nii.gz', save_dir='/tmp'):
if aff is None:
aff = np.eye(4)
else:
if type(aff) == torch.Tensor:
aff = aff.cpu().detach().numpy()
if type(x) is dict:
names = list(x.keys())
x = [x[k] for k in x]
if type(x) is not list:
x = [x]
#cmd = 'source /usr/local/freesurfer/nmr-dev-env-bash && freeview '
for n in range(len(x)):
vol = x[n]
if vol is not None:
if type(vol) == torch.Tensor:
vol = vol.cpu().detach().numpy()
vol = np.squeeze(np.array(vol))
try:
save_path = os.path.join(make_dir(save_dir), prefix + names[n] + postfix + ext)
except:
save_path = os.path.join(make_dir(save_dir), prefix + str(n) + postfix + ext)
MRIwrite(vol, aff, save_path)
#cmd = cmd + ' ' + save_path
#os.system(cmd + ' &')
return save_path
###############################3
def MRIwrite(volume, aff, filename, dtype=None):
if dtype is not None:
volume = volume.astype(dtype=dtype)
if aff is None:
aff = np.eye(4)
header = nib.Nifti1Header()
nifty = nib.Nifti1Image(volume, aff, header)
nib.save(nifty, filename)
###############################
def MRIread(filename, dtype=None, im_only=False):
# dtype example: 'int', 'float'
assert filename.endswith(('.nii', '.nii.gz', '.mgz')), 'Unknown data file: %s' % filename
x = nib.load(filename)
volume = x.get_fdata()
aff = x.affine
if dtype is not None:
volume = volume.astype(dtype=dtype)
if im_only:
return volume
else:
return volume, aff
##############
def get_ras_axes(aff, n_dims=3):
"""This function finds the RAS axes corresponding to each dimension of a volume, based on its affine matrix.
:param aff: affine matrix Can be a 2d numpy array of size n_dims*n_dims, n_dims+1*n_dims+1, or n_dims*n_dims+1.
:param n_dims: number of dimensions (excluding channels) of the volume corresponding to the provided affine matrix.
:return: two numpy 1d arrays of lengtn n_dims, one with the axes corresponding to RAS orientations,
and one with their corresponding direction.
"""
aff_inverted = np.linalg.inv(aff)
img_ras_axes = np.argmax(np.absolute(aff_inverted[0:n_dims, 0:n_dims]), axis=0)
return img_ras_axes
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
sha = 'N/A'
diff = "clean"
branch = 'N/A'
try:
sha = _run(['git', 'rev-parse', 'HEAD'])
subprocess.check_output(['git', 'diff'], cwd=cwd)
diff = _run(['git', 'diff-index', 'HEAD'])
diff = "has uncommited changes" if diff else "clean"
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message
def collate_fn(batch):
batch = {k: torch.stack([dict[k] for dict in batch]) for k in batch[0]} # switch from batch of dict to dict of batch
return batch
#v = {k: [dic[k] for dic in LD] for k in LD[0]}
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
def launch_job(submit_cfg, gen_cfg, train_cfg, func, daemon = False):
"""
Run 'func' on one or more GPUs, specified in cfg
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
init_method (str): initialization method to launch the job with multiple
devices.
func (function): job to run on GPU(s)
daemon (bool): The spawned processes’ daemon flag. If set to True,
daemonic processes will be created
"""
if submit_cfg is not None and submit_cfg.num_gpus > 1:
logger.info('num_gpus:', submit_cfg.num_gpus)
torch.multiprocessing.spawn(
mpu.run,
nprocs=submit_cfg.num_gpus,
args=(
submit_cfg.num_gpus,
func,
submit_cfg.init_method,
submit_cfg.shard_id,
submit_cfg.num_shards,
submit_cfg.dist_backend,
submit_cfg,
),
daemon = daemon,
)
else:
logger.info('num_gpus: 1')
func([submit_cfg, gen_cfg, train_cfg])
def preprocess_cfg(cfg_files, cfg_dir = ''):
config = load_config(cfg_files[0], cfg_files[1:], cfg_dir)
args = nested_dict_to_namespace(config)
return args
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
if not is_master:
def line(*args, **kwargs):
pass
def images(*args, **kwargs):
pass
Visdom.line = line
Visdom.images = images
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(cfg):
"""
Initialize variables needed for distributed training.
"""
if cfg.num_gpus <= 1:
return
num_gpus_per_machine = cfg.num_gpus
num_machines = dist.get_world_size() // num_gpus_per_machine
logger.info(num_gpus_per_machine, dist.get_world_size())
for i in range(num_machines):
ranks_on_i = list(
range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine)
)
pg = dist.new_group(ranks_on_i)
if i == cfg.shard_id:
global _LOCAL_PROCESS_GROUP
_LOCAL_PROCESS_GROUP = pg
'''def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
#args.rank = int(os.environ["RANK"])
#args.world_size = int(os.environ['WORLD_SIZE'])
#args.gpu = int(os.environ['LOCAL_RANK'])
pass
elif 'SLURM_PROCID' in os.environ and 'SLURM_PTY_PORT' not in os.environ:
# slurm process but not interactive
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
elif args.num_gpus < 1:
print('Not using distributed mode')
#args.distributed = False
return
args.world_size = int(args.num_gpus * args.nodes)
#args.distributed = True
torch.cuda.set_device(args.gpu)
#args.dist_backend = 'nccl'
print(f'| distributed init (rank {args.rank}): {args.dist_url}', flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# torch.distributed.barrier()
setup_for_distributed(args.rank == 0)'''
@torch.no_grad()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
if target.numel() == 0:
return [torch.zeros([], device=output.device)]
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
"""
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
This will eventually be supported natively by PyTorch, and this
class can go away.
"""
if float(torchvision.__version__[:3]) < 0.7:
if input.numel() > 0:
return torch.nn.functional.interpolate(
input, size, scale_factor, mode, align_corners
)
output_shape = _output_size(2, input, size, scale_factor)
output_shape = list(input.shape[:-2]) + list(output_shape)
return _new_empty_tensor(input, output_shape)
else:
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
class DistributedWeightedSampler(torch.utils.data.DistributedSampler):
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, replacement=True):
super(DistributedWeightedSampler, self).__init__(dataset, num_replicas, rank, shuffle)
assert replacement
self.replacement = replacement
def __iter__(self):
iter_indices = super(DistributedWeightedSampler, self).__iter__()
if hasattr(self.dataset, 'sample_weight'):
indices = list(iter_indices)
weights = torch.tensor([self.dataset.sample_weight(idx) for idx in indices])
g = torch.Generator()
g.manual_seed(self.epoch)
weight_indices = torch.multinomial(
weights, self.num_samples, self.replacement, generator=g)
indices = torch.tensor(indices)[weight_indices]
iter_indices = iter(indices.tolist())
return iter_indices
def __len__(self):
return self.num_samples
def inverse_sigmoid(x, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1/x2)
def dice_loss(inputs, targets, num_boxes):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_boxes
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, query_mask=None, reduction=True):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if not reduction:
return loss
if query_mask is not None:
loss = torch.stack([l[m].mean(0) for l, m in zip(loss, query_mask)])
return loss.sum() / num_boxes
return loss.mean(1).sum() / num_boxes
def nested_dict_to_namespace(dictionary):
namespace = dictionary
if isinstance(dictionary, dict):
namespace = Namespace(**dictionary)
for key, value in dictionary.items():
setattr(namespace, key, nested_dict_to_namespace(value))
return namespace
def nested_dict_to_device(dictionary, device):
if isinstance(dictionary, dict):
output = {}
for key, value in dictionary.items():
output[key] = nested_dict_to_device(value, device)
return output
if isinstance(dictionary, str):
return dictionary
elif isinstance(dictionary, list):
return [nested_dict_to_device(d, device) for d in dictionary]
else:
try:
return dictionary.to(device)
except:
return dictionary
def merge_list_of_dict(dict_list_a, dict_list_b):
assert len(dict_list_a) == len(dict_list_b)
for i in range(len(dict_list_a)):
dict_list_a[i].update(dict_list_b[i])
return dict_list_a
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
try:
return self.total / self.count
except:
return 0.
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, print_freq, delimiter="\t", debug=False, sample_freq=None):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
self.print_freq = print_freq
self.debug = debug
self.sample_freq = sample_freq
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
try:
loss_str.append(f"{name}: {meter}")
except:
loss_str = ''
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterables, max_len, probs, epoch=None, header=None, is_test=False, train_limit=None, test_limit=None):
# iterables: dict = {dataset_name: dataloader}
i = 0
if header is None:
header = 'Epoch: [{}]'.format(epoch)
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(max_len))) + 'd'
MB = 1024.0 * 1024.0
generator_dict = {}
for k, v in iterables.items():
generator_dict[k] = iter(v)
for i in range(max_len):
chosen_dataset = np.random.choice(len(iterables), 1, p=probs)[0]
curr_dataset = list(iterables.keys())[chosen_dataset]
if train_limit and i >= train_limit and not is_test: # train sub-set
break
if test_limit and i >= test_limit and is_test: # limit test iterations (1000)
break
data_time.update(time.time() - end)
try:
(dataset_num, dataset_name, input_mode, target, samples) = next(generator_dict[curr_dataset])
except StopIteration:
logger.info('Re-iterate: {}'.format(curr_dataset))
generator_dict[curr_dataset] = iter(iterables[curr_dataset])
(dataset_num, dataset_name, input_mode, target, samples) = next(generator_dict[curr_dataset])
dataset_name = dataset_name[0]
yield dataset_num, dataset_name, input_mode[0], target, samples
iter_time.update(time.time() - end)
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'dataset: {}'.format(dataset_name),
'mode: {}'.format(input_mode[0]),
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}',
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'dataset: {}'.format(dataset_name),
'mode: {}'.format(input_mode[0]),
'eta: {eta}',
'{meters}',
'time: {time}',
'data_time: {data}',
])
if i % self.print_freq == 0 or i == max_len - 1:
eta_seconds = iter_time.global_avg * (max_len - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
logger.info(log_msg.format(
i , max_len, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
logger.info(log_msg.format(
i, max_len, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
if self.debug and i % self.print_freq == 0:
break
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / max_len))
######################### Synth #########################
def myzoom_torch_slow(X, factor, device, aff=None):
if len(X.shape)==3:
X = X[..., None]
delta = (1.0 - factor) / (2.0 * factor)
newsize = np.round(X.shape[:-1] * factor).astype(int)
vx = torch.arange(delta[0], delta[0] + newsize[0] / factor[0], 1 / factor[0], dtype=torch.float, device=device)[:newsize[0]]
vy = torch.arange(delta[1], delta[1] + newsize[1] / factor[1], 1 / factor[1], dtype=torch.float, device=device)[:newsize[1]]
vz = torch.arange(delta[2], delta[2] + newsize[2] / factor[2], 1 / factor[2], dtype=torch.float, device=device)[:newsize[2]]
vx[vx < 0] = 0
vy[vy < 0] = 0
vz[vz < 0] = 0
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1)
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1)
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1)
fx = torch.floor(vx).int()
cx = fx + 1
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1)
wcx = vx - fx
wfx = 1 - wcx
fy = torch.floor(vy).int()
cy = fy + 1
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1)
wcy = vy - fy
wfy = 1 - wcy
fz = torch.floor(vz).int()
cz = fz + 1
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1)
wcz = vz - fz
wfz = 1 - wcz
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=device)
for channel in range(X.shape[3]):
Xc = X[:,:,:,channel]
tmp1 = torch.zeros([newsize[0], Xc.shape[1], Xc.shape[2]], dtype=torch.float, device=device)
for i in range(newsize[0]):
tmp1[i, :, :] = wfx[i] * Xc[fx[i], :, :] + wcx[i] * Xc[cx[i], :, :]
tmp2 = torch.zeros([newsize[0], newsize[1], Xc.shape[2]], dtype=torch.float, device=device)
for j in range(newsize[1]):
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :]
for k in range(newsize[2]):
Y[:, :, k, channel] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]]
if Y.shape[3] == 1:
Y = Y[:,:,:, 0]
if aff is not None:
aff_new = aff.copy()
for c in range(3):
aff_new[:-1, c] = aff_new[:-1, c] / factor
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / (factor * np.ones(3)))
return Y, aff_new
else:
return Y
def myzoom_torch(X, factor, aff=None):
if len(X.shape)==3:
X = X[..., None]
delta = (1.0 - factor) / (2.0 * factor)
newsize = np.round(X.shape[:-1] * factor).astype(int)
vx = torch.arange(delta[0], delta[0] + newsize[0] / factor[0], 1 / factor[0], dtype=torch.float, device=X.device)[:newsize[0]]
vy = torch.arange(delta[1], delta[1] + newsize[1] / factor[1], 1 / factor[1], dtype=torch.float, device=X.device)[:newsize[1]]
vz = torch.arange(delta[2], delta[2] + newsize[2] / factor[2], 1 / factor[2], dtype=torch.float, device=X.device)[:newsize[2]]
vx[vx < 0] = 0
vy[vy < 0] = 0
vz[vz < 0] = 0
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1)
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1)
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1)
fx = torch.floor(vx).int()
cx = fx + 1
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1)
wcx = (vx - fx)
wfx = 1 - wcx
fy = torch.floor(vy).int()
cy = fy + 1
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1)
wcy = (vy - fy)
wfy = 1 - wcy
fz = torch.floor(vz).int()
cz = fz + 1
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1)
wcz = (vz - fz)
wfz = 1 - wcz
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=X.device)
tmp1 = torch.zeros([newsize[0], X.shape[1], X.shape[2], X.shape[3]], dtype=torch.float, device=X.device)
for i in range(newsize[0]):
tmp1[i, :, :] = wfx[i] * X[fx[i], :, :] + wcx[i] * X[cx[i], :, :]
tmp2 = torch.zeros([newsize[0], newsize[1], X.shape[2], X.shape[3]], dtype=torch.float, device=X.device)
for j in range(newsize[1]):
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :]
for k in range(newsize[2]):
Y[:, :, k] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]]
if Y.shape[3] == 1:
Y = Y[:,:,:, 0]
if aff is not None:
aff_new = aff.copy()
aff_new[:-1] = aff_new[:-1] / factor
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / (factor * np.ones(3)))
return Y, aff_new
else:
return Y
def myzoom_torch_test(X, factor, aff=None):
time.sleep(3)
start_time = time.time()
Y2 = myzoom_torch_slow(X, factor, aff)
print('slow', X.shape[-1], time.time() - start_time)
time.sleep(3)
start_time = time.time()
Y1 = myzoom_torch(X, factor, aff)
print('fast', X.shape[-1], time.time() - start_time)
time.sleep(3)
print('diff', (Y2 - Y1).mean(), (Y2 - Y1).max())
return Y1
def myzoom_torch_anisotropic_slow(X, aff, newsize, device):
if len(X.shape)==3:
X = X[..., None]
factors = np.array(newsize) / np.array(X.shape[:-1])
delta = (1.0 - factors) / (2.0 * factors)
vx = torch.arange(delta[0], delta[0] + newsize[0] / factors[0], 1 / factors[0], dtype=torch.float, device=device)[:newsize[0]]
vy = torch.arange(delta[1], delta[1] + newsize[1] / factors[1], 1 / factors[1], dtype=torch.float, device=device)[:newsize[1]]
vz = torch.arange(delta[2], delta[2] + newsize[2] / factors[2], 1 / factors[2], dtype=torch.float, device=device)[:newsize[2]]
vx[vx < 0] = 0
vy[vy < 0] = 0
vz[vz < 0] = 0
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1)
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1)
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1)
fx = torch.floor(vx).int()
cx = fx + 1
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1)
wcx = vx - fx
wfx = 1 - wcx
fy = torch.floor(vy).int()
cy = fy + 1
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1)
wcy = vy - fy
wfy = 1 - wcy
fz = torch.floor(vz).int()
cz = fz + 1
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1)
wcz = vz - fz
wfz = 1 - wcz
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=device)
dtype = X.dtype
for channel in range(X.shape[3]):
Xc = X[:,:,:,channel]
tmp1 = torch.zeros([newsize[0], Xc.shape[1], Xc.shape[2]], dtype=dtype, device=device)
for i in range(newsize[0]):
tmp1[i, :, :] = wfx[i] * Xc[fx[i], :, :] + wcx[i] * Xc[cx[i], :, :]
tmp2 = torch.zeros([newsize[0], newsize[1], Xc.shape[2]], dtype=dtype, device=device)
for j in range(newsize[1]):
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :]
for k in range(newsize[2]):
Y[:, :, k, channel] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]]
if Y.shape[3] == 1:
Y = Y[:,:,:, 0]
if aff is not None:
aff_new = aff.copy()
for c in range(3):
aff_new[:-1, c] = aff_new[:-1, c] / factors[c]
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / factors)
return Y, aff_new
else:
return Y
def myzoom_torch_anisotropic(X, aff, newsize):
device = X.device
if len(X.shape)==3:
X = X[..., None]
factors = np.array(newsize) / np.array(X.shape[:-1])
delta = (1.0 - factors) / (2.0 * factors)
vx = torch.arange(delta[0], delta[0] + newsize[0] / factors[0], 1 / factors[0], dtype=torch.float, device=device)[:newsize[0]]
vy = torch.arange(delta[1], delta[1] + newsize[1] / factors[1], 1 / factors[1], dtype=torch.float, device=device)[:newsize[1]]
vz = torch.arange(delta[2], delta[2] + newsize[2] / factors[2], 1 / factors[2], dtype=torch.float, device=device)[:newsize[2]]
vx[vx < 0] = 0
vy[vy < 0] = 0
vz[vz < 0] = 0
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1)
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1)
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1)
fx = torch.floor(vx).int()
cx = fx + 1
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1)
wcx = vx - fx
wfx = 1 - wcx
fy = torch.floor(vy).int()
cy = fy + 1
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1)
wcy = vy - fy
wfy = 1 - wcy
fz = torch.floor(vz).int()
cz = fz + 1
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1)
wcz = vz - fz
wfz = 1 - wcz
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=device)
dtype = X.dtype
for channel in range(X.shape[3]):
Xc = X[:,:,:,channel]
tmp1 = torch.zeros([newsize[0], Xc.shape[1], Xc.shape[2]], dtype=dtype, device=device)
for i in range(newsize[0]):
tmp1[i, :, :] = wfx[i] * Xc[fx[i], :, :] + wcx[i] * Xc[cx[i], :, :]
tmp2 = torch.zeros([newsize[0], newsize[1], Xc.shape[2]], dtype=dtype, device=device)
for j in range(newsize[1]):
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :]
for k in range(newsize[2]):
Y[:, :, k, channel] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]]
if Y.shape[3] == 1:
Y = Y[:,:,:, 0]
if aff is not None:
aff_new = aff.copy()
for c in range(3):
aff_new[:-1, c] = aff_new[:-1, c] / factors[c]
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / factors)
return Y, aff_new
else:
return Y
def torch_resize(I, aff, resolution, power_factor_at_half_width=5, dtype=torch.float32, slow=False):
if torch.is_grad_enabled():
with torch.no_grad():
return torch_resize(I, aff, resolution, power_factor_at_half_width, dtype, slow)
slow = slow or (I.device == 'cpu')
voxsize = np.sqrt(np.sum(aff[:-1, :-1] ** 2, axis=0))
newsize = np.round(I.shape[0:3] * (voxsize / resolution)).astype(int)
factors = np.array(I.shape[0:3]) / np.array(newsize)
k = np.log(power_factor_at_half_width) / np.pi
sigmas = k * factors
sigmas[sigmas<=k] = 0
if len(I.shape) not in (3, 4):
raise Exception('torch_resize works with 3D or 3D+label volumes')
no_channels = len(I.shape) == 3
if no_channels:
I = I[:, :, :, None]
if torch.is_tensor(I):
I = I.permute([3, 0, 1, 2])
else:
I = I.transpose([3, 0, 1, 2])
It_lowres = None
for c in range(len(I)):
It = torch.as_tensor(I[c], device=I.device, dtype=dtype)[None, None]
# Smoothen if needed
for d in range(3):
It = It.permute([0, 1, 3, 4, 2])
if sigmas[d]>0:
sl = np.ceil(sigmas[d] * 2.5).astype(int)
v = np.arange(-sl, sl + 1)
gauss = np.exp((-(v / sigmas[d]) ** 2 / 2))
kernel = gauss / np.sum(gauss)
kernel = torch.tensor(kernel, device=I.device, dtype=dtype)
if slow:
It = conv_slow_fallback(It, kernel)
else:
kernel = kernel[None, None, None, None, :]
It = torch.conv3d(It, kernel, bias=None, stride=1, padding=[0, 0, int((kernel.shape[-1] - 1) / 2)])
It = torch.squeeze(It)
It, aff2 = myzoom_torch_anisotropic(It, aff, newsize)
It = It.detach()
if torch.is_tensor(I):
It = It.to(I.device)
else:
It = It.cpu().numpy()
if len(I) == 1:
It_lowres = It[None]
else:
if It_lowres is None:
if torch.is_tensor(It):
It_lowres = It.new_empty([len(I), *It.shape])
else:
It_lowres = np.empty_like(It, shape=[len(I), *It.shape])
It_lowres[c] = It
torch.cuda.empty_cache()
if not no_channels:
if torch.is_tensor(I):
It_lowres = It_lowres.permute([1, 2, 3, 0])
else:
It_lowres = It_lowres.transpose([1, 2, 3, 0])
else:
It_lowres = It_lowres[0]
return It_lowres, aff2
###############################
@torch.jit.script
def conv_slow_fallback(x, kernel):
"""1D Conv along the last dimension with padding"""
y = torch.zeros_like(x)
x = torch.nn.functional.pad(x, [(len(kernel) - 1) // 2]*2)
x = x.unfold(-1, size=len(kernel), step=1)
x = x.movedim(-1, 0)
for i in range(len(kernel)):
y = y.addcmul_(x[i], kernel[i])
return y
###############################
def align_volume_to_ref(volume, aff, aff_ref=None, return_aff=False, n_dims=3):
"""This function aligns a volume to a reference orientation (axis and direction) specified by an affine matrix.
:param volume: a numpy array
:param aff: affine matrix of the floating volume
:param aff_ref: (optional) affine matrix of the target orientation. Default is identity matrix.
:param return_aff: (optional) whether to return the affine matrix of the aligned volume
:param n_dims: number of dimensions (excluding channels) of the volume corresponding to the provided affine matrix.
:return: aligned volume, with corresponding affine matrix if return_aff is True.
"""
# work on copy
aff_flo = aff.copy()
# default value for aff_ref
if aff_ref is None:
aff_ref = np.eye(4)
# extract ras axes
ras_axes_ref = get_ras_axes(aff_ref, n_dims=n_dims)
ras_axes_flo = get_ras_axes(aff_flo, n_dims=n_dims)
# align axes
aff_flo[:, ras_axes_ref] = aff_flo[:, ras_axes_flo]
for i in range(n_dims):
if ras_axes_flo[i] != ras_axes_ref[i]:
volume = torch.swapaxes(volume, ras_axes_flo[i], ras_axes_ref[i])
swapped_axis_idx = np.where(ras_axes_flo == ras_axes_ref[i])
ras_axes_flo[swapped_axis_idx], ras_axes_flo[i] = ras_axes_flo[i], ras_axes_flo[swapped_axis_idx]
# align directions
dot_products = np.sum(aff_flo[:3, :3] * aff_ref[:3, :3], axis=0)
for i in range(n_dims):
if dot_products[i] < 0:
volume = torch.flip(volume, [i])
aff_flo[:, i] = - aff_flo[:, i]
aff_flo[:3, 3] = aff_flo[:3, 3] - aff_flo[:3, i] * (volume.shape[i] - 1)
if return_aff:
return volume, aff_flo
else:
return volume
def multistep_scheduler(base_value, lr_drops, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, gamma=0.1):
warmup_schedule = np.array([])
warmup_iters = warmup_epochs * niter_per_ep
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
schedule = np.ones(epochs * niter_per_ep - warmup_iters) * base_value
for milestone in lr_drops:
schedule[milestone * niter_per_ep :] *= gamma
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0):
warmup_schedule = np.array([])
warmup_iters = warmup_epochs * niter_per_ep
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
class LARS(torch.optim.Optimizer):
"""
Almost copy-paste from https://github.com/facebookresearch/barlowtwins/blob/main/main.py
"""
def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, eta=0.001,
weight_decay_filter=None, lars_adaptation_filter=None):
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum,
eta=eta, weight_decay_filter=weight_decay_filter,
lars_adaptation_filter=lars_adaptation_filter)
super().__init__(params, defaults)
@torch.no_grad()
def step(self):
for g in self.param_groups:
for p in g['params']:
dp = p.grad
if dp is None:
continue
if p.ndim != 1:
dp = dp.add(p, alpha=g['weight_decay'])
if p.ndim != 1:
param_norm = torch.norm(p)
update_norm = torch.norm(dp)
one = torch.ones_like(param_norm)
q = torch.where(param_norm > 0.,
torch.where(update_norm > 0,
(g['eta'] * param_norm / update_norm), one), one)
dp = dp.mul(q)
param_state = self.state[p]
if 'mu' not in param_state:
param_state['mu'] = torch.zeros_like(p)
mu = param_state['mu']
mu.mul_(g['momentum']).add_(dp)
p.add_(mu, alpha=-g['lr'])
def cancel_gradients_last_layer(epoch, model, freeze_last_layer):
if epoch >= freeze_last_layer:
return
for n, p in model.named_parameters():
if "last_layer" in n:
p.grad = None
def clip_gradients(model, clip):
norms = []
for name, p in model.named_parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
norms.append(param_norm.item())
clip_coef = clip / (param_norm + 1e-6)
if clip_coef < 1:
p.grad.data.mul_(clip_coef)
return norms
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def has_batchnorms(model):
bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm)
for name, module in model.named_modules():
if isinstance(module, bn_types):
return True
return False
def read_log(log_path, loss_name = 'loss'):
log_file = open(log_path, 'r')
lines = log_file.readlines()
epoches = []
losses = []
num_epoches = 0
for i, line in enumerate(lines):
#print("Line{}: {}".format(i, line.strip()))
if len(line) <= 1:
break
num_epoches += 1
epoches.append(int(line.split(' - ')[0].split('epoch ')[1]))
losses.append(float(line.split('"%s": ' % loss_name)[1].split(',')[0]))
#print('num_epoches:', num_epoches)
return epoches, losses
def plot_loss(loss_lst, save_path):
fig = plt.figure()
ax = fig.add_subplot(111)
t = list(np.arange(len(loss_lst)))
ax.plot(t, np.array(loss_lst), 'r--')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
#ax.set_yscale('log')
#ax.legend()
#ax.title.set_text(loss_name)
plt.savefig(save_path)
plt.close(fig)
return
###############################
# map SynthSeg right to left labels for contrast synthesis
right_to_left_dict = {
41: 2,
42: 3,
43: 4,
44: 5,
46: 7,
47: 8,
49: 10,
50: 11,
51: 12,
52: 13,
53: 17,
54: 18,
58: 26,
60: 28
}
# based on merged left & right SynthSeg labels
ct_brightness_group = {
'darker': [4, 5, 14, 15, 24, 31, 72], # ventricles, CSF
'dark': [2, 7, 16, 77, 30], # white matter
'bright': [3, 8, 17, 18, 28, 10, 11, 12, 13, 26], # grey matter (cortex, hippocampus, amggdala, ventral DC), thalamus, ganglia (nucleus (putamen, pallidus, accumbens), caudate)
'brighter': [], # skull, pineal gland, choroid plexus
}