|
""" |
|
Misc functions, including distributed helpers. |
|
|
|
Mostly copy-paste from torchvision references. |
|
""" |
|
import os |
|
import math |
|
import time |
|
import datetime |
|
import pickle |
|
import shutil |
|
import subprocess |
|
import warnings |
|
from argparse import Namespace |
|
from typing import List, Optional |
|
import numpy as np |
|
import nibabel as nib |
|
from pathlib import Path |
|
import SimpleITK as sitk |
|
import matplotlib.pyplot as plt |
|
|
|
import utils.logging as logging |
|
import utils.multiprocessing as mpu |
|
from utils.process_cfg import load_config |
|
|
|
from collections import defaultdict, deque |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.distributed as dist |
|
import torch.nn.functional as F |
|
|
|
import torchvision |
|
from torch import Tensor |
|
from visdom import Visdom |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
'''if float(torchvision.__version__[:3]) < 0.7: |
|
from torchvision.ops import _new_empty_tensor |
|
from torchvision.ops.misc import _output_size''' |
|
|
|
|
|
def make_dir(dir_name, parents = True, exist_ok = True, reset = False): |
|
if reset and os.path.isdir(dir_name): |
|
shutil.rmtree(dir_name) |
|
dir_name = Path(dir_name) |
|
dir_name.mkdir(parents=parents, exist_ok=exist_ok) |
|
return dir_name |
|
|
|
|
|
def read_image(img_path, save_path = None): |
|
img = nib.load(img_path) |
|
nda = img.get_fdata() |
|
affine = img.affine |
|
if save_path: |
|
ni_img = nib.Nifti1Image(nda, affine) |
|
nib.save(ni_img, save_path) |
|
return np.squeeze(nda), affine |
|
|
|
def save_image(nda, affine, save_path): |
|
ni_img = nib.Nifti1Image(nda, affine) |
|
nib.save(ni_img, save_path) |
|
return save_path |
|
|
|
def img2nda(img_path, save_path = None): |
|
img = sitk.ReadImage(img_path) |
|
nda = sitk.GetArrayFromImage(img) |
|
if save_path: |
|
np.save(save_path, nda) |
|
return nda, img.GetOrigin(), img.GetSpacing(), img.GetDirection() |
|
|
|
def to3d(img_path, save_path = None): |
|
nda, o, s, d = img2nda(img_path) |
|
save_path = img_path if save_path is None else save_path |
|
if len(o) > 3: |
|
nda2img(nda, o[:3], s[:3], d[:3] + d[4:7] + d[8:11], save_path) |
|
return save_path |
|
|
|
def nda2img(nda, origin = None, spacing = None, direction = None, save_path = None, isVector = None): |
|
if type(nda) == torch.Tensor: |
|
nda = nda.cpu().detach().numpy() |
|
nda = np.squeeze(np.array(nda)) |
|
isVector = isVector if isVector else len(nda.shape) > 3 |
|
img = sitk.GetImageFromArray(nda, isVector = isVector) |
|
if origin: |
|
img.SetOrigin(origin) |
|
if spacing: |
|
img.SetSpacing(spacing) |
|
if direction: |
|
img.SetDirection(direction) |
|
if save_path: |
|
sitk.WriteImage(img, save_path) |
|
return img |
|
|
|
|
|
|
|
def cropping(img_path, tol = 0, crop_range_lst = None, spare = 0, save_path = None): |
|
|
|
img = sitk.ReadImage(img_path) |
|
orig_nda = sitk.GetArrayFromImage(img) |
|
if len(orig_nda.shape) > 3: |
|
nda = orig_nda[..., 0] |
|
else: |
|
nda = np.copy(orig_nda) |
|
|
|
if crop_range_lst is None: |
|
|
|
mask = nda > tol |
|
|
|
coords = np.argwhere(mask) |
|
|
|
x0, y0, z0 = coords.min(axis=0) |
|
x1, y1, z1 = coords.max(axis=0) + 1 |
|
|
|
x0 = x0 - spare if x0 > spare else x0 |
|
y0 = y0 - spare if y0 > spare else y0 |
|
z0 = z0 - spare if z0 > spare else z0 |
|
x1 = x1 + spare if x1 < orig_nda.shape[0] - spare else x1 |
|
y1 = y1 + spare if y1 < orig_nda.shape[1] - spare else y1 |
|
z1 = z1 + spare if z1 < orig_nda.shape[2] - spare else z1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
[[x0, y0, z0], [x1, y1, z1]] = crop_range_lst |
|
|
|
|
|
cropped_nda = orig_nda[x0 : x1, y0 : y1, z0 : z1] |
|
new_origin = [img.GetOrigin()[0] + img.GetSpacing()[0] * z0,\ |
|
img.GetOrigin()[1] + img.GetSpacing()[1] * y0,\ |
|
img.GetOrigin()[2] + img.GetSpacing()[2] * x0] |
|
cropped_img = sitk.GetImageFromArray(cropped_nda, isVector = len(orig_nda.shape) > 3) |
|
cropped_img.SetOrigin(new_origin) |
|
|
|
cropped_img.SetSpacing(img.GetSpacing()) |
|
cropped_img.SetDirection(img.GetDirection()) |
|
if save_path: |
|
sitk.WriteImage(cropped_img, save_path) |
|
|
|
return cropped_img, [[x0, y0, z0], [x1, y1, z1]], new_origin |
|
|
|
|
|
|
|
def memory_stats(): |
|
logger.info(torch.cuda.memory_allocated()/1024**2) |
|
logger.info(torch.cuda.memory_reserved()/1024**2) |
|
|
|
|
|
|
|
|
|
|
|
def viewVolume(x, aff=None, prefix='', postfix='', names=[], ext='.nii.gz', save_dir='/tmp'): |
|
|
|
if aff is None: |
|
aff = np.eye(4) |
|
else: |
|
if type(aff) == torch.Tensor: |
|
aff = aff.cpu().detach().numpy() |
|
|
|
if type(x) is dict: |
|
names = list(x.keys()) |
|
x = [x[k] for k in x] |
|
|
|
if type(x) is not list: |
|
x = [x] |
|
|
|
|
|
|
|
for n in range(len(x)): |
|
vol = x[n] |
|
if vol is not None: |
|
if type(vol) == torch.Tensor: |
|
vol = vol.cpu().detach().numpy() |
|
vol = np.squeeze(np.array(vol)) |
|
try: |
|
save_path = os.path.join(make_dir(save_dir), prefix + names[n] + postfix + ext) |
|
except: |
|
save_path = os.path.join(make_dir(save_dir), prefix + str(n) + postfix + ext) |
|
MRIwrite(vol, aff, save_path) |
|
|
|
|
|
|
|
return save_path |
|
|
|
|
|
|
|
def MRIwrite(volume, aff, filename, dtype=None): |
|
|
|
if dtype is not None: |
|
volume = volume.astype(dtype=dtype) |
|
|
|
if aff is None: |
|
aff = np.eye(4) |
|
header = nib.Nifti1Header() |
|
nifty = nib.Nifti1Image(volume, aff, header) |
|
|
|
nib.save(nifty, filename) |
|
|
|
|
|
|
|
def MRIread(filename, dtype=None, im_only=False): |
|
|
|
assert filename.endswith(('.nii', '.nii.gz', '.mgz')), 'Unknown data file: %s' % filename |
|
|
|
x = nib.load(filename) |
|
volume = x.get_fdata() |
|
aff = x.affine |
|
|
|
if dtype is not None: |
|
volume = volume.astype(dtype=dtype) |
|
|
|
if im_only: |
|
return volume |
|
else: |
|
return volume, aff |
|
|
|
|
|
|
|
def get_ras_axes(aff, n_dims=3): |
|
"""This function finds the RAS axes corresponding to each dimension of a volume, based on its affine matrix. |
|
:param aff: affine matrix Can be a 2d numpy array of size n_dims*n_dims, n_dims+1*n_dims+1, or n_dims*n_dims+1. |
|
:param n_dims: number of dimensions (excluding channels) of the volume corresponding to the provided affine matrix. |
|
:return: two numpy 1d arrays of lengtn n_dims, one with the axes corresponding to RAS orientations, |
|
and one with their corresponding direction. |
|
""" |
|
aff_inverted = np.linalg.inv(aff) |
|
img_ras_axes = np.argmax(np.absolute(aff_inverted[0:n_dims, 0:n_dims]), axis=0) |
|
return img_ras_axes |
|
|
|
|
|
|
|
|
|
def all_gather(data): |
|
|
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
|
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to("cuda") |
|
|
|
|
|
local_size = torch.tensor([tensor.numel()], device="cuda") |
|
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
|
|
|
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) |
|
if local_size != max_size: |
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that all processes |
|
have the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.all_reduce(values) |
|
if average: |
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|
|
|
|
def get_sha(): |
|
cwd = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
def _run(command): |
|
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() |
|
sha = 'N/A' |
|
diff = "clean" |
|
branch = 'N/A' |
|
try: |
|
sha = _run(['git', 'rev-parse', 'HEAD']) |
|
subprocess.check_output(['git', 'diff'], cwd=cwd) |
|
diff = _run(['git', 'diff-index', 'HEAD']) |
|
diff = "has uncommited changes" if diff else "clean" |
|
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) |
|
except Exception: |
|
pass |
|
message = f"sha: {sha}, status: {diff}, branch: {branch}" |
|
return message |
|
|
|
|
|
def collate_fn(batch): |
|
batch = {k: torch.stack([dict[k] for dict in batch]) for k in batch[0]} |
|
return batch |
|
|
|
|
|
def _max_by_axis(the_list): |
|
|
|
maxes = the_list[0] |
|
for sublist in the_list[1:]: |
|
for index, item in enumerate(sublist): |
|
maxes[index] = max(maxes[index], item) |
|
return maxes |
|
|
|
|
|
def launch_job(submit_cfg, gen_cfg, train_cfg, func, daemon = False): |
|
""" |
|
Run 'func' on one or more GPUs, specified in cfg |
|
Args: |
|
cfg (CfgNode): configs. Details can be found in |
|
slowfast/config/defaults.py |
|
init_method (str): initialization method to launch the job with multiple |
|
devices. |
|
func (function): job to run on GPU(s) |
|
daemon (bool): The spawned processes’ daemon flag. If set to True, |
|
daemonic processes will be created |
|
""" |
|
if submit_cfg is not None and submit_cfg.num_gpus > 1: |
|
logger.info('num_gpus:', submit_cfg.num_gpus) |
|
torch.multiprocessing.spawn( |
|
mpu.run, |
|
nprocs=submit_cfg.num_gpus, |
|
args=( |
|
submit_cfg.num_gpus, |
|
func, |
|
submit_cfg.init_method, |
|
submit_cfg.shard_id, |
|
submit_cfg.num_shards, |
|
submit_cfg.dist_backend, |
|
submit_cfg, |
|
), |
|
daemon = daemon, |
|
) |
|
else: |
|
logger.info('num_gpus: 1') |
|
func([submit_cfg, gen_cfg, train_cfg]) |
|
|
|
|
|
def preprocess_cfg(cfg_files, cfg_dir = ''): |
|
config = load_config(cfg_files[0], cfg_files[1:], cfg_dir) |
|
args = nested_dict_to_namespace(config) |
|
return args |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
|
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
if not is_master: |
|
def line(*args, **kwargs): |
|
pass |
|
def images(*args, **kwargs): |
|
pass |
|
Visdom.line = line |
|
Visdom.images = images |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(cfg): |
|
""" |
|
Initialize variables needed for distributed training. |
|
""" |
|
if cfg.num_gpus <= 1: |
|
return |
|
num_gpus_per_machine = cfg.num_gpus |
|
num_machines = dist.get_world_size() // num_gpus_per_machine |
|
logger.info(num_gpus_per_machine, dist.get_world_size()) |
|
for i in range(num_machines): |
|
ranks_on_i = list( |
|
range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine) |
|
) |
|
pg = dist.new_group(ranks_on_i) |
|
if i == cfg.shard_id: |
|
global _LOCAL_PROCESS_GROUP |
|
_LOCAL_PROCESS_GROUP = pg |
|
|
|
'''def init_distributed_mode(args): |
|
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
#args.rank = int(os.environ["RANK"]) |
|
#args.world_size = int(os.environ['WORLD_SIZE']) |
|
#args.gpu = int(os.environ['LOCAL_RANK']) |
|
pass |
|
elif 'SLURM_PROCID' in os.environ and 'SLURM_PTY_PORT' not in os.environ: |
|
# slurm process but not interactive |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
elif args.num_gpus < 1: |
|
print('Not using distributed mode') |
|
#args.distributed = False |
|
return |
|
|
|
args.world_size = int(args.num_gpus * args.nodes) |
|
|
|
#args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
#args.dist_backend = 'nccl' |
|
print(f'| distributed init (rank {args.rank}): {args.dist_url}', flush=True) |
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
# torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0)''' |
|
|
|
|
|
@torch.no_grad() |
|
def accuracy(output, target, topk=(1,)): |
|
"""Computes the precision@k for the specified values of k""" |
|
if target.numel() == 0: |
|
return [torch.zeros([], device=output.device)] |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
|
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].view(-1).float().sum(0) |
|
res.append(correct_k.mul_(100.0 / batch_size)) |
|
return res |
|
|
|
|
|
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): |
|
|
|
""" |
|
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. |
|
This will eventually be supported natively by PyTorch, and this |
|
class can go away. |
|
""" |
|
if float(torchvision.__version__[:3]) < 0.7: |
|
if input.numel() > 0: |
|
return torch.nn.functional.interpolate( |
|
input, size, scale_factor, mode, align_corners |
|
) |
|
|
|
output_shape = _output_size(2, input, size, scale_factor) |
|
output_shape = list(input.shape[:-2]) + list(output_shape) |
|
return _new_empty_tensor(input, output_shape) |
|
else: |
|
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) |
|
|
|
|
|
class DistributedWeightedSampler(torch.utils.data.DistributedSampler): |
|
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, replacement=True): |
|
super(DistributedWeightedSampler, self).__init__(dataset, num_replicas, rank, shuffle) |
|
|
|
assert replacement |
|
|
|
self.replacement = replacement |
|
|
|
def __iter__(self): |
|
iter_indices = super(DistributedWeightedSampler, self).__iter__() |
|
if hasattr(self.dataset, 'sample_weight'): |
|
indices = list(iter_indices) |
|
|
|
weights = torch.tensor([self.dataset.sample_weight(idx) for idx in indices]) |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
weight_indices = torch.multinomial( |
|
weights, self.num_samples, self.replacement, generator=g) |
|
indices = torch.tensor(indices)[weight_indices] |
|
|
|
iter_indices = iter(indices.tolist()) |
|
return iter_indices |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
|
|
def inverse_sigmoid(x, eps=1e-5): |
|
x = x.clamp(min=0, max=1) |
|
x1 = x.clamp(min=eps) |
|
x2 = (1 - x).clamp(min=eps) |
|
return torch.log(x1/x2) |
|
|
|
|
|
def dice_loss(inputs, targets, num_boxes): |
|
""" |
|
Compute the DICE loss, similar to generalized IOU for masks |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
""" |
|
inputs = inputs.sigmoid() |
|
inputs = inputs.flatten(1) |
|
numerator = 2 * (inputs * targets).sum(1) |
|
denominator = inputs.sum(-1) + targets.sum(-1) |
|
loss = 1 - (numerator + 1) / (denominator + 1) |
|
return loss.sum() / num_boxes |
|
|
|
|
|
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, query_mask=None, reduction=True): |
|
""" |
|
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
alpha: (optional) Weighting factor in range (0,1) to balance |
|
positive vs negative examples. Default = -1 (no weighting). |
|
gamma: Exponent of the modulating factor (1 - p_t) to |
|
balance easy vs hard examples. |
|
Returns: |
|
Loss tensor |
|
""" |
|
prob = inputs.sigmoid() |
|
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
p_t = prob * targets + (1 - prob) * (1 - targets) |
|
loss = ce_loss * ((1 - p_t) ** gamma) |
|
|
|
if alpha >= 0: |
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) |
|
loss = alpha_t * loss |
|
|
|
if not reduction: |
|
return loss |
|
|
|
if query_mask is not None: |
|
loss = torch.stack([l[m].mean(0) for l, m in zip(loss, query_mask)]) |
|
return loss.sum() / num_boxes |
|
return loss.mean(1).sum() / num_boxes |
|
|
|
|
|
def nested_dict_to_namespace(dictionary): |
|
namespace = dictionary |
|
if isinstance(dictionary, dict): |
|
namespace = Namespace(**dictionary) |
|
for key, value in dictionary.items(): |
|
setattr(namespace, key, nested_dict_to_namespace(value)) |
|
return namespace |
|
|
|
|
|
|
|
def nested_dict_to_device(dictionary, device): |
|
|
|
if isinstance(dictionary, dict): |
|
output = {} |
|
for key, value in dictionary.items(): |
|
output[key] = nested_dict_to_device(value, device) |
|
return output |
|
|
|
if isinstance(dictionary, str): |
|
return dictionary |
|
elif isinstance(dictionary, list): |
|
return [nested_dict_to_device(d, device) for d in dictionary] |
|
else: |
|
try: |
|
return dictionary.to(device) |
|
except: |
|
return dictionary |
|
|
|
def merge_list_of_dict(dict_list_a, dict_list_b): |
|
assert len(dict_list_a) == len(dict_list_b) |
|
for i in range(len(dict_list_a)): |
|
dict_list_a[i].update(dict_list_b[i]) |
|
return dict_list_a |
|
|
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
try: |
|
return self.total / self.count |
|
except: |
|
return 0. |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, print_freq, delimiter="\t", debug=False, sample_freq=None): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
self.print_freq = print_freq |
|
self.debug = debug |
|
self.sample_freq = sample_freq |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
try: |
|
loss_str.append(f"{name}: {meter}") |
|
except: |
|
loss_str = '' |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterables, max_len, probs, epoch=None, header=None, is_test=False, train_limit=None, test_limit=None): |
|
|
|
|
|
i = 0 |
|
if header is None: |
|
header = 'Epoch: [{}]'.format(epoch) |
|
|
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(max_len))) + 'd' |
|
MB = 1024.0 * 1024.0 |
|
|
|
generator_dict = {} |
|
for k, v in iterables.items(): |
|
generator_dict[k] = iter(v) |
|
|
|
for i in range(max_len): |
|
chosen_dataset = np.random.choice(len(iterables), 1, p=probs)[0] |
|
curr_dataset = list(iterables.keys())[chosen_dataset] |
|
|
|
if train_limit and i >= train_limit and not is_test: |
|
break |
|
if test_limit and i >= test_limit and is_test: |
|
break |
|
|
|
data_time.update(time.time() - end) |
|
|
|
try: |
|
(dataset_num, dataset_name, input_mode, target, samples) = next(generator_dict[curr_dataset]) |
|
except StopIteration: |
|
logger.info('Re-iterate: {}'.format(curr_dataset)) |
|
generator_dict[curr_dataset] = iter(iterables[curr_dataset]) |
|
(dataset_num, dataset_name, input_mode, target, samples) = next(generator_dict[curr_dataset]) |
|
dataset_name = dataset_name[0] |
|
yield dataset_num, dataset_name, input_mode[0], target, samples |
|
iter_time.update(time.time() - end) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
log_msg = self.delimiter.join([ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'dataset: {}'.format(dataset_name), |
|
'mode: {}'.format(input_mode[0]), |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}', |
|
'max mem: {memory:.0f}', |
|
]) |
|
else: |
|
log_msg = self.delimiter.join([ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'dataset: {}'.format(dataset_name), |
|
'mode: {}'.format(input_mode[0]), |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data_time: {data}', |
|
]) |
|
|
|
if i % self.print_freq == 0 or i == max_len - 1: |
|
eta_seconds = iter_time.global_avg * (max_len - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
logger.info(log_msg.format( |
|
i , max_len, eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
logger.info(log_msg.format( |
|
i, max_len, eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
|
|
if self.debug and i % self.print_freq == 0: |
|
break |
|
|
|
i += 1 |
|
end = time.time() |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
logger.info('{} Total time: {} ({:.4f} s / it)'.format( |
|
header, total_time_str, total_time / max_len)) |
|
|
|
|
|
|
|
|
|
def myzoom_torch_slow(X, factor, device, aff=None): |
|
|
|
if len(X.shape)==3: |
|
X = X[..., None] |
|
|
|
delta = (1.0 - factor) / (2.0 * factor) |
|
newsize = np.round(X.shape[:-1] * factor).astype(int) |
|
|
|
vx = torch.arange(delta[0], delta[0] + newsize[0] / factor[0], 1 / factor[0], dtype=torch.float, device=device)[:newsize[0]] |
|
vy = torch.arange(delta[1], delta[1] + newsize[1] / factor[1], 1 / factor[1], dtype=torch.float, device=device)[:newsize[1]] |
|
vz = torch.arange(delta[2], delta[2] + newsize[2] / factor[2], 1 / factor[2], dtype=torch.float, device=device)[:newsize[2]] |
|
|
|
vx[vx < 0] = 0 |
|
vy[vy < 0] = 0 |
|
vz[vz < 0] = 0 |
|
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1) |
|
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1) |
|
|
|
fx = torch.floor(vx).int() |
|
cx = fx + 1 |
|
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
wcx = vx - fx |
|
wfx = 1 - wcx |
|
|
|
fy = torch.floor(vy).int() |
|
cy = fy + 1 |
|
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1) |
|
wcy = vy - fy |
|
wfy = 1 - wcy |
|
|
|
fz = torch.floor(vz).int() |
|
cz = fz + 1 |
|
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1) |
|
wcz = vz - fz |
|
wfz = 1 - wcz |
|
|
|
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=device) |
|
|
|
for channel in range(X.shape[3]): |
|
Xc = X[:,:,:,channel] |
|
|
|
tmp1 = torch.zeros([newsize[0], Xc.shape[1], Xc.shape[2]], dtype=torch.float, device=device) |
|
for i in range(newsize[0]): |
|
tmp1[i, :, :] = wfx[i] * Xc[fx[i], :, :] + wcx[i] * Xc[cx[i], :, :] |
|
tmp2 = torch.zeros([newsize[0], newsize[1], Xc.shape[2]], dtype=torch.float, device=device) |
|
for j in range(newsize[1]): |
|
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :] |
|
for k in range(newsize[2]): |
|
Y[:, :, k, channel] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]] |
|
|
|
if Y.shape[3] == 1: |
|
Y = Y[:,:,:, 0] |
|
|
|
if aff is not None: |
|
aff_new = aff.copy() |
|
for c in range(3): |
|
aff_new[:-1, c] = aff_new[:-1, c] / factor |
|
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / (factor * np.ones(3))) |
|
return Y, aff_new |
|
else: |
|
return Y |
|
|
|
def myzoom_torch(X, factor, aff=None): |
|
|
|
if len(X.shape)==3: |
|
X = X[..., None] |
|
|
|
delta = (1.0 - factor) / (2.0 * factor) |
|
newsize = np.round(X.shape[:-1] * factor).astype(int) |
|
|
|
vx = torch.arange(delta[0], delta[0] + newsize[0] / factor[0], 1 / factor[0], dtype=torch.float, device=X.device)[:newsize[0]] |
|
vy = torch.arange(delta[1], delta[1] + newsize[1] / factor[1], 1 / factor[1], dtype=torch.float, device=X.device)[:newsize[1]] |
|
vz = torch.arange(delta[2], delta[2] + newsize[2] / factor[2], 1 / factor[2], dtype=torch.float, device=X.device)[:newsize[2]] |
|
|
|
vx[vx < 0] = 0 |
|
vy[vy < 0] = 0 |
|
vz[vz < 0] = 0 |
|
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1) |
|
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1) |
|
|
|
fx = torch.floor(vx).int() |
|
cx = fx + 1 |
|
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
wcx = (vx - fx) |
|
wfx = 1 - wcx |
|
|
|
fy = torch.floor(vy).int() |
|
cy = fy + 1 |
|
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1) |
|
wcy = (vy - fy) |
|
wfy = 1 - wcy |
|
|
|
fz = torch.floor(vz).int() |
|
cz = fz + 1 |
|
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1) |
|
wcz = (vz - fz) |
|
wfz = 1 - wcz |
|
|
|
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=X.device) |
|
|
|
tmp1 = torch.zeros([newsize[0], X.shape[1], X.shape[2], X.shape[3]], dtype=torch.float, device=X.device) |
|
for i in range(newsize[0]): |
|
tmp1[i, :, :] = wfx[i] * X[fx[i], :, :] + wcx[i] * X[cx[i], :, :] |
|
tmp2 = torch.zeros([newsize[0], newsize[1], X.shape[2], X.shape[3]], dtype=torch.float, device=X.device) |
|
for j in range(newsize[1]): |
|
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :] |
|
for k in range(newsize[2]): |
|
Y[:, :, k] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]] |
|
|
|
if Y.shape[3] == 1: |
|
Y = Y[:,:,:, 0] |
|
|
|
if aff is not None: |
|
aff_new = aff.copy() |
|
aff_new[:-1] = aff_new[:-1] / factor |
|
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / (factor * np.ones(3))) |
|
return Y, aff_new |
|
else: |
|
return Y |
|
|
|
def myzoom_torch_test(X, factor, aff=None): |
|
time.sleep(3) |
|
|
|
start_time = time.time() |
|
Y2 = myzoom_torch_slow(X, factor, aff) |
|
print('slow', X.shape[-1], time.time() - start_time) |
|
|
|
time.sleep(3) |
|
|
|
start_time = time.time() |
|
Y1 = myzoom_torch(X, factor, aff) |
|
print('fast', X.shape[-1], time.time() - start_time) |
|
|
|
time.sleep(3) |
|
|
|
print('diff', (Y2 - Y1).mean(), (Y2 - Y1).max()) |
|
return Y1 |
|
|
|
def myzoom_torch_anisotropic_slow(X, aff, newsize, device): |
|
|
|
if len(X.shape)==3: |
|
X = X[..., None] |
|
|
|
factors = np.array(newsize) / np.array(X.shape[:-1]) |
|
delta = (1.0 - factors) / (2.0 * factors) |
|
|
|
vx = torch.arange(delta[0], delta[0] + newsize[0] / factors[0], 1 / factors[0], dtype=torch.float, device=device)[:newsize[0]] |
|
vy = torch.arange(delta[1], delta[1] + newsize[1] / factors[1], 1 / factors[1], dtype=torch.float, device=device)[:newsize[1]] |
|
vz = torch.arange(delta[2], delta[2] + newsize[2] / factors[2], 1 / factors[2], dtype=torch.float, device=device)[:newsize[2]] |
|
|
|
vx[vx < 0] = 0 |
|
vy[vy < 0] = 0 |
|
vz[vz < 0] = 0 |
|
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1) |
|
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1) |
|
|
|
fx = torch.floor(vx).int() |
|
cx = fx + 1 |
|
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
wcx = vx - fx |
|
wfx = 1 - wcx |
|
|
|
fy = torch.floor(vy).int() |
|
cy = fy + 1 |
|
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1) |
|
wcy = vy - fy |
|
wfy = 1 - wcy |
|
|
|
fz = torch.floor(vz).int() |
|
cz = fz + 1 |
|
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1) |
|
wcz = vz - fz |
|
wfz = 1 - wcz |
|
|
|
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=device) |
|
|
|
dtype = X.dtype |
|
for channel in range(X.shape[3]): |
|
Xc = X[:,:,:,channel] |
|
|
|
tmp1 = torch.zeros([newsize[0], Xc.shape[1], Xc.shape[2]], dtype=dtype, device=device) |
|
for i in range(newsize[0]): |
|
tmp1[i, :, :] = wfx[i] * Xc[fx[i], :, :] + wcx[i] * Xc[cx[i], :, :] |
|
tmp2 = torch.zeros([newsize[0], newsize[1], Xc.shape[2]], dtype=dtype, device=device) |
|
for j in range(newsize[1]): |
|
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :] |
|
for k in range(newsize[2]): |
|
Y[:, :, k, channel] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]] |
|
|
|
if Y.shape[3] == 1: |
|
Y = Y[:,:,:, 0] |
|
|
|
if aff is not None: |
|
aff_new = aff.copy() |
|
for c in range(3): |
|
aff_new[:-1, c] = aff_new[:-1, c] / factors[c] |
|
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / factors) |
|
return Y, aff_new |
|
else: |
|
return Y |
|
|
|
|
|
|
|
def myzoom_torch_anisotropic(X, aff, newsize): |
|
|
|
device = X.device |
|
|
|
if len(X.shape)==3: |
|
X = X[..., None] |
|
|
|
factors = np.array(newsize) / np.array(X.shape[:-1]) |
|
delta = (1.0 - factors) / (2.0 * factors) |
|
|
|
vx = torch.arange(delta[0], delta[0] + newsize[0] / factors[0], 1 / factors[0], dtype=torch.float, device=device)[:newsize[0]] |
|
vy = torch.arange(delta[1], delta[1] + newsize[1] / factors[1], 1 / factors[1], dtype=torch.float, device=device)[:newsize[1]] |
|
vz = torch.arange(delta[2], delta[2] + newsize[2] / factors[2], 1 / factors[2], dtype=torch.float, device=device)[:newsize[2]] |
|
|
|
vx[vx < 0] = 0 |
|
vy[vy < 0] = 0 |
|
vz[vz < 0] = 0 |
|
vx[vx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
vy[vy > (X.shape[1] - 1)] = (X.shape[1] - 1) |
|
vz[vz > (X.shape[2] - 1)] = (X.shape[2] - 1) |
|
|
|
fx = torch.floor(vx).int() |
|
cx = fx + 1 |
|
cx[cx > (X.shape[0]-1)] = (X.shape[0]-1) |
|
wcx = vx - fx |
|
wfx = 1 - wcx |
|
|
|
fy = torch.floor(vy).int() |
|
cy = fy + 1 |
|
cy[cy > (X.shape[1]-1)] = (X.shape[1]-1) |
|
wcy = vy - fy |
|
wfy = 1 - wcy |
|
|
|
fz = torch.floor(vz).int() |
|
cz = fz + 1 |
|
cz[cz > (X.shape[2]-1)] = (X.shape[2]-1) |
|
wcz = vz - fz |
|
wfz = 1 - wcz |
|
|
|
Y = torch.zeros([newsize[0], newsize[1], newsize[2], X.shape[3]], dtype=torch.float, device=device) |
|
|
|
dtype = X.dtype |
|
for channel in range(X.shape[3]): |
|
Xc = X[:,:,:,channel] |
|
|
|
tmp1 = torch.zeros([newsize[0], Xc.shape[1], Xc.shape[2]], dtype=dtype, device=device) |
|
for i in range(newsize[0]): |
|
tmp1[i, :, :] = wfx[i] * Xc[fx[i], :, :] + wcx[i] * Xc[cx[i], :, :] |
|
tmp2 = torch.zeros([newsize[0], newsize[1], Xc.shape[2]], dtype=dtype, device=device) |
|
for j in range(newsize[1]): |
|
tmp2[:, j, :] = wfy[j] * tmp1[:, fy[j], :] + wcy[j] * tmp1[:, cy[j], :] |
|
for k in range(newsize[2]): |
|
Y[:, :, k, channel] = wfz[k] * tmp2[:, :, fz[k]] + wcz[k] * tmp2[:, :, cz[k]] |
|
|
|
if Y.shape[3] == 1: |
|
Y = Y[:,:,:, 0] |
|
|
|
if aff is not None: |
|
aff_new = aff.copy() |
|
for c in range(3): |
|
aff_new[:-1, c] = aff_new[:-1, c] / factors[c] |
|
aff_new[:-1, -1] = aff_new[:-1, -1] - aff[:-1, :-1] @ (0.5 - 0.5 / factors) |
|
return Y, aff_new |
|
else: |
|
return Y |
|
|
|
def torch_resize(I, aff, resolution, power_factor_at_half_width=5, dtype=torch.float32, slow=False): |
|
|
|
if torch.is_grad_enabled(): |
|
with torch.no_grad(): |
|
return torch_resize(I, aff, resolution, power_factor_at_half_width, dtype, slow) |
|
|
|
slow = slow or (I.device == 'cpu') |
|
voxsize = np.sqrt(np.sum(aff[:-1, :-1] ** 2, axis=0)) |
|
newsize = np.round(I.shape[0:3] * (voxsize / resolution)).astype(int) |
|
factors = np.array(I.shape[0:3]) / np.array(newsize) |
|
k = np.log(power_factor_at_half_width) / np.pi |
|
sigmas = k * factors |
|
sigmas[sigmas<=k] = 0 |
|
|
|
if len(I.shape) not in (3, 4): |
|
raise Exception('torch_resize works with 3D or 3D+label volumes') |
|
no_channels = len(I.shape) == 3 |
|
if no_channels: |
|
I = I[:, :, :, None] |
|
if torch.is_tensor(I): |
|
I = I.permute([3, 0, 1, 2]) |
|
else: |
|
I = I.transpose([3, 0, 1, 2]) |
|
|
|
It_lowres = None |
|
for c in range(len(I)): |
|
It = torch.as_tensor(I[c], device=I.device, dtype=dtype)[None, None] |
|
|
|
for d in range(3): |
|
It = It.permute([0, 1, 3, 4, 2]) |
|
if sigmas[d]>0: |
|
sl = np.ceil(sigmas[d] * 2.5).astype(int) |
|
v = np.arange(-sl, sl + 1) |
|
gauss = np.exp((-(v / sigmas[d]) ** 2 / 2)) |
|
kernel = gauss / np.sum(gauss) |
|
kernel = torch.tensor(kernel, device=I.device, dtype=dtype) |
|
if slow: |
|
It = conv_slow_fallback(It, kernel) |
|
else: |
|
kernel = kernel[None, None, None, None, :] |
|
It = torch.conv3d(It, kernel, bias=None, stride=1, padding=[0, 0, int((kernel.shape[-1] - 1) / 2)]) |
|
|
|
|
|
It = torch.squeeze(It) |
|
It, aff2 = myzoom_torch_anisotropic(It, aff, newsize) |
|
It = It.detach() |
|
if torch.is_tensor(I): |
|
It = It.to(I.device) |
|
else: |
|
It = It.cpu().numpy() |
|
if len(I) == 1: |
|
It_lowres = It[None] |
|
else: |
|
if It_lowres is None: |
|
if torch.is_tensor(It): |
|
It_lowres = It.new_empty([len(I), *It.shape]) |
|
else: |
|
It_lowres = np.empty_like(It, shape=[len(I), *It.shape]) |
|
It_lowres[c] = It |
|
|
|
torch.cuda.empty_cache() |
|
|
|
if not no_channels: |
|
if torch.is_tensor(I): |
|
It_lowres = It_lowres.permute([1, 2, 3, 0]) |
|
else: |
|
It_lowres = It_lowres.transpose([1, 2, 3, 0]) |
|
else: |
|
It_lowres = It_lowres[0] |
|
|
|
return It_lowres, aff2 |
|
|
|
|
|
|
|
@torch.jit.script |
|
def conv_slow_fallback(x, kernel): |
|
"""1D Conv along the last dimension with padding""" |
|
y = torch.zeros_like(x) |
|
x = torch.nn.functional.pad(x, [(len(kernel) - 1) // 2]*2) |
|
x = x.unfold(-1, size=len(kernel), step=1) |
|
x = x.movedim(-1, 0) |
|
for i in range(len(kernel)): |
|
y = y.addcmul_(x[i], kernel[i]) |
|
return y |
|
|
|
|
|
|
|
|
|
|
|
|
|
def align_volume_to_ref(volume, aff, aff_ref=None, return_aff=False, n_dims=3): |
|
"""This function aligns a volume to a reference orientation (axis and direction) specified by an affine matrix. |
|
:param volume: a numpy array |
|
:param aff: affine matrix of the floating volume |
|
:param aff_ref: (optional) affine matrix of the target orientation. Default is identity matrix. |
|
:param return_aff: (optional) whether to return the affine matrix of the aligned volume |
|
:param n_dims: number of dimensions (excluding channels) of the volume corresponding to the provided affine matrix. |
|
:return: aligned volume, with corresponding affine matrix if return_aff is True. |
|
""" |
|
|
|
|
|
aff_flo = aff.copy() |
|
|
|
|
|
if aff_ref is None: |
|
aff_ref = np.eye(4) |
|
|
|
|
|
ras_axes_ref = get_ras_axes(aff_ref, n_dims=n_dims) |
|
ras_axes_flo = get_ras_axes(aff_flo, n_dims=n_dims) |
|
|
|
|
|
aff_flo[:, ras_axes_ref] = aff_flo[:, ras_axes_flo] |
|
for i in range(n_dims): |
|
if ras_axes_flo[i] != ras_axes_ref[i]: |
|
volume = torch.swapaxes(volume, ras_axes_flo[i], ras_axes_ref[i]) |
|
swapped_axis_idx = np.where(ras_axes_flo == ras_axes_ref[i]) |
|
ras_axes_flo[swapped_axis_idx], ras_axes_flo[i] = ras_axes_flo[i], ras_axes_flo[swapped_axis_idx] |
|
|
|
|
|
dot_products = np.sum(aff_flo[:3, :3] * aff_ref[:3, :3], axis=0) |
|
for i in range(n_dims): |
|
if dot_products[i] < 0: |
|
volume = torch.flip(volume, [i]) |
|
aff_flo[:, i] = - aff_flo[:, i] |
|
aff_flo[:3, 3] = aff_flo[:3, 3] - aff_flo[:3, i] * (volume.shape[i] - 1) |
|
|
|
if return_aff: |
|
return volume, aff_flo |
|
else: |
|
return volume |
|
|
|
|
|
|
|
def multistep_scheduler(base_value, lr_drops, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, gamma=0.1): |
|
warmup_schedule = np.array([]) |
|
warmup_iters = warmup_epochs * niter_per_ep |
|
if warmup_epochs > 0: |
|
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) |
|
|
|
schedule = np.ones(epochs * niter_per_ep - warmup_iters) * base_value |
|
for milestone in lr_drops: |
|
schedule[milestone * niter_per_ep :] *= gamma |
|
schedule = np.concatenate((warmup_schedule, schedule)) |
|
assert len(schedule) == epochs * niter_per_ep |
|
return schedule |
|
|
|
|
|
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0): |
|
warmup_schedule = np.array([]) |
|
warmup_iters = warmup_epochs * niter_per_ep |
|
if warmup_epochs > 0: |
|
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) |
|
|
|
iters = np.arange(epochs * niter_per_ep - warmup_iters) |
|
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters))) |
|
|
|
schedule = np.concatenate((warmup_schedule, schedule)) |
|
assert len(schedule) == epochs * niter_per_ep |
|
return schedule |
|
|
|
|
|
class LARS(torch.optim.Optimizer): |
|
""" |
|
Almost copy-paste from https://github.com/facebookresearch/barlowtwins/blob/main/main.py |
|
""" |
|
def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, eta=0.001, |
|
weight_decay_filter=None, lars_adaptation_filter=None): |
|
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum, |
|
eta=eta, weight_decay_filter=weight_decay_filter, |
|
lars_adaptation_filter=lars_adaptation_filter) |
|
super().__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self): |
|
for g in self.param_groups: |
|
for p in g['params']: |
|
dp = p.grad |
|
|
|
if dp is None: |
|
continue |
|
|
|
if p.ndim != 1: |
|
dp = dp.add(p, alpha=g['weight_decay']) |
|
|
|
if p.ndim != 1: |
|
param_norm = torch.norm(p) |
|
update_norm = torch.norm(dp) |
|
one = torch.ones_like(param_norm) |
|
q = torch.where(param_norm > 0., |
|
torch.where(update_norm > 0, |
|
(g['eta'] * param_norm / update_norm), one), one) |
|
dp = dp.mul(q) |
|
|
|
param_state = self.state[p] |
|
if 'mu' not in param_state: |
|
param_state['mu'] = torch.zeros_like(p) |
|
mu = param_state['mu'] |
|
mu.mul_(g['momentum']).add_(dp) |
|
|
|
p.add_(mu, alpha=-g['lr']) |
|
|
|
|
|
|
|
def cancel_gradients_last_layer(epoch, model, freeze_last_layer): |
|
if epoch >= freeze_last_layer: |
|
return |
|
for n, p in model.named_parameters(): |
|
if "last_layer" in n: |
|
p.grad = None |
|
|
|
|
|
def clip_gradients(model, clip): |
|
norms = [] |
|
for name, p in model.named_parameters(): |
|
if p.grad is not None: |
|
param_norm = p.grad.data.norm(2) |
|
norms.append(param_norm.item()) |
|
clip_coef = clip / (param_norm + 1e-6) |
|
if clip_coef < 1: |
|
p.grad.data.mul_(clip_coef) |
|
return norms |
|
|
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
|
|
def has_batchnorms(model): |
|
bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm) |
|
for name, module in model.named_modules(): |
|
if isinstance(module, bn_types): |
|
return True |
|
return False |
|
|
|
|
|
def read_log(log_path, loss_name = 'loss'): |
|
log_file = open(log_path, 'r') |
|
lines = log_file.readlines() |
|
epoches = [] |
|
losses = [] |
|
num_epoches = 0 |
|
for i, line in enumerate(lines): |
|
|
|
if len(line) <= 1: |
|
break |
|
num_epoches += 1 |
|
epoches.append(int(line.split(' - ')[0].split('epoch ')[1])) |
|
losses.append(float(line.split('"%s": ' % loss_name)[1].split(',')[0])) |
|
|
|
return epoches, losses |
|
|
|
def plot_loss(loss_lst, save_path): |
|
fig = plt.figure() |
|
ax = fig.add_subplot(111) |
|
t = list(np.arange(len(loss_lst))) |
|
|
|
ax.plot(t, np.array(loss_lst), 'r--') |
|
ax.set_xlabel('Epoch') |
|
ax.set_ylabel('Loss') |
|
|
|
|
|
|
|
plt.savefig(save_path) |
|
plt.close(fig) |
|
return |
|
|
|
|
|
|
|
|
|
right_to_left_dict = { |
|
41: 2, |
|
42: 3, |
|
43: 4, |
|
44: 5, |
|
46: 7, |
|
47: 8, |
|
49: 10, |
|
50: 11, |
|
51: 12, |
|
52: 13, |
|
53: 17, |
|
54: 18, |
|
58: 26, |
|
60: 28 |
|
} |
|
|
|
|
|
ct_brightness_group = { |
|
'darker': [4, 5, 14, 15, 24, 31, 72], |
|
'dark': [2, 7, 16, 77, 30], |
|
'bright': [3, 8, 17, 18, 28, 10, 11, 12, 13, 26], |
|
'brighter': [], |
|
} |
|
|