|
|
|
|
|
"""Functions that handle saving and loading of checkpoints.""" |
|
|
|
import os |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import utils.distributed as du |
|
import utils.logging as logging |
|
from utils.env import checkpoint_pathmgr as pathmgr |
|
|
|
from tabulate import tabulate |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
import copy |
|
import logging |
|
import re |
|
from typing import Dict, List |
|
import torch |
|
from tabulate import tabulate |
|
|
|
|
|
def convert_basic_c2_names(original_keys): |
|
""" |
|
Apply some basic name conversion to names in C2 weights. |
|
It only deals with typical backbone models. |
|
|
|
Args: |
|
original_keys (list[str]): |
|
Returns: |
|
list[str]: The same number of strings matching those in original_keys. |
|
""" |
|
layer_keys = copy.deepcopy(original_keys) |
|
layer_keys = [ |
|
{"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys |
|
] |
|
|
|
layer_keys = [k.replace("_", ".") for k in layer_keys] |
|
layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] |
|
layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] |
|
|
|
layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] |
|
layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] |
|
layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] |
|
layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] |
|
layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] |
|
layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] |
|
layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] |
|
layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] |
|
layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] |
|
layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] |
|
|
|
|
|
layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] |
|
|
|
layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] |
|
layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] |
|
layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] |
|
layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] |
|
|
|
|
|
layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] |
|
layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] |
|
layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] |
|
layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] |
|
layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] |
|
return layer_keys |
|
|
|
|
|
def convert_c2_detectron_names(weights): |
|
""" |
|
Map Caffe2 Detectron weight names to Detectron2 names. |
|
|
|
Args: |
|
weights (dict): name -> tensor |
|
|
|
Returns: |
|
dict: detectron2 names -> tensor |
|
dict: detectron2 names -> C2 names |
|
""" |
|
logger = logging.getLogger(__name__) |
|
logger.info("Renaming Caffe2 weights ......") |
|
original_keys = sorted(weights.keys()) |
|
layer_keys = copy.deepcopy(original_keys) |
|
|
|
layer_keys = convert_basic_c2_names(layer_keys) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [ |
|
k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys |
|
] |
|
|
|
layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] |
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [ |
|
k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") |
|
for k in layer_keys |
|
] |
|
layer_keys = [ |
|
k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") |
|
for k in layer_keys |
|
] |
|
|
|
layer_keys = [ |
|
k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys |
|
] |
|
layer_keys = [ |
|
k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") |
|
for k in layer_keys |
|
] |
|
|
|
|
|
|
|
|
|
layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] |
|
layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] |
|
layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] |
|
layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] |
|
|
|
layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] |
|
|
|
|
|
|
|
|
|
def fpn_map(name): |
|
""" |
|
Look for keys with the following patterns: |
|
1) Starts with "fpn.inner." |
|
Example: "fpn.inner.res2.2.sum.lateral.weight" |
|
Meaning: These are lateral pathway convolutions |
|
2) Starts with "fpn.res" |
|
Example: "fpn.res2.2.sum.weight" |
|
Meaning: These are FPN output convolutions |
|
""" |
|
splits = name.split(".") |
|
norm = ".norm" if "norm" in splits else "" |
|
if name.startswith("fpn.inner."): |
|
|
|
stage = int(splits[2][len("res") :]) |
|
return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) |
|
elif name.startswith("fpn.res"): |
|
|
|
stage = int(splits[1][len("res") :]) |
|
return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) |
|
return name |
|
|
|
layer_keys = [fpn_map(k) for k in layer_keys] |
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] |
|
layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] |
|
layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] |
|
|
|
layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] |
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] |
|
layer_keys = [ |
|
k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys |
|
] |
|
layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] |
|
|
|
|
|
|
|
|
|
assert len(set(layer_keys)) == len(layer_keys) |
|
assert len(original_keys) == len(layer_keys) |
|
|
|
new_weights = {} |
|
new_keys_to_original_keys = {} |
|
for orig, renamed in zip(original_keys, layer_keys): |
|
new_keys_to_original_keys[renamed] = orig |
|
if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): |
|
|
|
new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 |
|
new_weights[renamed] = weights[orig][new_start_idx:] |
|
logger.info( |
|
"Remove prediction weight for background class in {}. The shape changes from " |
|
"{} to {}.".format( |
|
renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) |
|
) |
|
) |
|
elif renamed.startswith("cls_score."): |
|
|
|
logger.info( |
|
"Move classification weights for background class in {} from index 0 to " |
|
"index {}.".format(renamed, weights[orig].shape[0] - 1) |
|
) |
|
new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) |
|
else: |
|
new_weights[renamed] = weights[orig] |
|
|
|
return new_weights, new_keys_to_original_keys |
|
|
|
|
|
|
|
|
|
def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): |
|
""" |
|
Params in the same submodule are grouped together. |
|
|
|
Args: |
|
keys: names of all parameters |
|
original_names: mapping from parameter name to their name in the checkpoint |
|
|
|
Returns: |
|
dict[name -> all other names in the same group] |
|
""" |
|
|
|
def _submodule_name(key): |
|
pos = key.rfind(".") |
|
if pos < 0: |
|
return None |
|
prefix = key[: pos + 1] |
|
return prefix |
|
|
|
all_submodules = [_submodule_name(k) for k in keys] |
|
all_submodules = [x for x in all_submodules if x] |
|
all_submodules = sorted(all_submodules, key=len) |
|
|
|
ret = {} |
|
for prefix in all_submodules: |
|
group = [k for k in keys if k.startswith(prefix)] |
|
if len(group) <= 1: |
|
continue |
|
original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) |
|
if len(original_name_lcp) == 0: |
|
|
|
continue |
|
|
|
for k in group: |
|
if k in ret: |
|
continue |
|
ret[k] = group |
|
return ret |
|
|
|
|
|
def _longest_common_prefix(names): |
|
""" |
|
["abc.zfg", "abc.zef"] -> "abc." |
|
""" |
|
names = [n.split(".") for n in names] |
|
m1, m2 = min(names), max(names) |
|
ret = [a for a, b in zip(m1, m2) if a == b] |
|
ret = ".".join(ret) + "." if len(ret) else "" |
|
return ret |
|
|
|
|
|
def _longest_common_prefix_str(names): |
|
m1, m2 = min(names), max(names) |
|
lcp = [] |
|
for a, b in zip(m1, m2): |
|
if a == b: |
|
lcp.append(a) |
|
else: |
|
break |
|
lcp = "".join(lcp) |
|
return lcp |
|
|
|
def _group_str(names): |
|
""" |
|
Turn "common1", "common2", "common3" into "common{1,2,3}" |
|
""" |
|
lcp = _longest_common_prefix_str(names) |
|
rest = [x[len(lcp) :] for x in names] |
|
rest = "{" + ",".join(rest) + "}" |
|
ret = lcp + rest |
|
|
|
|
|
ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") |
|
ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") |
|
return ret |
|
|
|
def make_checkpoint_dir(path_to_job): |
|
""" |
|
Creates the checkpoint directory (if not present already). |
|
Args: |
|
path_to_job (string): the path to the folder of the current job. |
|
""" |
|
checkpoint_dir = os.path.join(path_to_job, "checkpoints") |
|
|
|
if du.is_master_proc() and not pathmgr.exists(checkpoint_dir): |
|
try: |
|
pathmgr.mkdirs(checkpoint_dir) |
|
except Exception: |
|
pass |
|
return checkpoint_dir |
|
|
|
|
|
def get_checkpoint_dir(path_to_job): |
|
""" |
|
Get path for storing checkpoints. |
|
Args: |
|
path_to_job (string): the path to the folder of the current job. |
|
""" |
|
return os.path.join(path_to_job, "checkpoints") |
|
|
|
|
|
def get_path_to_checkpoint(path_to_job, epoch): |
|
""" |
|
Get the full path to a checkpoint file. |
|
Args: |
|
path_to_job (string): the path to the folder of the current job. |
|
epoch (int): the number of epoch for the checkpoint. |
|
""" |
|
name = "checkpoint_epoch_{:05d}.pyth".format(epoch) |
|
return os.path.join(get_checkpoint_dir(path_to_job), name) |
|
|
|
|
|
def get_last_checkpoint(path_to_job): |
|
""" |
|
Get the last checkpoint from the checkpointing folder. |
|
Args: |
|
path_to_job (string): the path to the folder of the current job. |
|
""" |
|
name = "checkpoint_latest.pyth" |
|
return os.path.join(get_checkpoint_dir(path_to_job), name) |
|
|
|
|
|
def has_checkpoint(path_to_job): |
|
""" |
|
Determines if the given directory contains a checkpoint. |
|
Args: |
|
path_to_job (string): the path to the folder of the current job. |
|
""" |
|
d = get_checkpoint_dir(path_to_job) |
|
files = pathmgr.ls(d) if pathmgr.exists(d) else [] |
|
return any("checkpoint" in f for f in files) |
|
|
|
|
|
def is_checkpoint_epoch(cfg, cur_iter): |
|
""" |
|
Determine if a checkpoint should be saved on current epoch. |
|
Args: |
|
cfg (CfgNode): configs to save. |
|
cur_epoch (int): current number of epoch of the model. |
|
""" |
|
if cur_iter + 1 == cfg.SOLVER.MAX_EPOCH: |
|
return True |
|
|
|
return (cur_iter + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0 |
|
|
|
|
|
def save_checkpoint(path_to_job, model, optimizer, iter, cfg, scaler=None): |
|
""" |
|
Save a checkpoint. |
|
Args: |
|
model (model): model to save the weight to the checkpoint. |
|
optimizer (optim): optimizer to save the historical state. |
|
epoch (int): current number of epoch of the model. |
|
cfg (CfgNode): configs to save. |
|
scaler (GradScaler): the mixed precision scale. |
|
""" |
|
|
|
if not du.is_master_proc(cfg.NUM_GPUS * cfg.NUM_SHARDS): |
|
return |
|
|
|
pathmgr.mkdirs(get_checkpoint_dir(path_to_job)) |
|
|
|
sd = model.module.state_dict() if cfg.NUM_GPUS > 1 else model.state_dict() |
|
|
|
|
|
checkpoint = { |
|
"epoch": iter, |
|
"model_state": sd, |
|
"optimizer_state": optimizer.state_dict(), |
|
"cfg": cfg.dump(), |
|
} |
|
if scaler is not None: |
|
checkpoint["scaler_state"] = scaler.state_dict() |
|
|
|
path_to_checkpoint = get_path_to_checkpoint(path_to_job, iter + 1) |
|
with pathmgr.open(path_to_checkpoint, "wb") as f: |
|
torch.save(checkpoint, f) |
|
path_to_latest_checkpoint = get_last_checkpoint(path_to_job) |
|
with pathmgr.open(path_to_latest_checkpoint, "wb") as f: |
|
torch.save(checkpoint, f) |
|
return path_to_checkpoint |
|
|
|
|
|
def load_checkpoint( |
|
path_to_checkpoint, |
|
models, |
|
optimizer = None, |
|
model_keys = ['model'], |
|
exclude_key = None, |
|
to_match = {}, |
|
to_print = True, |
|
): |
|
""" |
|
Load the checkpoint from the given file. |
|
""" |
|
assert pathmgr.exists(path_to_checkpoint), "Checkpoint '{}' not found".format( |
|
path_to_checkpoint |
|
) |
|
if to_print: |
|
logger.info("Loading network weights from {}.".format(path_to_checkpoint)) |
|
|
|
|
|
|
|
|
|
def find_model_key(keys, model_key): |
|
for k in keys: |
|
if model_key in k: |
|
return k |
|
for k in keys: |
|
if 'model' in k: |
|
if to_print: |
|
logger.info('Have not found model state_dict according to the given key, but using the "model" as key instead!') |
|
return k |
|
|
|
|
|
with pathmgr.open(path_to_checkpoint, "rb") as f: |
|
checkpoint = torch.load(f, map_location="cpu") |
|
|
|
for i, model in enumerate(models): |
|
ms = model |
|
|
|
model_dict = ms.state_dict() |
|
|
|
k = find_model_key(checkpoint.keys(), model_keys[i]) |
|
pre_train_dict = checkpoint[k] |
|
|
|
ms.load_state_dict(align_and_update_state_dicts(model_dict, pre_train_dict, exclude_key = exclude_key, to_print = to_print, to_match = to_match), strict=False) |
|
|
|
if optimizer and 'optimizaer' in checkpoint: |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
best_val_stats = checkpoint['best_val_stats'] if 'best_val_stats' in checkpoint else None |
|
return checkpoint['epoch'], best_val_stats |
|
|
|
|
|
|
|
def load_test_checkpoint(cfg, model): |
|
""" |
|
Loading checkpoint logic for testing. |
|
""" |
|
|
|
if cfg.TEST.CHECKPOINT_FILE_PATH != "": |
|
load_checkpoint( |
|
cfg.TEST.CHECKPOINT_FILE_PATH, |
|
model, |
|
cfg.NUM_GPUS > 1, |
|
None, |
|
squeeze_temporal=cfg.TEST.CHECKPOINT_SQUEEZE_TEMPORAL, |
|
) |
|
elif has_checkpoint(cfg.OUTPUT_DIR): |
|
last_checkpoint = get_last_checkpoint(cfg.OUTPUT_DIR) |
|
load_checkpoint(last_checkpoint, model, cfg.NUM_GPUS > 1) |
|
elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "": |
|
|
|
|
|
|
|
load_checkpoint( |
|
cfg.TRAIN.CHECKPOINT_FILE_PATH, |
|
model, |
|
cfg.NUM_GPUS > 1, |
|
None, |
|
) |
|
else: |
|
logger.info( |
|
"Unknown way of loading checkpoint. Using random initialization, only for debugging." |
|
) |
|
|
|
|
|
def load_train_checkpoint(cfg, model, optimizer, scaler=None): |
|
""" |
|
Loading checkpoint logic for training. |
|
""" |
|
if cfg.TRAIN.AUTO_RESUME and has_checkpoint(cfg.OUTPUT_DIR): |
|
last_checkpoint = get_last_checkpoint(cfg.OUTPUT_DIR) |
|
logger.info("Load from last checkpoint, {}.".format(last_checkpoint)) |
|
checkpoint_epoch = load_checkpoint( |
|
last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer, scaler=scaler |
|
) |
|
start_epoch = checkpoint_epoch + 1 |
|
elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "" and cfg.TRAIN.FINETUNE: |
|
logger.info("Finetune from given checkpoint file.") |
|
checkpoint_epoch = load_checkpoint( |
|
cfg.TRAIN.CHECKPOINT_FILE_PATH, |
|
model, |
|
cfg.NUM_GPUS > 1, |
|
optimizer, |
|
scaler=scaler, |
|
epoch_reset=cfg.TRAIN.CHECKPOINT_EPOCH_RESET, |
|
freeze_pretrain=cfg.TRAIN.FREEZE_PRETRAIN, |
|
) |
|
start_epoch = checkpoint_epoch + 1 if cfg.TRAIN.FINETUNE_START_EPOCH == 0 else cfg.TRAIN.FINETUNE_START_EPOCH |
|
elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "": |
|
logger.info("Load from given checkpoint file.") |
|
checkpoint_epoch = load_checkpoint( |
|
cfg.TRAIN.CHECKPOINT_FILE_PATH, |
|
model, |
|
cfg.NUM_GPUS > 1, |
|
optimizer, |
|
scaler=scaler, |
|
epoch_reset=cfg.TRAIN.CHECKPOINT_EPOCH_RESET, |
|
) |
|
start_epoch = checkpoint_epoch + 1 |
|
else: |
|
start_epoch = 0 |
|
|
|
return start_epoch |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, exclude_key = None, to_print = True, to_match = {}): |
|
""" |
|
Match names between the two state-dict, and returns a new chkpt_state_dict with names |
|
converted to match model_state_dict with heuristics. The returned dict can be later |
|
loaded with fvcore checkpointer. |
|
""" |
|
if exclude_key is not None: |
|
model_keys = sorted([k for k in model_state_dict.keys() if exclude_key not in k]) |
|
else: |
|
model_keys = sorted(model_state_dict.keys()) |
|
original_keys = {x: x for x in ckpt_state_dict.keys()} |
|
ckpt_keys = sorted(ckpt_state_dict.keys()) |
|
|
|
def in_to_match(a, b): |
|
for k in to_match.keys(): |
|
c = b.replace(k, to_match[k]) |
|
if a == c or a.endswith("." + c): |
|
return True |
|
return False |
|
|
|
def match(a, b): |
|
if (a == b or a.endswith("." + b) or in_to_match(a, b)) and to_print: |
|
print('matched') |
|
print(a, '--', b) |
|
return a == b or a.endswith("." + b) or in_to_match(a, b) |
|
|
|
|
|
|
|
match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] |
|
match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) |
|
|
|
max_match_size, idxs = match_matrix.max(1) |
|
|
|
idxs[max_match_size == 0] = -1 |
|
|
|
|
|
|
|
matched_keys = {} |
|
result_state_dict = {} |
|
for idx_model, idx_ckpt in enumerate(idxs.tolist()): |
|
if idx_ckpt == -1: |
|
continue |
|
key_model = model_keys[idx_model] |
|
key_ckpt = ckpt_keys[idx_ckpt] |
|
value_ckpt = ckpt_state_dict[key_ckpt] |
|
shape_in_model = model_state_dict[key_model].shape |
|
|
|
if shape_in_model != value_ckpt.shape: |
|
logger.warning( |
|
"Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( |
|
key_ckpt, value_ckpt.shape, key_model, shape_in_model |
|
) |
|
) |
|
if shape_in_model[0] != value_ckpt.shape[0] and len(shape_in_model) == len(value_ckpt.shape): |
|
logger.warning( |
|
"{} will not be loaded. Please double check and see if this is desired.".format( |
|
key_ckpt |
|
) |
|
) |
|
logger.warning('--- shape_in_model: {}'.format(shape_in_model)) |
|
logger.warning('--- ckpt shape: {}'.format(value_ckpt.shape)) |
|
else: |
|
logger.warning( |
|
"{} will be loaded for the center frame with the weights from the 2D conv layers in pre-trained models and\ |
|
initialize other weights as zero. Please double check and see if this is desired.".format( |
|
key_ckpt |
|
) |
|
) |
|
assert key_model not in result_state_dict |
|
logger.warning('--- shape_in_model: {}'.format(shape_in_model)) |
|
logger.warning('--- ckpt shape: {}'.format(value_ckpt.shape)) |
|
|
|
nn.init.constant_(model_state_dict[key_model], 0.0) |
|
model_state_dict[key_model][:, :, int(shape_in_model[2] / 2)] = value_ckpt |
|
result_state_dict[key_model] = model_state_dict[key_model] |
|
logger.warning('--- loaded to T: {}'.format(int(shape_in_model[2] / 2))) |
|
logger.warning('--- reshaped ckpt: {}'.format(result_state_dict[key_model].shape)) |
|
matched_keys[key_ckpt] = key_model |
|
else: |
|
assert key_model not in result_state_dict |
|
result_state_dict[key_model] = value_ckpt |
|
if key_ckpt in matched_keys: |
|
logger.error( |
|
"Ambiguity found for {} in checkpoint!" |
|
"It matches at least two keys in the model ({} and {}).".format( |
|
key_ckpt, key_model, matched_keys[key_ckpt] |
|
) |
|
) |
|
raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") |
|
if to_print: |
|
logger.info('Matching {} to {}'.format(key_ckpt, key_model)) |
|
matched_keys[key_ckpt] = key_model |
|
|
|
|
|
matched_model_keys = sorted(matched_keys.values()) |
|
|
|
if len(matched_model_keys) == 0: |
|
logger.warning("No weights in checkpoint matched with model.") |
|
return ckpt_state_dict |
|
common_prefix = _longest_common_prefix(matched_model_keys) |
|
rev_matched_keys = {v: k for k, v in matched_keys.items()} |
|
original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} |
|
|
|
model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) |
|
|
|
table = [] |
|
memo = set() |
|
for key_model in matched_model_keys: |
|
if to_print: |
|
print(' matched:', key_model) |
|
if key_model in memo: |
|
continue |
|
if key_model in model_key_groups: |
|
group = model_key_groups[key_model] |
|
memo |= set(group) |
|
shapes = [tuple(model_state_dict[k].shape) for k in group] |
|
table.append( |
|
( |
|
_longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", |
|
_group_str([original_keys[k] for k in group]), |
|
" ".join([str(x).replace(" ", "") for x in shapes]), |
|
) |
|
) |
|
else: |
|
key_checkpoint = original_keys[key_model] |
|
shape = str(tuple(model_state_dict[key_model].shape)) |
|
table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) |
|
table_str = tabulate( |
|
table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] |
|
) |
|
if to_print: |
|
logger.info( |
|
"Following weights matched with " |
|
+ (f"submodule {common_prefix[:-1]}" if common_prefix else "model") |
|
+ ":\n" |
|
+ table_str |
|
) |
|
|
|
unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] |
|
unmatched_model_keys = [k for k in model_keys if k not in set(matched_keys.values())] |
|
|
|
|
|
|
|
|
|
for k in unmatched_model_keys: |
|
|
|
result_state_dict[k] = model_state_dict[k] |
|
|
|
return result_state_dict |