nazneen commited on
Commit
79d745d
1 Parent(s): c72e977

model documentation

Browse files
Files changed (1) hide show
  1. README.md +179 -0
README.md ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-classification
4
+ - camembert
5
+ ---
6
+
7
+ # Model Card for baikal-sentiment-ball
8
+
9
+ # Model Details
10
+
11
+ ## Model Description
12
+
13
+ More information needed
14
+
15
+ - **Developed by:** More information needed
16
+ - **Shared by [Optional]:** Peerapong C.
17
+
18
+ - **Model type:** Question Answering
19
+ - **Language(s) (NLP):** More information needed
20
+ - **License:** More information needed
21
+ - **Parent Model:** [cmaembert-base](https://huggingface.co/camembert-base?text=Paris+est+la+%3Cmask%3E+de+la+France.)
22
+ - **Resources for more information:**
23
+ - [GitHub Repo](https://github.com/peerapongch/baikal-sentimentt)
24
+ - [Associated Paper](https://arxiv.org/abs/1901.08746)
25
+
26
+
27
+ # Uses
28
+
29
+
30
+ ## Direct Use
31
+ This model can be used for the task of text classification.
32
+
33
+ ## Downstream Use [Optional]
34
+
35
+ More information needed.
36
+
37
+ ## Out-of-Scope Use
38
+
39
+ The model should not be used to intentionally create hostile or alienating environments for people.
40
+
41
+ # Bias, Risks, and Limitations
42
+
43
+
44
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
45
+
46
+
47
+
48
+ ## Recommendations
49
+
50
+
51
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
52
+
53
+ # Training Details
54
+
55
+ ## Training Data
56
+
57
+ More information needed
58
+
59
+ ## Training Procedure
60
+
61
+
62
+ ### Preprocessing
63
+
64
+ More information needed
65
+
66
+
67
+
68
+ ### Speeds, Sizes, Times
69
+
70
+ More information needed
71
+
72
+
73
+
74
+ # Evaluation
75
+
76
+
77
+ ## Testing Data, Factors & Metrics
78
+
79
+ ### Testing Data
80
+
81
+ More information needed
82
+
83
+ ### Factors
84
+ More information needed
85
+
86
+ ### Metrics
87
+
88
+ More information needed
89
+
90
+
91
+ ## Results
92
+
93
+ More information needed
94
+
95
+
96
+ # Model Examination
97
+
98
+ More information needed
99
+
100
+ # Environmental Impact
101
+
102
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
103
+
104
+ - **Hardware Type:** More information needed
105
+ - **Hours used:** More information needed
106
+ - **Cloud Provider:** More information needed
107
+ - **Compute Region:** More information needed
108
+ - **Carbon Emitted:** More information needed
109
+
110
+ # Technical Specifications [optional]
111
+
112
+ ## Model Architecture and Objective
113
+
114
+ More information needed
115
+
116
+ ## Compute Infrastructure
117
+
118
+ More information needed
119
+
120
+ ### Hardware
121
+
122
+
123
+ More information needed
124
+
125
+ ### Software
126
+
127
+ More information needed.
128
+
129
+ # Citation
130
+
131
+
132
+ **BibTeX:**
133
+
134
+
135
+ ```bibtex
136
+ @misc{mesh-transformer-jax,
137
+ @article{lee2019biobert,
138
+ title={BioBERT: a pre-trained biomedical language representation model for biomedical text mining},
139
+ author={Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and Kim, Sunkyu and So, Chan Ho and Kang, Jaewoo},
140
+ journal={arXiv preprint arXiv:1901.08746},
141
+ year={2019}
142
+ }
143
+ ```
144
+
145
+
146
+
147
+
148
+ # Glossary [optional]
149
+
150
+ More information needed
151
+
152
+ # More Information [optional]
153
+ More information needed
154
+
155
+
156
+ # Model Card Authors [optional]
157
+
158
+ Peerapong C. in collaboration with Ezi Ozoani and the Hugging Face team
159
+
160
+ # Model Card Contact
161
+
162
+ More information needed
163
+
164
+ # How to Get Started with the Model
165
+
166
+ Use the code below to get started with the model.
167
+
168
+ <details>
169
+ <summary> Click to expand </summary>
170
+
171
+ ```python
172
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
173
+
174
+ tokenizer = AutoTokenizer.from_pretrained("peerapongch/baikal-sentiment-ball")
175
+
176
+ model = AutoModelForSequenceClassification.from_pretrained("peerapongch/baikal-sentiment-ball")
177
+
178
+ ```
179
+ </details>