End of training
Browse files- README.md +80 -0
- preprocessor_config.json +14 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +38 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv2-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutkv
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutkv
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.6316
|
21 |
+
- Answer: {'precision': 0.06269757639620653, 'recall': 0.14709517923362175, 'f1': 0.08792020687107498, 'number': 809}
|
22 |
+
- Header: {'precision': 0.02142857142857143, 'recall': 0.025210084033613446, 'f1': 0.023166023166023165, 'number': 119}
|
23 |
+
- Question: {'precision': 0.17976470588235294, 'recall': 0.3586854460093897, 'f1': 0.2394984326018809, 'number': 1065}
|
24 |
+
- Overall Precision: 0.1211
|
25 |
+
- Overall Recall: 0.2529
|
26 |
+
- Overall F1: 0.1637
|
27 |
+
- Overall Accuracy: 0.3969
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
58 |
+
| 1.9011 | 1.0 | 10 | 1.8281 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2901 |
|
59 |
+
| 1.7212 | 2.0 | 20 | 1.6755 | {'precision': 0.010714285714285714, 'recall': 0.011124845488257108, 'f1': 0.01091570648878108, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.8, 'recall': 0.003755868544600939, 'f1': 0.007476635514018691, 'number': 1065} | 0.0154 | 0.0065 | 0.0092 | 0.3484 |
|
60 |
+
| 1.6644 | 3.0 | 30 | 1.7453 | {'precision': 0.0030959752321981426, 'recall': 0.0012360939431396785, 'f1': 0.0017667844522968195, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4895833333333333, 'recall': 0.044131455399061034, 'f1': 0.08096468561584841, 'number': 1065} | 0.1143 | 0.0241 | 0.0398 | 0.3130 |
|
61 |
+
| 1.5949 | 4.0 | 40 | 1.7670 | {'precision': 0.03335250143760782, 'recall': 0.07169344870210136, 'f1': 0.04552590266875981, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.13106796116504854, 'recall': 0.2535211267605634, 'f1': 0.1728, 'number': 1065} | 0.0859 | 0.1646 | 0.1129 | 0.3285 |
|
62 |
+
| 1.4559 | 5.0 | 50 | 1.5921 | {'precision': 0.05108940646130729, 'recall': 0.08405438813349815, 'f1': 0.06355140186915888, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.17631224764468373, 'recall': 0.2460093896713615, 'f1': 0.20540964327714623, 'number': 1065} | 0.1171 | 0.1656 | 0.1372 | 0.3763 |
|
63 |
+
| 1.3707 | 6.0 | 60 | 1.6238 | {'precision': 0.049044914816726896, 'recall': 0.11742892459826947, 'f1': 0.06919155134741442, 'number': 809} | {'precision': 0.006622516556291391, 'recall': 0.008403361344537815, 'f1': 0.007407407407407407, 'number': 119} | {'precision': 0.16497339138848574, 'recall': 0.32018779342723, 'f1': 0.21775223499361432, 'number': 1065} | 0.1052 | 0.2193 | 0.1422 | 0.3786 |
|
64 |
+
| 1.2836 | 7.0 | 70 | 1.5846 | {'precision': 0.058695652173913045, 'recall': 0.1334981458590853, 'f1': 0.08154020385050964, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.15556492411467115, 'recall': 0.3464788732394366, 'f1': 0.2147221414023858, 'number': 1065} | 0.1120 | 0.2393 | 0.1526 | 0.3851 |
|
65 |
+
| 1.2161 | 8.0 | 80 | 1.6814 | {'precision': 0.06025974025974026, 'recall': 0.1433868974042027, 'f1': 0.08485735186539868, 'number': 809} | {'precision': 0.009433962264150943, 'recall': 0.008403361344537815, 'f1': 0.008888888888888889, 'number': 119} | {'precision': 0.1631912964641886, 'recall': 0.3380281690140845, 'f1': 0.22011617242433507, 'number': 1065} | 0.1126 | 0.2393 | 0.1531 | 0.3730 |
|
66 |
+
| 1.1499 | 9.0 | 90 | 1.6027 | {'precision': 0.06253521126760564, 'recall': 0.13720642768850433, 'f1': 0.08591331269349846, 'number': 809} | {'precision': 0.011111111111111112, 'recall': 0.008403361344537815, 'f1': 0.009569377990430622, 'number': 119} | {'precision': 0.1547870097005483, 'recall': 0.34460093896713617, 'f1': 0.21362048894062866, 'number': 1065} | 0.1131 | 0.2403 | 0.1538 | 0.3710 |
|
67 |
+
| 1.1199 | 10.0 | 100 | 1.6616 | {'precision': 0.055350553505535055, 'recall': 0.12978986402966625, 'f1': 0.07760532150776053, 'number': 809} | {'precision': 0.019867549668874173, 'recall': 0.025210084033613446, 'f1': 0.022222222222222223, 'number': 119} | {'precision': 0.16207042851081885, 'recall': 0.3586854460093897, 'f1': 0.22326125073056693, 'number': 1065} | 0.1112 | 0.2459 | 0.1532 | 0.3719 |
|
68 |
+
| 1.0651 | 11.0 | 110 | 1.6100 | {'precision': 0.06031016657093624, 'recall': 0.12978986402966625, 'f1': 0.08235294117647059, 'number': 809} | {'precision': 0.015151515151515152, 'recall': 0.01680672268907563, 'f1': 0.01593625498007968, 'number': 119} | {'precision': 0.163854351687389, 'recall': 0.3464788732394366, 'f1': 0.22249020198974978, 'number': 1065} | 0.1154 | 0.2388 | 0.1556 | 0.3805 |
|
69 |
+
| 1.0454 | 12.0 | 120 | 1.5988 | {'precision': 0.0639269406392694, 'recall': 0.138442521631644, 'f1': 0.08746583365872705, 'number': 809} | {'precision': 0.022222222222222223, 'recall': 0.025210084033613446, 'f1': 0.02362204724409449, 'number': 119} | {'precision': 0.17867298578199053, 'recall': 0.3539906103286385, 'f1': 0.23748031496062993, 'number': 1065} | 0.1231 | 0.2469 | 0.1643 | 0.3977 |
|
70 |
+
| 1.0279 | 13.0 | 130 | 1.6209 | {'precision': 0.06463104325699745, 'recall': 0.15698393077873918, 'f1': 0.09156452775775054, 'number': 809} | {'precision': 0.022388059701492536, 'recall': 0.025210084033613446, 'f1': 0.02371541501976284, 'number': 119} | {'precision': 0.18118811881188118, 'recall': 0.3436619718309859, 'f1': 0.23727714748784443, 'number': 1065} | 0.1204 | 0.2489 | 0.1623 | 0.3998 |
|
71 |
+
| 1.008 | 14.0 | 140 | 1.6538 | {'precision': 0.0633116883116883, 'recall': 0.1446229913473424, 'f1': 0.08806925103500188, 'number': 809} | {'precision': 0.022556390977443608, 'recall': 0.025210084033613446, 'f1': 0.023809523809523808, 'number': 119} | {'precision': 0.18536350505536833, 'recall': 0.3615023474178404, 'f1': 0.24506683640992996, 'number': 1065} | 0.1244 | 0.2534 | 0.1669 | 0.3965 |
|
72 |
+
| 0.9812 | 15.0 | 150 | 1.6316 | {'precision': 0.06269757639620653, 'recall': 0.14709517923362175, 'f1': 0.08792020687107498, 'number': 809} | {'precision': 0.02142857142857143, 'recall': 0.025210084033613446, 'f1': 0.023166023166023165, 'number': 119} | {'precision': 0.17976470588235294, 'recall': 0.3586854460093897, 'f1': 0.2394984326018809, 'number': 1065} | 0.1211 | 0.2529 | 0.1637 | 0.3969 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.32.0
|
78 |
+
- Pytorch 2.0.0+cu118
|
79 |
+
- Datasets 2.17.1
|
80 |
+
- Tokenizers 0.13.2
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
6 |
+
"ocr_lang": null,
|
7 |
+
"processor_class": "LayoutLMv2Processor",
|
8 |
+
"resample": 2,
|
9 |
+
"size": {
|
10 |
+
"height": 224,
|
11 |
+
"width": 224
|
12 |
+
},
|
13 |
+
"tesseract_config": ""
|
14 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450603969
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0857f9b4dda04a5e00a8771a362581d17958109ca248b550be742aff0b6da5de
|
3 |
size 450603969
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": null,
|
3 |
+
"apply_ocr": false,
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"cls_token": "[CLS]",
|
6 |
+
"cls_token_box": [
|
7 |
+
0,
|
8 |
+
0,
|
9 |
+
0,
|
10 |
+
0
|
11 |
+
],
|
12 |
+
"do_basic_tokenize": true,
|
13 |
+
"do_lower_case": true,
|
14 |
+
"mask_token": "[MASK]",
|
15 |
+
"model_max_length": 512,
|
16 |
+
"never_split": null,
|
17 |
+
"only_label_first_subword": true,
|
18 |
+
"pad_token": "[PAD]",
|
19 |
+
"pad_token_box": [
|
20 |
+
0,
|
21 |
+
0,
|
22 |
+
0,
|
23 |
+
0
|
24 |
+
],
|
25 |
+
"pad_token_label": -100,
|
26 |
+
"processor_class": "LayoutLMv2Processor",
|
27 |
+
"sep_token": "[SEP]",
|
28 |
+
"sep_token_box": [
|
29 |
+
1000,
|
30 |
+
1000,
|
31 |
+
1000,
|
32 |
+
1000
|
33 |
+
],
|
34 |
+
"strip_accents": null,
|
35 |
+
"tokenize_chinese_chars": true,
|
36 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
37 |
+
"unk_token": "[UNK]"
|
38 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|