Kyle Pearson
commited on
Commit
·
dc95a1d
1
Parent(s):
cfcc093
Add validation utilities, update model conversion logic, fix manifest.json, rename deprecated flags, improve docs
Browse files- README.md +1 -1
- convert.py +252 -257
- sharp.mlpackage/Data/com.apple.CoreML/model.mlmodel +1 -1
- sharp.mlpackage/Manifest.json +8 -8
README.md
CHANGED
|
@@ -63,7 +63,7 @@ Use the provided [sharp.swift](sharp.swift) inference script to load the model a
|
|
| 63 |
swiftc -O -o run_sharp sharp.swift -framework CoreML -framework CoreImage -framework AppKit
|
| 64 |
|
| 65 |
# Run inference on an image and decimate the output by 50%
|
| 66 |
-
./run_sharp sharp.mlpackage
|
| 67 |
```
|
| 68 |
|
| 69 |
> Inference on an Apple M4 Max takes ~1.9 seconds.
|
|
|
|
| 63 |
swiftc -O -o run_sharp sharp.swift -framework CoreML -framework CoreImage -framework AppKit
|
| 64 |
|
| 65 |
# Run inference on an image and decimate the output by 50%
|
| 66 |
+
./run_sharp sharp.mlpackage test.png test.ply -d 0.5
|
| 67 |
```
|
| 68 |
|
| 69 |
> Inference on an Apple M4 Max takes ~1.9 seconds.
|
convert.py
CHANGED
|
@@ -8,6 +8,7 @@ from __future__ import annotations
|
|
| 8 |
|
| 9 |
import argparse
|
| 10 |
import logging
|
|
|
|
| 11 |
from pathlib import Path
|
| 12 |
from typing import Any
|
| 13 |
|
|
@@ -25,19 +26,92 @@ LOGGER = logging.getLogger(__name__)
|
|
| 25 |
|
| 26 |
DEFAULT_MODEL_URL = "https://ml-site.cdn-apple.com/models/sharp/sharp_2572gikvuh.pt"
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
""
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
class SharpModelTraceable(nn.Module):
|
|
@@ -61,10 +135,10 @@ class SharpModelTraceable(nn.Module):
|
|
| 61 |
self.prediction_head = predictor.prediction_head
|
| 62 |
self.gaussian_composer = predictor.gaussian_composer
|
| 63 |
self.depth_alignment = predictor.depth_alignment
|
| 64 |
-
|
| 65 |
-
#
|
| 66 |
-
self.
|
| 67 |
-
self.
|
| 68 |
|
| 69 |
def forward(
|
| 70 |
self,
|
|
@@ -95,12 +169,17 @@ class SharpModelTraceable(nn.Module):
|
|
| 95 |
# Apply depth alignment (inference mode)
|
| 96 |
monodepth, _ = self.depth_alignment(monodepth, None, monodepth_output.decoder_features)
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# Initialize gaussians
|
| 99 |
init_output = self.init_model(image, monodepth)
|
| 100 |
|
| 101 |
-
# Store global_scale for debugging
|
| 102 |
-
if
|
| 103 |
-
|
|
|
|
| 104 |
|
| 105 |
# Extract features
|
| 106 |
image_features = self.feature_model(
|
|
@@ -358,142 +437,6 @@ def convert_to_coreml(
|
|
| 358 |
return mlmodel
|
| 359 |
|
| 360 |
|
| 361 |
-
def convert_to_coreml_with_preprocessing(
|
| 362 |
-
predictor: RGBGaussianPredictor,
|
| 363 |
-
output_path: Path,
|
| 364 |
-
input_shape: tuple[int, int] = (1536, 1536),
|
| 365 |
-
) -> ct.models.MLModel:
|
| 366 |
-
"""Convert SHARP model to Core ML with built-in image preprocessing.
|
| 367 |
-
|
| 368 |
-
This version includes image normalization as part of the model,
|
| 369 |
-
accepting uint8 images as input.
|
| 370 |
-
|
| 371 |
-
Args:
|
| 372 |
-
predictor: The SHARP RGBGaussianPredictor model.
|
| 373 |
-
output_path: Path to save the .mlmodel file.
|
| 374 |
-
input_shape: Input image shape (height, width).
|
| 375 |
-
|
| 376 |
-
Returns:
|
| 377 |
-
The converted Core ML model.
|
| 378 |
-
"""
|
| 379 |
-
|
| 380 |
-
class SharpWithPreprocessing(nn.Module):
|
| 381 |
-
"""SHARP model with integrated preprocessing."""
|
| 382 |
-
|
| 383 |
-
def __init__(self, base_model: SharpModelTraceable):
|
| 384 |
-
super().__init__()
|
| 385 |
-
self.base_model = base_model
|
| 386 |
-
|
| 387 |
-
def forward(
|
| 388 |
-
self,
|
| 389 |
-
image: torch.Tensor,
|
| 390 |
-
disparity_factor: torch.Tensor
|
| 391 |
-
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 392 |
-
# Normalize image from [0, 255] to [0, 1]
|
| 393 |
-
image_normalized = image / 255.0
|
| 394 |
-
return self.base_model(image_normalized, disparity_factor)
|
| 395 |
-
|
| 396 |
-
model_wrapper = SharpWithPreprocessing(SharpModelTraceable(predictor))
|
| 397 |
-
model_wrapper.eval()
|
| 398 |
-
|
| 399 |
-
height, width = input_shape
|
| 400 |
-
example_image = torch.randint(0, 256, (1, 3, height, width), dtype=torch.float32)
|
| 401 |
-
example_disparity_factor = torch.tensor([1.0])
|
| 402 |
-
|
| 403 |
-
LOGGER.info("Tracing model with preprocessing...")
|
| 404 |
-
with torch.no_grad():
|
| 405 |
-
traced_model = torch.jit.trace(
|
| 406 |
-
model_wrapper,
|
| 407 |
-
(example_image, example_disparity_factor),
|
| 408 |
-
strict=False,
|
| 409 |
-
)
|
| 410 |
-
|
| 411 |
-
inputs = [
|
| 412 |
-
ct.ImageType(
|
| 413 |
-
name="image",
|
| 414 |
-
shape=(1, 3, height, width),
|
| 415 |
-
scale=1.0, # Will be normalized in the model
|
| 416 |
-
color_layout=ct.colorlayout.RGB,
|
| 417 |
-
),
|
| 418 |
-
ct.TensorType(
|
| 419 |
-
name="disparity_factor",
|
| 420 |
-
shape=(1,),
|
| 421 |
-
dtype=np.float32,
|
| 422 |
-
),
|
| 423 |
-
]
|
| 424 |
-
|
| 425 |
-
# Define output names with clear, descriptive labels
|
| 426 |
-
output_names = [
|
| 427 |
-
"mean_vectors_3d_positions", # 3D positions (NDC space)
|
| 428 |
-
"singular_values_scales", # Scale parameters (diagonal of covariance)
|
| 429 |
-
"quaternions_rotations", # Rotation as quaternions
|
| 430 |
-
"colors_rgb_linear", # RGB colors in linear color space
|
| 431 |
-
"opacities_alpha_channel", # Opacity values (alpha)
|
| 432 |
-
]
|
| 433 |
-
|
| 434 |
-
# Define outputs with proper names for Core ML conversion
|
| 435 |
-
outputs = [
|
| 436 |
-
ct.TensorType(name=output_names[0], dtype=np.float32),
|
| 437 |
-
ct.TensorType(name=output_names[1], dtype=np.float32),
|
| 438 |
-
ct.TensorType(name=output_names[2], dtype=np.float32),
|
| 439 |
-
ct.TensorType(name=output_names[3], dtype=np.float32),
|
| 440 |
-
ct.TensorType(name=output_names[4], dtype=np.float32),
|
| 441 |
-
]
|
| 442 |
-
|
| 443 |
-
mlmodel = ct.convert(
|
| 444 |
-
traced_model,
|
| 445 |
-
inputs=inputs,
|
| 446 |
-
outputs=outputs, # Specify output names during conversion
|
| 447 |
-
convert_to="mlprogram",
|
| 448 |
-
compute_precision=ct.precision.FLOAT16,
|
| 449 |
-
)
|
| 450 |
-
|
| 451 |
-
mlmodel.author = "Apple Inc."
|
| 452 |
-
mlmodel.short_description = "SHARP model with integrated image preprocessing"
|
| 453 |
-
mlmodel.version = "1.0.0"
|
| 454 |
-
|
| 455 |
-
# Output descriptions with clear intent and units
|
| 456 |
-
output_descriptions = {
|
| 457 |
-
"mean_vectors_3d_positions": (
|
| 458 |
-
"3D positions of Gaussian splats in normalized device coordinates (NDC). "
|
| 459 |
-
"Shape: (1, N, 3), where N is the number of Gaussians."
|
| 460 |
-
),
|
| 461 |
-
"singular_values_scales": (
|
| 462 |
-
"Scale factors for each Gaussian along its principal axes. "
|
| 463 |
-
"Represents size and anisotropy. Shape: (1, N, 3)."
|
| 464 |
-
),
|
| 465 |
-
"quaternions_rotations": (
|
| 466 |
-
"Rotation of each Gaussian as a unit quaternion [w, x, y, z]. "
|
| 467 |
-
"Used to orient the ellipsoid. Shape: (1, N, 4)."
|
| 468 |
-
),
|
| 469 |
-
"colors_rgb_linear": (
|
| 470 |
-
"RGB color values in linear RGB space (not gamma-corrected). "
|
| 471 |
-
"Shape: (1, N, 3), with range [0, 1]."
|
| 472 |
-
),
|
| 473 |
-
"opacities_alpha_channel": (
|
| 474 |
-
"Opacity value per Gaussian (alpha channel), used for blending. "
|
| 475 |
-
"Shape: (1, N), where values are in [0, 1]."
|
| 476 |
-
),
|
| 477 |
-
}
|
| 478 |
-
|
| 479 |
-
# Update output names and descriptions via spec BEFORE saving
|
| 480 |
-
spec = mlmodel.get_spec()
|
| 481 |
-
|
| 482 |
-
# Set output descriptions
|
| 483 |
-
for i, name in enumerate(output_names):
|
| 484 |
-
if i < len(spec.description.output):
|
| 485 |
-
output = spec.description.output[i]
|
| 486 |
-
output.name = name
|
| 487 |
-
output.shortDescription = output_descriptions[name]
|
| 488 |
-
|
| 489 |
-
LOGGER.info("Output names after update: %s", [o.name for o in spec.description.output])
|
| 490 |
-
|
| 491 |
-
# Save the model with correct names
|
| 492 |
-
mlmodel.save(str(output_path))
|
| 493 |
-
|
| 494 |
-
return mlmodel
|
| 495 |
-
|
| 496 |
-
|
| 497 |
class QuaternionValidator:
|
| 498 |
"""Validator for quaternion comparisons with configurable tolerances and outlier analysis."""
|
| 499 |
|
|
@@ -658,6 +601,130 @@ class QuaternionValidator:
|
|
| 658 |
}
|
| 659 |
|
| 660 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 661 |
def format_validation_table(
|
| 662 |
validation_results: list[dict],
|
| 663 |
image_name: str,
|
|
@@ -1222,89 +1289,29 @@ def validate_with_single_image_detailed(
|
|
| 1222 |
"""
|
| 1223 |
# Load and preprocess the input image
|
| 1224 |
test_image = load_and_preprocess_image(image_path, input_shape)
|
| 1225 |
-
|
| 1226 |
-
|
| 1227 |
-
|
| 1228 |
-
|
| 1229 |
-
traceable_wrapper.eval()
|
| 1230 |
-
|
| 1231 |
-
with torch.no_grad():
|
| 1232 |
-
pt_outputs = traceable_wrapper(test_image, torch.from_numpy(test_disparity))
|
| 1233 |
-
|
| 1234 |
-
# Run Core ML model
|
| 1235 |
-
test_image_np = test_image.numpy()
|
| 1236 |
-
coreml_inputs = {
|
| 1237 |
-
"image": test_image_np,
|
| 1238 |
-
"disparity_factor": test_disparity,
|
| 1239 |
-
}
|
| 1240 |
-
coreml_outputs = mlmodel.predict(coreml_inputs)
|
| 1241 |
-
|
| 1242 |
-
# Output configuration
|
| 1243 |
-
output_names = ["mean_vectors_3d_positions", "singular_values_scales", "quaternions_rotations", "colors_rgb_linear", "opacities_alpha_channel"]
|
| 1244 |
-
|
| 1245 |
# Tolerances for real image validation
|
| 1246 |
-
|
| 1247 |
-
|
| 1248 |
-
|
| 1249 |
-
|
| 1250 |
-
"opacities_alpha_channel": 0.05,
|
| 1251 |
-
"quaternions_rotations": 5.0,
|
| 1252 |
-
}
|
| 1253 |
-
|
| 1254 |
-
# Use provided validator or create default
|
| 1255 |
if quat_validator is None:
|
| 1256 |
-
quat_validator = QuaternionValidator(
|
| 1257 |
-
|
| 1258 |
-
|
| 1259 |
-
|
| 1260 |
-
|
| 1261 |
-
|
| 1262 |
-
|
| 1263 |
-
|
| 1264 |
-
|
| 1265 |
-
|
| 1266 |
-
|
| 1267 |
-
|
| 1268 |
-
|
| 1269 |
-
for key in coreml_outputs:
|
| 1270 |
-
base_name = name.split('_')[0]
|
| 1271 |
-
if base_name in key.lower():
|
| 1272 |
-
coreml_key = key
|
| 1273 |
-
break
|
| 1274 |
-
if coreml_key is None:
|
| 1275 |
-
coreml_key = list(coreml_outputs.keys())[i]
|
| 1276 |
-
|
| 1277 |
-
coreml_output = coreml_outputs[coreml_key]
|
| 1278 |
-
result = {"output": name, "passed": True, "failure_reason": ""}
|
| 1279 |
-
|
| 1280 |
-
if name == "quaternions_rotations":
|
| 1281 |
-
# Use QuaternionValidator
|
| 1282 |
-
quat_result = quat_validator.validate(pt_output, coreml_output, image_name=image_path.name)
|
| 1283 |
-
|
| 1284 |
-
result.update({
|
| 1285 |
-
"max_diff": f"{quat_result['stats']['max']:.6f}",
|
| 1286 |
-
"mean_diff": f"{quat_result['stats']['mean']:.6f}",
|
| 1287 |
-
"p99_diff": f"{quat_result['stats']['p99']:.6f}",
|
| 1288 |
-
"passed": quat_result["passed"],
|
| 1289 |
-
"failure_reason": "; ".join(quat_result["failure_reasons"]) if quat_result["failure_reasons"] else "",
|
| 1290 |
-
})
|
| 1291 |
-
else:
|
| 1292 |
-
diff = np.abs(pt_output - coreml_output)
|
| 1293 |
-
output_tolerance = tolerances.get(name, 0.01)
|
| 1294 |
-
max_diff = np.max(diff)
|
| 1295 |
-
|
| 1296 |
-
result.update({
|
| 1297 |
-
"max_diff": f"{max_diff:.6f}",
|
| 1298 |
-
"mean_diff": f"{np.mean(diff):.6f}",
|
| 1299 |
-
"p99_diff": f"{np.percentile(diff, 99):.6f}",
|
| 1300 |
-
})
|
| 1301 |
-
|
| 1302 |
-
if max_diff > output_tolerance:
|
| 1303 |
-
result["passed"] = False
|
| 1304 |
-
result["failure_reason"] = f"max diff {max_diff:.6f} > tolerance {output_tolerance:.6f}"
|
| 1305 |
-
|
| 1306 |
-
validation_results.append(result)
|
| 1307 |
-
|
| 1308 |
return validation_results
|
| 1309 |
|
| 1310 |
|
|
@@ -1469,11 +1476,6 @@ def main():
|
|
| 1469 |
action="store_true",
|
| 1470 |
help="Validate Core ML model against PyTorch",
|
| 1471 |
)
|
| 1472 |
-
parser.add_argument(
|
| 1473 |
-
"--with-preprocessing",
|
| 1474 |
-
action="store_true",
|
| 1475 |
-
help="Include image preprocessing (uint8 -> float normalization)",
|
| 1476 |
-
)
|
| 1477 |
parser.add_argument(
|
| 1478 |
"-v", "--verbose",
|
| 1479 |
action="store_true",
|
|
@@ -1522,21 +1524,13 @@ def main():
|
|
| 1522 |
precision = ct.precision.FLOAT16 if args.precision == "float16" else ct.precision.FLOAT32
|
| 1523 |
|
| 1524 |
# Convert to Core ML
|
| 1525 |
-
|
| 1526 |
-
|
| 1527 |
-
|
| 1528 |
-
|
| 1529 |
-
|
| 1530 |
-
|
| 1531 |
-
|
| 1532 |
-
else:
|
| 1533 |
-
LOGGER.info("Converting using direct tracing...")
|
| 1534 |
-
mlmodel = convert_to_coreml(
|
| 1535 |
-
predictor,
|
| 1536 |
-
args.output,
|
| 1537 |
-
input_shape=input_shape,
|
| 1538 |
-
compute_precision=precision,
|
| 1539 |
-
)
|
| 1540 |
|
| 1541 |
LOGGER.info(f"Core ML model saved to {args.output}")
|
| 1542 |
|
|
@@ -1570,3 +1564,4 @@ def main():
|
|
| 1570 |
|
| 1571 |
if __name__ == "__main__":
|
| 1572 |
exit(main())
|
|
|
|
|
|
| 8 |
|
| 9 |
import argparse
|
| 10 |
import logging
|
| 11 |
+
from dataclasses import dataclass
|
| 12 |
from pathlib import Path
|
| 13 |
from typing import Any
|
| 14 |
|
|
|
|
| 26 |
|
| 27 |
DEFAULT_MODEL_URL = "https://ml-site.cdn-apple.com/models/sharp/sharp_2572gikvuh.pt"
|
| 28 |
|
| 29 |
+
# ============================================================================
|
| 30 |
+
# Constants & Configuration
|
| 31 |
+
# ============================================================================
|
| 32 |
+
|
| 33 |
+
# Output names for Core ML model
|
| 34 |
+
OUTPUT_NAMES = [
|
| 35 |
+
"mean_vectors_3d_positions",
|
| 36 |
+
"singular_values_scales",
|
| 37 |
+
"quaternions_rotations",
|
| 38 |
+
"colors_rgb_linear",
|
| 39 |
+
"opacities_alpha_channel",
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
# Output descriptions for Core ML metadata
|
| 43 |
+
OUTPUT_DESCRIPTIONS = {
|
| 44 |
+
"mean_vectors_3d_positions": (
|
| 45 |
+
"3D positions of Gaussian splats in normalized device coordinates (NDC). "
|
| 46 |
+
"Shape: (1, N, 3), where N is the number of Gaussians."
|
| 47 |
+
),
|
| 48 |
+
"singular_values_scales": (
|
| 49 |
+
"Scale factors for each Gaussian along its principal axes. "
|
| 50 |
+
"Represents size and anisotropy. Shape: (1, N, 3)."
|
| 51 |
+
),
|
| 52 |
+
"quaternions_rotations": (
|
| 53 |
+
"Rotation of each Gaussian as a unit quaternion [w, x, y, z]. "
|
| 54 |
+
"Used to orient the ellipsoid. Shape: (1, N, 4)."
|
| 55 |
+
),
|
| 56 |
+
"colors_rgb_linear": (
|
| 57 |
+
"RGB color values in linear RGB space (not gamma-corrected). "
|
| 58 |
+
"Shape: (1, N, 3), with range [0, 1]."
|
| 59 |
+
),
|
| 60 |
+
"opacities_alpha_channel": (
|
| 61 |
+
"Opacity value per Gaussian (alpha channel), used for blending. "
|
| 62 |
+
"Shape: (1, N), where values are in [0, 1]."
|
| 63 |
+
),
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@dataclass
|
| 68 |
+
class ToleranceConfig:
|
| 69 |
+
"""Tolerance configuration for validation."""
|
| 70 |
+
|
| 71 |
+
# Tolerances for random validation (tight)
|
| 72 |
+
random_tolerances: dict[str, float] = None
|
| 73 |
+
|
| 74 |
+
# Tolerances for real image validation (more lenient)
|
| 75 |
+
image_tolerances: dict[str, float] = None
|
| 76 |
+
|
| 77 |
+
# Angular tolerances for quaternions (in degrees)
|
| 78 |
+
angular_tolerances_random: dict[str, float] = None
|
| 79 |
+
angular_tolerances_image: dict[str, float] = None
|
| 80 |
+
|
| 81 |
+
def __post_init__(self):
|
| 82 |
+
if self.random_tolerances is None:
|
| 83 |
+
self.random_tolerances = {
|
| 84 |
+
"mean_vectors_3d_positions": 0.001,
|
| 85 |
+
"singular_values_scales": 0.0001,
|
| 86 |
+
"quaternions_rotations": 2.0,
|
| 87 |
+
"colors_rgb_linear": 0.002,
|
| 88 |
+
"opacities_alpha_channel": 0.005,
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
if self.image_tolerances is None:
|
| 92 |
+
self.image_tolerances = {
|
| 93 |
+
"mean_vectors_3d_positions": 1.2,
|
| 94 |
+
"singular_values_scales": 0.01,
|
| 95 |
+
"quaternions_rotations": 5.0,
|
| 96 |
+
"colors_rgb_linear": 0.01,
|
| 97 |
+
"opacities_alpha_channel": 0.05,
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
if self.angular_tolerances_random is None:
|
| 101 |
+
self.angular_tolerances_random = {
|
| 102 |
+
"mean": 0.01,
|
| 103 |
+
"p99": 0.1,
|
| 104 |
+
"p99_9": 1.0,
|
| 105 |
+
"max": 5.0,
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
if self.angular_tolerances_image is None:
|
| 109 |
+
self.angular_tolerances_image = {
|
| 110 |
+
"mean": 0.2,
|
| 111 |
+
"p99": 2.0,
|
| 112 |
+
"p99_9": 5.0,
|
| 113 |
+
"max": 25.0,
|
| 114 |
+
}
|
| 115 |
|
| 116 |
|
| 117 |
class SharpModelTraceable(nn.Module):
|
|
|
|
| 135 |
self.prediction_head = predictor.prediction_head
|
| 136 |
self.gaussian_composer = predictor.gaussian_composer
|
| 137 |
self.depth_alignment = predictor.depth_alignment
|
| 138 |
+
|
| 139 |
+
# For debugging: store global_scale
|
| 140 |
+
self.last_global_scale = None
|
| 141 |
+
self.last_monodepth_min = None
|
| 142 |
|
| 143 |
def forward(
|
| 144 |
self,
|
|
|
|
| 169 |
# Apply depth alignment (inference mode)
|
| 170 |
monodepth, _ = self.depth_alignment(monodepth, None, monodepth_output.decoder_features)
|
| 171 |
|
| 172 |
+
# Store monodepth min for debugging (before normalization)
|
| 173 |
+
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
| 174 |
+
self.last_monodepth_min = monodepth.flatten().min().item()
|
| 175 |
+
|
| 176 |
# Initialize gaussians
|
| 177 |
init_output = self.init_model(image, monodepth)
|
| 178 |
|
| 179 |
+
# Store global_scale for debugging
|
| 180 |
+
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
| 181 |
+
if init_output.global_scale is not None:
|
| 182 |
+
self.last_global_scale = init_output.global_scale.item()
|
| 183 |
|
| 184 |
# Extract features
|
| 185 |
image_features = self.feature_model(
|
|
|
|
| 437 |
return mlmodel
|
| 438 |
|
| 439 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
class QuaternionValidator:
|
| 441 |
"""Validator for quaternion comparisons with configurable tolerances and outlier analysis."""
|
| 442 |
|
|
|
|
| 601 |
}
|
| 602 |
|
| 603 |
|
| 604 |
+
def find_coreml_output_key(name: str, coreml_outputs: dict) -> str:
|
| 605 |
+
"""Find matching Core ML output key for a given output name.
|
| 606 |
+
|
| 607 |
+
Args:
|
| 608 |
+
name: The expected output name
|
| 609 |
+
coreml_outputs: Dictionary of Core ML outputs
|
| 610 |
+
|
| 611 |
+
Returns:
|
| 612 |
+
The matching key from coreml_outputs
|
| 613 |
+
"""
|
| 614 |
+
if name in coreml_outputs:
|
| 615 |
+
return name
|
| 616 |
+
|
| 617 |
+
# Try partial match
|
| 618 |
+
for key in coreml_outputs:
|
| 619 |
+
base_name = name.split('_')[0]
|
| 620 |
+
if base_name in key.lower():
|
| 621 |
+
return key
|
| 622 |
+
|
| 623 |
+
# Fallback to index-based lookup
|
| 624 |
+
output_index = OUTPUT_NAMES.index(name) if name in OUTPUT_NAMES else 0
|
| 625 |
+
return list(coreml_outputs.keys())[output_index]
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
def run_inference_pair(
|
| 629 |
+
pytorch_model: RGBGaussianPredictor,
|
| 630 |
+
mlmodel: ct.models.MLModel,
|
| 631 |
+
image_tensor: torch.Tensor,
|
| 632 |
+
disparity_factor: float = 1.0,
|
| 633 |
+
) -> tuple[list[np.ndarray], dict[str, np.ndarray]]:
|
| 634 |
+
"""Run inference on both PyTorch and Core ML models.
|
| 635 |
+
|
| 636 |
+
Args:
|
| 637 |
+
pytorch_model: The PyTorch model
|
| 638 |
+
mlmodel: The Core ML model
|
| 639 |
+
image_tensor: Input image tensor
|
| 640 |
+
disparity_factor: Disparity factor value
|
| 641 |
+
|
| 642 |
+
Returns:
|
| 643 |
+
Tuple of (pytorch_outputs, coreml_outputs)
|
| 644 |
+
"""
|
| 645 |
+
# Run PyTorch model
|
| 646 |
+
traceable_wrapper = SharpModelTraceable(pytorch_model)
|
| 647 |
+
traceable_wrapper.eval()
|
| 648 |
+
|
| 649 |
+
test_disparity_pt = torch.tensor([disparity_factor])
|
| 650 |
+
with torch.no_grad():
|
| 651 |
+
pt_outputs = traceable_wrapper(image_tensor, test_disparity_pt)
|
| 652 |
+
|
| 653 |
+
# Convert to numpy
|
| 654 |
+
pt_outputs_np = [o.numpy() for o in pt_outputs]
|
| 655 |
+
|
| 656 |
+
# Run Core ML model
|
| 657 |
+
test_image_np = image_tensor.numpy()
|
| 658 |
+
test_disparity_np = np.array([disparity_factor], dtype=np.float32)
|
| 659 |
+
coreml_inputs = {
|
| 660 |
+
"image": test_image_np,
|
| 661 |
+
"disparity_factor": test_disparity_np,
|
| 662 |
+
}
|
| 663 |
+
coreml_outputs = mlmodel.predict(coreml_inputs)
|
| 664 |
+
|
| 665 |
+
return pt_outputs_np, coreml_outputs
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
def compare_outputs(
|
| 669 |
+
pt_outputs: list[np.ndarray],
|
| 670 |
+
coreml_outputs: dict[str, np.ndarray],
|
| 671 |
+
tolerances: dict[str, float],
|
| 672 |
+
quat_validator: QuaternionValidator,
|
| 673 |
+
image_name: str = "Unknown",
|
| 674 |
+
) -> list[dict]:
|
| 675 |
+
"""Compare PyTorch and Core ML outputs.
|
| 676 |
+
|
| 677 |
+
Args:
|
| 678 |
+
pt_outputs: List of PyTorch outputs
|
| 679 |
+
coreml_outputs: Dictionary of Core ML outputs
|
| 680 |
+
tolerances: Tolerance values per output type
|
| 681 |
+
quat_validator: QuaternionValidator instance
|
| 682 |
+
image_name: Name of the image being validated
|
| 683 |
+
|
| 684 |
+
Returns:
|
| 685 |
+
List of validation result dictionaries
|
| 686 |
+
"""
|
| 687 |
+
validation_results = []
|
| 688 |
+
|
| 689 |
+
for i, name in enumerate(OUTPUT_NAMES):
|
| 690 |
+
pt_output = pt_outputs[i]
|
| 691 |
+
coreml_key = find_coreml_output_key(name, coreml_outputs)
|
| 692 |
+
coreml_output = coreml_outputs[coreml_key]
|
| 693 |
+
|
| 694 |
+
result = {"output": name, "passed": True, "failure_reason": ""}
|
| 695 |
+
|
| 696 |
+
if name == "quaternions_rotations":
|
| 697 |
+
# Use QuaternionValidator for quaternions
|
| 698 |
+
quat_result = quat_validator.validate(pt_output, coreml_output, image_name=image_name)
|
| 699 |
+
|
| 700 |
+
result.update({
|
| 701 |
+
"max_diff": f"{quat_result['stats']['max']:.6f}",
|
| 702 |
+
"mean_diff": f"{quat_result['stats']['mean']:.6f}",
|
| 703 |
+
"p99_diff": f"{quat_result['stats']['p99']:.6f}",
|
| 704 |
+
"passed": quat_result["passed"],
|
| 705 |
+
"failure_reason": "; ".join(quat_result["failure_reasons"]) if quat_result["failure_reasons"] else "",
|
| 706 |
+
})
|
| 707 |
+
else:
|
| 708 |
+
# Standard numerical comparison
|
| 709 |
+
diff = np.abs(pt_output - coreml_output)
|
| 710 |
+
output_tolerance = tolerances.get(name, 0.01)
|
| 711 |
+
max_diff = np.max(diff)
|
| 712 |
+
|
| 713 |
+
result.update({
|
| 714 |
+
"max_diff": f"{max_diff:.6f}",
|
| 715 |
+
"mean_diff": f"{np.mean(diff):.6f}",
|
| 716 |
+
"p99_diff": f"{np.percentile(diff, 99):.6f}",
|
| 717 |
+
})
|
| 718 |
+
|
| 719 |
+
if max_diff > output_tolerance:
|
| 720 |
+
result["passed"] = False
|
| 721 |
+
result["failure_reason"] = f"max diff {max_diff:.6f} > tolerance {output_tolerance:.6f}"
|
| 722 |
+
|
| 723 |
+
validation_results.append(result)
|
| 724 |
+
|
| 725 |
+
return validation_results
|
| 726 |
+
|
| 727 |
+
|
| 728 |
def format_validation_table(
|
| 729 |
validation_results: list[dict],
|
| 730 |
image_name: str,
|
|
|
|
| 1289 |
"""
|
| 1290 |
# Load and preprocess the input image
|
| 1291 |
test_image = load_and_preprocess_image(image_path, input_shape)
|
| 1292 |
+
|
| 1293 |
+
# Run inference on both models
|
| 1294 |
+
pt_outputs, coreml_outputs = run_inference_pair(pytorch_model, mlmodel, test_image)
|
| 1295 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1296 |
# Tolerances for real image validation
|
| 1297 |
+
tolerance_config = ToleranceConfig()
|
| 1298 |
+
tolerances = tolerance_config.image_tolerances
|
| 1299 |
+
|
| 1300 |
+
# Use provided validator or create default with image tolerances
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1301 |
if quat_validator is None:
|
| 1302 |
+
quat_validator = QuaternionValidator(
|
| 1303 |
+
angular_tolerances=tolerance_config.angular_tolerances_image
|
| 1304 |
+
)
|
| 1305 |
+
|
| 1306 |
+
# Compare outputs
|
| 1307 |
+
validation_results = compare_outputs(
|
| 1308 |
+
pt_outputs,
|
| 1309 |
+
coreml_outputs,
|
| 1310 |
+
tolerances,
|
| 1311 |
+
quat_validator,
|
| 1312 |
+
image_name=image_path.name
|
| 1313 |
+
)
|
| 1314 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1315 |
return validation_results
|
| 1316 |
|
| 1317 |
|
|
|
|
| 1476 |
action="store_true",
|
| 1477 |
help="Validate Core ML model against PyTorch",
|
| 1478 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1479 |
parser.add_argument(
|
| 1480 |
"-v", "--verbose",
|
| 1481 |
action="store_true",
|
|
|
|
| 1524 |
precision = ct.precision.FLOAT16 if args.precision == "float16" else ct.precision.FLOAT32
|
| 1525 |
|
| 1526 |
# Convert to Core ML
|
| 1527 |
+
LOGGER.info("Converting using direct tracing...")
|
| 1528 |
+
mlmodel = convert_to_coreml(
|
| 1529 |
+
predictor,
|
| 1530 |
+
args.output,
|
| 1531 |
+
input_shape=input_shape,
|
| 1532 |
+
compute_precision=precision,
|
| 1533 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1534 |
|
| 1535 |
LOGGER.info(f"Core ML model saved to {args.output}")
|
| 1536 |
|
|
|
|
| 1564 |
|
| 1565 |
if __name__ == "__main__":
|
| 1566 |
exit(main())
|
| 1567 |
+
exit(main())
|
sharp.mlpackage/Data/com.apple.CoreML/model.mlmodel
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 938769
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e9fd96f088b6d324250226cfcbe7e197b735dbb9322687c177b4c2a8377fb51
|
| 3 |
size 938769
|
sharp.mlpackage/Manifest.json
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
{
|
| 2 |
"fileFormatVersion": "1.0.0",
|
| 3 |
"itemInfoEntries": {
|
| 4 |
-
"
|
| 5 |
-
"author": "com.apple.CoreML",
|
| 6 |
-
"description": "CoreML Model Weights",
|
| 7 |
-
"name": "weights",
|
| 8 |
-
"path": "com.apple.CoreML/weights"
|
| 9 |
-
},
|
| 10 |
-
"D59C5780-FA59-423A-8088-BCF64225C1B3": {
|
| 11 |
"author": "com.apple.CoreML",
|
| 12 |
"description": "CoreML Model Specification",
|
| 13 |
"name": "model.mlmodel",
|
| 14 |
"path": "com.apple.CoreML/model.mlmodel"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
| 16 |
},
|
| 17 |
-
"rootModelIdentifier": "
|
| 18 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"fileFormatVersion": "1.0.0",
|
| 3 |
"itemInfoEntries": {
|
| 4 |
+
"551E6A6B-AAB8-4DA8-B1D0-2D3A73254AD2": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"author": "com.apple.CoreML",
|
| 6 |
"description": "CoreML Model Specification",
|
| 7 |
"name": "model.mlmodel",
|
| 8 |
"path": "com.apple.CoreML/model.mlmodel"
|
| 9 |
+
},
|
| 10 |
+
"DD041C71-3C41-47F0-830E-A829C8EEC1EA": {
|
| 11 |
+
"author": "com.apple.CoreML",
|
| 12 |
+
"description": "CoreML Model Weights",
|
| 13 |
+
"name": "weights",
|
| 14 |
+
"path": "com.apple.CoreML/weights"
|
| 15 |
}
|
| 16 |
},
|
| 17 |
+
"rootModelIdentifier": "551E6A6B-AAB8-4DA8-B1D0-2D3A73254AD2"
|
| 18 |
}
|