pdx97 commited on
Commit
b8b87e7
1 Parent(s): f9ab620

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.36 +/- 43.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e51ff7613f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e51ff761480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e51ff761510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e51ff7615a0>", "_build": "<function ActorCriticPolicy._build at 0x7e51ff761630>", "forward": "<function ActorCriticPolicy.forward at 0x7e51ff7616c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e51ff761750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e51ff7617e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e51ff761870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e51ff761900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e51ff761990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e51ff761a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e51ff764540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710486144093645287, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAB4uqL44iAE//2xAPq23k76os769wZCoPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+WkVvddmiMAWyUTQsBjAF0lEdAlrW8Ti83/HV9lChoBkdAbneqdYnv2GgHS/RoCEdAlrauxW1c+3V9lChoBkdAcVJPBBRht2gHTekBaAhHQJa6HRx95Qh1fZQoaAZHQHDFJjUd7v5oB00XAWgIR0CWuz0D2alUdX2UKGgGR0BgNfLRrrPdaAdN6ANoCEdAlsCUR8MNMHV9lChoBkdAcgm4QSSNfmgHTSABaAhHQJbBwsWfseJ1fZQoaAZHQGxKwm/nGKhoB02aAWgIR0CWxKza9K28dX2UKGgGR0BoaT9MsYl6aAdN6ANoCEdAlsjOWv8qF3V9lChoBkdAcHa0XgtOEmgHTb8BaAhHQJbNEjJMg2Z1fZQoaAZHQG5462WpqAVoB00UAmgIR0CWz9j0L+gldX2UKGgGR0Bu8+QEIPbxaAdN6wFoCEdAltQoxk/bCnV9lChoBkdASoq/ub7TD2gHS/xoCEdAltUrblA/s3V9lChoBkdAcOY49HMEBGgHTUkBaAhHQJbWdjJ+2E11fZQoaAZHQCXRsbedkJ9oB0vvaAhHQJbYt0gbIcR1fZQoaAZHQHCXSWeHzpZoB00mAWgIR0CW2e8tPHktdX2UKGgGR0Bx5l4LThHcaAdN8gJoCEdAlt5JCa7Va3V9lChoBkdAcpPdZq20A2gHTVkBaAhHQJbfuTxG2Cx1fZQoaAZHQHEWkvGp++doB00+AWgIR0CW4Pqjafz0dX2UKGgGR0ByYGMERraeaAdNEAFoCEdAluNymIj4YnV9lChoBkdAcJHd/8VHnWgHTUQBaAhHQJbkuHj6vaF1fZQoaAZHQHHPGJ3xFy9oB00oAWgIR0CW5eG/N7jUdX2UKGgGR0BwGkn1FpfyaAdNTwFoCEdAluiFZLZi/nV9lChoBkdAcSuFmnO0LWgHTSABaAhHQJbpolPacqh1fZQoaAZHQHJXtYKYzBRoB00+AWgIR0CW6uNY8uBddX2UKGgGR0ByBvkyULUkaAdNHQFoCEdAluv8tCiRGXV9lChoBkdARujlzU7SzGgHS89oCEdAlu4SWE9MbnV9lChoBkdAR+q7ZnL7oGgHS9BoCEdAlu7m0/nnuHV9lChoBkdAcGzKwIMSb2gHTTcBaAhHQJbwFiI+GGp1fZQoaAZHQG2MhJiAlOZoB02YAWgIR0CW8wkTHsC1dX2UKGgGR0BuZ2938n/laAdNGwFoCEdAlvQYu9OARXV9lChoBkdAbaf86V+qi2gHTSgBaAhHQJb1P2QGOdZ1fZQoaAZHQG7QgIppeu5oB00rAWgIR0CW9mebd8ArdX2UKGgGR0BMkxWtEG7jaAdL2GgIR0CW+I9FF2FGdX2UKGgGR0Bw+3Sa3I+4aAdNCAFoCEdAlvmPOD8Lr3V9lChoBkdAcFgMKTjebmgHTWgBaAhHQJb67Pmgam51fZQoaAZHQHLJL4rSVnpoB01GAWgIR0CW/nE0zj3mdX2UKGgGR0BxXKBlMAWBaAdNGgFoCEdAlv/eX7cfvHV9lChoBkdASg6nBLwnY2gHS/hoCEdAlwEZrHlwLnV9lChoBkdAcbJ3LV4HHGgHTUkBaAhHQJcC9Qj2SMd1fZQoaAZHQG5zSPU8V59oB00RAWgIR0CXBgAeaKDTdX2UKGgGR0BwiAsPJ7swaAdNZgFoCEdAlwdcvugHvHV9lChoBkdAcYmz9CNS62gHTQsBaAhHQJcIaVzIV/N1fZQoaAZHQHJKL4i5d4VoB00tAWgIR0CXCufb9If9dX2UKGgGR0BwFG6reZXuaAdNEwFoCEdAlwv1u3trsXV9lChoBkdAcnENliBoVWgHTRIBaAhHQJcNDiS7oSt1fZQoaAZHQHDjkGmk30hoB00rAWgIR0CXDjQID5j6dX2UKGgGR0Bxl1y2hIvraAdNJgFoCEdAlxCUIcBEKHV9lChoBkdAcH1Ie5nUUmgHTVEBaAhHQJcR5THbRF91fZQoaAZHQHAilYdQwbloB00lAWgIR0CXEwq9GqgidX2UKGgGR0BypGHCXQdCaAdNYQFoCEdAlxWw/s3Q2XV9lChoBkdAcJqZ3cHnlmgHTSMBaAhHQJcWz1J17pp1fZQoaAZHQHH5yJoCdSVoB00JAWgIR0CXF9bbUPQOdX2UKGgGR0Bw9cjSofjkaAdNVgFoCEdAlxqGBjFyaXV9lChoBkdAcJjjua4MF2gHTRgBaAhHQJcbm4rjHXF1fZQoaAZHQG36OafBeoloB00rAWgIR0CXHM6dDpkgdX2UKGgGR0Bx2odhiLEUaAdNPQFoCEdAlx4PLowEhnV9lChoBkdAb4wnCO3lS2gHTRkBaAhHQJcgZdcB2fV1fZQoaAZHQHDjiMHbAUNoB00AAWgIR0CXIWWattALdX2UKGgGR0BwBO5VfeDWaAdNZAFoCEdAlyLEmx+rl3V9lChoBkdAcJ5izLOiWWgHTS4BaAhHQJclNxzaK1p1fZQoaAZHQHHia0tyxRloB0v/aAhHQJcmM4EOiFl1fZQoaAZHQHJgxcJMQEpoB01cAWgIR0CXJ5pt78ekdX2UKGgGR0Bt9HzcynDSaAdNNwFoCEdAlyjNQGfPHHV9lChoBkdAb8uNIbwSamgHTS8BaAhHQJcrN7w8W9F1fZQoaAZHQHFpAhKUVzpoB0v6aAhHQJcsJ1loUSJ1fZQoaAZHQHEpJOJtSAJoB001AWgIR0CXLZF85S3tdX2UKGgGR0BweINI9TxYaAdL7mgIR0CXMJKJl8PXdX2UKGgGR0BxNmc6NlyzaAdNRAFoCEdAlzJQM6RyO3V9lChoBkdAcwB9iMHbAWgHTR4BaAhHQJcz/Pw/gR91fZQoaAZHQG4eo6Kcd5poB00QAWgIR0CXNZJrcj7idX2UKGgGR0BtyYuK4x1xaAdNWAFoCEdAlzildxAB1nV9lChoBkdAcFtidrftQmgHTVMBaAhHQJc6d2X9itt1fZQoaAZHQHJq9V3ljmVoB00KAWgIR0CXO9oMa0hNdX2UKGgGR0BwBetITXaraAdNDAFoCEdAlz7/gvUSZnV9lChoBkdATIUdkrf+CWgHS+9oCEdAl0BAco6S1XV9lChoBkdAcNW3Jgb6xmgHTQ0BaAhHQJdB4S00FbF1fZQoaAZHQHFFTjaPCEZoB01AAWgIR0CXQ3Q1rIo3dX2UKGgGR0BwxzBtUGVzaAdNAQFoCEdAl0WtH2AXmHV9lChoBkdAbgbCRfWtl2gHTSABaAhHQJdG1rzoUzt1fZQoaAZHQHLAf4AS39doB00PAWgIR0CXR+Uvf0mMdX2UKGgGR0Bj8bv7WNFSaAdN6ANoCEdAl00XvQWvbHV9lChoBkdAcD5vlEJBxGgHTSgBaAhHQJdOO+L3sX11fZQoaAZHQHJHDuOS4e9oB0vsaAhHQJdQZWuHN5d1fZQoaAZHQHAwuMqBmPJoB0v3aAhHQJdRVI5HVgB1fZQoaAZHQHEHLZvkzXVoB00vAWgIR0CXUoEgGKQ8dX2UKGgGR0BvW/NZ/0/XaAdNHgFoCEdAl1TnzMA3k3V9lChoBkdAcUG+N96Tn2gHTVYBaAhHQJdWMV9F4LV1fZQoaAZHQHKfsgdOqNpoB00sAWgIR0CXV3KraM72dX2UKGgGR0ByQ9HQQcxTaAdNWQFoCEdAl1jB5X2du3V9lChoBkdAbJFAyEcsDmgHTSgBaAhHQJdbXX/YJ3R1fZQoaAZHQHF1wI2OyVxoB00JAWgIR0CXXFziCJ40dX2UKGgGR0BwC3BHkLhKaAdNEwFoCEdAl11pqEeyRnV9lChoBkdAcN2NUwSJ0mgHTTgBaAhHQJdgXZmI0qJ1fZQoaAZHQHBaiQcPvrpoB00TAWgIR0CXYcsY2sJZdX2UKGgGR0A5v1loUSIyaAdLw2gIR0CXYsNiH6/JdX2UKGgGR0Bx0CXb/Ot5aAdNJwFoCEdAl2RIJqqOtHV9lChoBkdARvwMpgCwKWgHS9hoCEdAl2dN3fQ8fXV9lChoBkdAbpVjuKGcnWgHTS0BaAhHQJdpCVlf7aZ1fZQoaAZHQEqqKx9oexRoB0vuaAhHQJdp8nAqNId1fZQoaAZHQG92dYfW+XZoB001AWgIR0CXaytXPqs2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-pdx97.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:726104ba72fe02a330a73e7b93ffdf53d2fffd2eb523d905192771f8afd82f91
3
+ size 146895
ppo-LunarLander-v2-pdx97/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-pdx97/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e51ff7613f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e51ff761480>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e51ff761510>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e51ff7615a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e51ff761630>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e51ff7616c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e51ff761750>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e51ff7617e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e51ff761870>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e51ff761900>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e51ff761990>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e51ff761a20>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e51ff764540>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1710486144093645287,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAB4uqL44iAE//2xAPq23k76os769wZCoPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+WkVvddmiMAWyUTQsBjAF0lEdAlrW8Ti83/HV9lChoBkdAbneqdYnv2GgHS/RoCEdAlrauxW1c+3V9lChoBkdAcVJPBBRht2gHTekBaAhHQJa6HRx95Qh1fZQoaAZHQHDFJjUd7v5oB00XAWgIR0CWuz0D2alUdX2UKGgGR0BgNfLRrrPdaAdN6ANoCEdAlsCUR8MNMHV9lChoBkdAcgm4QSSNfmgHTSABaAhHQJbBwsWfseJ1fZQoaAZHQGxKwm/nGKhoB02aAWgIR0CWxKza9K28dX2UKGgGR0BoaT9MsYl6aAdN6ANoCEdAlsjOWv8qF3V9lChoBkdAcHa0XgtOEmgHTb8BaAhHQJbNEjJMg2Z1fZQoaAZHQG5462WpqAVoB00UAmgIR0CWz9j0L+gldX2UKGgGR0Bu8+QEIPbxaAdN6wFoCEdAltQoxk/bCnV9lChoBkdASoq/ub7TD2gHS/xoCEdAltUrblA/s3V9lChoBkdAcOY49HMEBGgHTUkBaAhHQJbWdjJ+2E11fZQoaAZHQCXRsbedkJ9oB0vvaAhHQJbYt0gbIcR1fZQoaAZHQHCXSWeHzpZoB00mAWgIR0CW2e8tPHktdX2UKGgGR0Bx5l4LThHcaAdN8gJoCEdAlt5JCa7Va3V9lChoBkdAcpPdZq20A2gHTVkBaAhHQJbfuTxG2Cx1fZQoaAZHQHEWkvGp++doB00+AWgIR0CW4Pqjafz0dX2UKGgGR0ByYGMERraeaAdNEAFoCEdAluNymIj4YnV9lChoBkdAcJHd/8VHnWgHTUQBaAhHQJbkuHj6vaF1fZQoaAZHQHHPGJ3xFy9oB00oAWgIR0CW5eG/N7jUdX2UKGgGR0BwGkn1FpfyaAdNTwFoCEdAluiFZLZi/nV9lChoBkdAcSuFmnO0LWgHTSABaAhHQJbpolPacqh1fZQoaAZHQHJXtYKYzBRoB00+AWgIR0CW6uNY8uBddX2UKGgGR0ByBvkyULUkaAdNHQFoCEdAluv8tCiRGXV9lChoBkdARujlzU7SzGgHS89oCEdAlu4SWE9MbnV9lChoBkdAR+q7ZnL7oGgHS9BoCEdAlu7m0/nnuHV9lChoBkdAcGzKwIMSb2gHTTcBaAhHQJbwFiI+GGp1fZQoaAZHQG2MhJiAlOZoB02YAWgIR0CW8wkTHsC1dX2UKGgGR0BuZ2938n/laAdNGwFoCEdAlvQYu9OARXV9lChoBkdAbaf86V+qi2gHTSgBaAhHQJb1P2QGOdZ1fZQoaAZHQG7QgIppeu5oB00rAWgIR0CW9mebd8ArdX2UKGgGR0BMkxWtEG7jaAdL2GgIR0CW+I9FF2FGdX2UKGgGR0Bw+3Sa3I+4aAdNCAFoCEdAlvmPOD8Lr3V9lChoBkdAcFgMKTjebmgHTWgBaAhHQJb67Pmgam51fZQoaAZHQHLJL4rSVnpoB01GAWgIR0CW/nE0zj3mdX2UKGgGR0BxXKBlMAWBaAdNGgFoCEdAlv/eX7cfvHV9lChoBkdASg6nBLwnY2gHS/hoCEdAlwEZrHlwLnV9lChoBkdAcbJ3LV4HHGgHTUkBaAhHQJcC9Qj2SMd1fZQoaAZHQG5zSPU8V59oB00RAWgIR0CXBgAeaKDTdX2UKGgGR0BwiAsPJ7swaAdNZgFoCEdAlwdcvugHvHV9lChoBkdAcYmz9CNS62gHTQsBaAhHQJcIaVzIV/N1fZQoaAZHQHJKL4i5d4VoB00tAWgIR0CXCufb9If9dX2UKGgGR0BwFG6reZXuaAdNEwFoCEdAlwv1u3trsXV9lChoBkdAcnENliBoVWgHTRIBaAhHQJcNDiS7oSt1fZQoaAZHQHDjkGmk30hoB00rAWgIR0CXDjQID5j6dX2UKGgGR0Bxl1y2hIvraAdNJgFoCEdAlxCUIcBEKHV9lChoBkdAcH1Ie5nUUmgHTVEBaAhHQJcR5THbRF91fZQoaAZHQHAilYdQwbloB00lAWgIR0CXEwq9GqgidX2UKGgGR0BypGHCXQdCaAdNYQFoCEdAlxWw/s3Q2XV9lChoBkdAcJqZ3cHnlmgHTSMBaAhHQJcWz1J17pp1fZQoaAZHQHH5yJoCdSVoB00JAWgIR0CXF9bbUPQOdX2UKGgGR0Bw9cjSofjkaAdNVgFoCEdAlxqGBjFyaXV9lChoBkdAcJjjua4MF2gHTRgBaAhHQJcbm4rjHXF1fZQoaAZHQG36OafBeoloB00rAWgIR0CXHM6dDpkgdX2UKGgGR0Bx2odhiLEUaAdNPQFoCEdAlx4PLowEhnV9lChoBkdAb4wnCO3lS2gHTRkBaAhHQJcgZdcB2fV1fZQoaAZHQHDjiMHbAUNoB00AAWgIR0CXIWWattALdX2UKGgGR0BwBO5VfeDWaAdNZAFoCEdAlyLEmx+rl3V9lChoBkdAcJ5izLOiWWgHTS4BaAhHQJclNxzaK1p1fZQoaAZHQHHia0tyxRloB0v/aAhHQJcmM4EOiFl1fZQoaAZHQHJgxcJMQEpoB01cAWgIR0CXJ5pt78ekdX2UKGgGR0Bt9HzcynDSaAdNNwFoCEdAlyjNQGfPHHV9lChoBkdAb8uNIbwSamgHTS8BaAhHQJcrN7w8W9F1fZQoaAZHQHFpAhKUVzpoB0v6aAhHQJcsJ1loUSJ1fZQoaAZHQHEpJOJtSAJoB001AWgIR0CXLZF85S3tdX2UKGgGR0BweINI9TxYaAdL7mgIR0CXMJKJl8PXdX2UKGgGR0BxNmc6NlyzaAdNRAFoCEdAlzJQM6RyO3V9lChoBkdAcwB9iMHbAWgHTR4BaAhHQJcz/Pw/gR91fZQoaAZHQG4eo6Kcd5poB00QAWgIR0CXNZJrcj7idX2UKGgGR0BtyYuK4x1xaAdNWAFoCEdAlzildxAB1nV9lChoBkdAcFtidrftQmgHTVMBaAhHQJc6d2X9itt1fZQoaAZHQHJq9V3ljmVoB00KAWgIR0CXO9oMa0hNdX2UKGgGR0BwBetITXaraAdNDAFoCEdAlz7/gvUSZnV9lChoBkdATIUdkrf+CWgHS+9oCEdAl0BAco6S1XV9lChoBkdAcNW3Jgb6xmgHTQ0BaAhHQJdB4S00FbF1fZQoaAZHQHFFTjaPCEZoB01AAWgIR0CXQ3Q1rIo3dX2UKGgGR0BwxzBtUGVzaAdNAQFoCEdAl0WtH2AXmHV9lChoBkdAbgbCRfWtl2gHTSABaAhHQJdG1rzoUzt1fZQoaAZHQHLAf4AS39doB00PAWgIR0CXR+Uvf0mMdX2UKGgGR0Bj8bv7WNFSaAdN6ANoCEdAl00XvQWvbHV9lChoBkdAcD5vlEJBxGgHTSgBaAhHQJdOO+L3sX11fZQoaAZHQHJHDuOS4e9oB0vsaAhHQJdQZWuHN5d1fZQoaAZHQHAwuMqBmPJoB0v3aAhHQJdRVI5HVgB1fZQoaAZHQHEHLZvkzXVoB00vAWgIR0CXUoEgGKQ8dX2UKGgGR0BvW/NZ/0/XaAdNHgFoCEdAl1TnzMA3k3V9lChoBkdAcUG+N96Tn2gHTVYBaAhHQJdWMV9F4LV1fZQoaAZHQHKfsgdOqNpoB00sAWgIR0CXV3KraM72dX2UKGgGR0ByQ9HQQcxTaAdNWQFoCEdAl1jB5X2du3V9lChoBkdAbJFAyEcsDmgHTSgBaAhHQJdbXX/YJ3R1fZQoaAZHQHF1wI2OyVxoB00JAWgIR0CXXFziCJ40dX2UKGgGR0BwC3BHkLhKaAdNEwFoCEdAl11pqEeyRnV9lChoBkdAcN2NUwSJ0mgHTTgBaAhHQJdgXZmI0qJ1fZQoaAZHQHBaiQcPvrpoB00TAWgIR0CXYcsY2sJZdX2UKGgGR0A5v1loUSIyaAdLw2gIR0CXYsNiH6/JdX2UKGgGR0Bx0CXb/Ot5aAdNJwFoCEdAl2RIJqqOtHV9lChoBkdARvwMpgCwKWgHS9hoCEdAl2dN3fQ8fXV9lChoBkdAbpVjuKGcnWgHTS0BaAhHQJdpCVlf7aZ1fZQoaAZHQEqqKx9oexRoB0vuaAhHQJdp8nAqNId1fZQoaAZHQG92dYfW+XZoB001AWgIR0CXaytXPqs2dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-pdx97/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bc434b4714fd49fac53124a2acb0a8e9d70f024c53ea4a0c0b6220ff614f26b
3
+ size 87978
ppo-LunarLander-v2-pdx97/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd77f977b30c1d7d0a4ab9d0d4844e53aaa99047b7daa8f6632012f6efc0d8b2
3
+ size 43634
ppo-LunarLander-v2-pdx97/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2-pdx97/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (189 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.36263632718635, "std_reward": 43.26036535815052, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-15T07:29:44.128602"}