Pedro Cuenca
commited on
Commit
·
e41df72
1
Parent(s):
c665395
* Add README.
Browse filesTraining details to be added later. I performed it incrementally due to
the difficulty in manipulating the dataset, and don't have a
self-contained script right now.
The evaluation script, however, is correct as far as I can tell, and
represents the pre-processing steps that I followed.
Note that the `wer` metric produces a memory error when used on large
datasets. I created a version that accumulates the base measures and
then computes the result, instead of doing it on all samples at once.
README.md
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: es
|
| 3 |
+
datasets:
|
| 4 |
+
- common_voice
|
| 5 |
+
metrics:
|
| 6 |
+
- wer
|
| 7 |
+
tags:
|
| 8 |
+
- audio
|
| 9 |
+
- automatic-speech-recognition
|
| 10 |
+
- speech
|
| 11 |
+
- xlsr-fine-tuning-week
|
| 12 |
+
license: apache-2.0
|
| 13 |
+
model-index:
|
| 14 |
+
- name: XLSR Wav2Vec2 Large 53 Spanish by pcuenq
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
name: Speech Recognition
|
| 18 |
+
type: automatic-speech-recognition
|
| 19 |
+
dataset:
|
| 20 |
+
name: Common Voice es
|
| 21 |
+
type: common_voice
|
| 22 |
+
args: es
|
| 23 |
+
metrics:
|
| 24 |
+
- name: Test WER
|
| 25 |
+
type: wer
|
| 26 |
+
value: 13.47
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# Wav2Vec2-Large-XLSR-53-Spanish
|
| 30 |
+
|
| 31 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Spanish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset{s}.
|
| 32 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
| 33 |
+
|
| 34 |
+
## Usage
|
| 35 |
+
|
| 36 |
+
The model can be used directly (without a language model) as follows:
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
import torch
|
| 40 |
+
import torchaudio
|
| 41 |
+
from datasets import load_dataset
|
| 42 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 43 |
+
|
| 44 |
+
test_dataset = load_dataset("common_voice", "es", split="test[:2%]")
|
| 45 |
+
|
| 46 |
+
processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es")
|
| 47 |
+
model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es")
|
| 48 |
+
|
| 49 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 50 |
+
|
| 51 |
+
# Preprocessing the datasets.
|
| 52 |
+
# We need to read the audio files as arrays
|
| 53 |
+
def speech_file_to_array_fn(batch):
|
| 54 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 55 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 56 |
+
return batch
|
| 57 |
+
|
| 58 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 59 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 60 |
+
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 63 |
+
|
| 64 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
+
|
| 66 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 67 |
+
print("Reference:", test_dataset["sentence"][:2])
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
## Evaluation
|
| 72 |
+
|
| 73 |
+
The model can be evaluated as follows on the Spanish test data of Common Voice.
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
import torch
|
| 77 |
+
import torchaudio
|
| 78 |
+
from datasets import load_dataset, load_metric
|
| 79 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 80 |
+
import re
|
| 81 |
+
|
| 82 |
+
test_dataset = load_dataset("common_voice", "es", split="test")
|
| 83 |
+
wer = load_metric("wer")
|
| 84 |
+
|
| 85 |
+
processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es")
|
| 86 |
+
model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es")
|
| 87 |
+
model.to("cuda")
|
| 88 |
+
|
| 89 |
+
## Text pre-processing
|
| 90 |
+
|
| 91 |
+
chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]'
|
| 92 |
+
chars_to_ignore_pattern = re.compile(chars_to_ignore_regex)
|
| 93 |
+
|
| 94 |
+
def remove_special_characters(batch):
|
| 95 |
+
batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " "
|
| 96 |
+
return batch
|
| 97 |
+
|
| 98 |
+
def replace_diacritics(batch):
|
| 99 |
+
sentence = batch["sentence"]
|
| 100 |
+
sentence = re.sub('ì', 'í', sentence)
|
| 101 |
+
sentence = re.sub('ù', 'ú', sentence)
|
| 102 |
+
sentence = re.sub('ò', 'ó', sentence)
|
| 103 |
+
sentence = re.sub('à', 'á', sentence)
|
| 104 |
+
batch["sentence"] = sentence
|
| 105 |
+
return batch
|
| 106 |
+
|
| 107 |
+
def replace_additional(batch):
|
| 108 |
+
sentence = batch["sentence"]
|
| 109 |
+
sentence = re.sub('ã', 'a', sentence) # Portuguese, as in São Paulo
|
| 110 |
+
sentence = re.sub('ō', 'o', sentence) # Japanese
|
| 111 |
+
sentence = re.sub('ê', 'e', sentence) # Português
|
| 112 |
+
batch["sentence"] = sentence
|
| 113 |
+
return batch
|
| 114 |
+
|
| 115 |
+
## Audio pre-processing
|
| 116 |
+
|
| 117 |
+
# I tried to perform the resampling using a `torchaudio` `Resampler` transform,
|
| 118 |
+
# but found that the process deadlocked when using multiple processes.
|
| 119 |
+
# Perhaps my torchaudio is using the wrong sox library under the hood, I'm not sure.
|
| 120 |
+
# Fortunately, `librosa` seems to work fine, so that's what I'll use for now.
|
| 121 |
+
|
| 122 |
+
import librosa
|
| 123 |
+
def speech_file_to_array_fn(batch):
|
| 124 |
+
speech_array, _ = torchaudio.load(batch["path"])
|
| 125 |
+
batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), 48_000, 16_000)
|
| 126 |
+
return batch
|
| 127 |
+
|
| 128 |
+
# One-pass mapping function
|
| 129 |
+
|
| 130 |
+
# Text transformation and audio resampling
|
| 131 |
+
def cv_prepare(batch):
|
| 132 |
+
batch = remove_special_characters(batch)
|
| 133 |
+
batch = replace_diacritics(batch)
|
| 134 |
+
batch = replace_additional(batch)
|
| 135 |
+
batch = speech_file_to_array_fn(batch)
|
| 136 |
+
return batch
|
| 137 |
+
|
| 138 |
+
# Number of CPUs or None
|
| 139 |
+
num_proc = 16
|
| 140 |
+
|
| 141 |
+
test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc)
|
| 142 |
+
|
| 143 |
+
def evaluate(batch):
|
| 144 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 145 |
+
|
| 146 |
+
with torch.no_grad():
|
| 147 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 148 |
+
|
| 149 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 150 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 151 |
+
return batch
|
| 152 |
+
|
| 153 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 154 |
+
|
| 155 |
+
# WER Metric computation
|
| 156 |
+
# `wer.compute` crashes in my computer with more than ~10000 samples.
|
| 157 |
+
# Until I confirm in a different one, I created a "chunked" version of the computation.
|
| 158 |
+
# It gives the same results as `wer.compute` for smaller datasets.
|
| 159 |
+
|
| 160 |
+
import jiwer
|
| 161 |
+
|
| 162 |
+
def chunked_wer(targets, predictions, chunk_size=None):
|
| 163 |
+
if chunk_size is None: return jiwer.wer(targets, predictions)
|
| 164 |
+
start = 0
|
| 165 |
+
end = chunk_size
|
| 166 |
+
H, S, D, I = 0, 0, 0, 0
|
| 167 |
+
while start < len(targets):
|
| 168 |
+
chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
|
| 169 |
+
H = H + chunk_metrics["hits"]
|
| 170 |
+
S = S + chunk_metrics["substitutions"]
|
| 171 |
+
D = D + chunk_metrics["deletions"]
|
| 172 |
+
I = I + chunk_metrics["insertions"]
|
| 173 |
+
start += chunk_size
|
| 174 |
+
end += chunk_size
|
| 175 |
+
return float(S + D + I) / float(H + S + D)
|
| 176 |
+
|
| 177 |
+
print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
|
| 178 |
+
#print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
| 179 |
+
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
**Test Result**: 13.47 %
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
## Training
|
| 186 |
+
|
| 187 |
+
The Common Voice `train` and `validation` datasets were used for training.
|
| 188 |
+
|
| 189 |
+
Training details TBD (I did it incrementally, don't have a self-contained script right now).
|
| 190 |
+
|