Taizo Kaneko
commited on
Commit
·
7fe102c
1
Parent(s):
67a2f9a
commit files to HF hub
Browse files- config.json +3 -2
- fasttext_fsc.py +69 -24
- pytorch_model.bin +2 -2
config.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"FastTextForSeuqenceClassification"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
-
"AutoConfig": "
|
7 |
"AutoModelForSequenceClassification": "fasttext_fsc.FastTextForSeuqenceClassification"
|
8 |
},
|
9 |
"hidden_size": 300,
|
@@ -19,9 +19,10 @@
|
|
19 |
},
|
20 |
"max_length": 128,
|
21 |
"model_type": "fasttext_jp",
|
|
|
22 |
"tokenizerI_class": "FastTextJpTokenizer",
|
23 |
"tokenizer_class": "FastTextJpTokenizer",
|
24 |
"torch_dtype": "float32",
|
25 |
"transformers_version": "4.23.1",
|
26 |
-
"vocab_size":
|
27 |
}
|
|
|
3 |
"FastTextForSeuqenceClassification"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
+
"AutoConfig": "fasttext_fsc.FastTextForSeuqenceClassificationConfig",
|
7 |
"AutoModelForSequenceClassification": "fasttext_fsc.FastTextForSeuqenceClassification"
|
8 |
},
|
9 |
"hidden_size": 300,
|
|
|
19 |
},
|
20 |
"max_length": 128,
|
21 |
"model_type": "fasttext_jp",
|
22 |
+
"ngram": 2,
|
23 |
"tokenizerI_class": "FastTextJpTokenizer",
|
24 |
"tokenizer_class": "FastTextJpTokenizer",
|
25 |
"torch_dtype": "float32",
|
26 |
"transformers_version": "4.23.1",
|
27 |
+
"vocab_size": 2000000
|
28 |
}
|
fasttext_fsc.py
CHANGED
@@ -7,51 +7,96 @@ from .fasttext_jp_embedding import FastTextJpModel, FastTextJpConfig
|
|
7 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
class FastTextForSeuqenceClassification(FastTextJpModel):
|
11 |
"""FastTextのベクトルをベースとした分類を行います。
|
12 |
"""
|
13 |
|
14 |
-
def __init__(self, config:
|
|
|
|
|
15 |
super().__init__(config)
|
16 |
|
17 |
def forward(self, **inputs) -> SequenceClassifierOutput:
|
18 |
-
"""
|
19 |
|
20 |
Returns:
|
21 |
-
|
22 |
"""
|
23 |
input_ids = inputs["input_ids"]
|
24 |
outputs = self.word_embeddings(input_ids)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
logits.append([[torch.log(p), -torch.inf, torch.log(1 - p)]])
|
45 |
logits = torch.FloatTensor(logits)
|
46 |
return SequenceClassifierOutput(
|
47 |
loss=None,
|
48 |
-
logits=logits,
|
49 |
hidden_states=None,
|
50 |
attentions=None,
|
51 |
)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# AutoModelに登録が必要だが、いろいろやり方が変わっているようで定まっていない。(2022/11/6)
|
55 |
# https://huggingface.co/docs/transformers/custom_models#sending-the-code-to-the-hub
|
|
|
56 |
FastTextForSeuqenceClassification.register_for_auto_class(
|
57 |
"AutoModelForSequenceClassification")
|
|
|
7 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
8 |
|
9 |
|
10 |
+
class FastTextForSeuqenceClassificationConfig(FastTextJpConfig):
|
11 |
+
"""FastTextJpModelのConfig
|
12 |
+
"""
|
13 |
+
model_type = "fasttext_jp"
|
14 |
+
|
15 |
+
def __init__(self,
|
16 |
+
ngram: int = 2,
|
17 |
+
tokenizer_class="FastTextJpTokenizer",
|
18 |
+
**kwargs):
|
19 |
+
"""初期化処理
|
20 |
+
|
21 |
+
Args:
|
22 |
+
ngram (int, optional):
|
23 |
+
文章を分割する際のNgram
|
24 |
+
tokenizer_class (str, optional):
|
25 |
+
tokenizer_classを指定しないと、pipelineから読み込まれません。
|
26 |
+
config.jsonに記載されます。
|
27 |
+
"""
|
28 |
+
self.ngram = ngram
|
29 |
+
kwargs["tokenizer_class"] = tokenizer_class
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
|
32 |
+
|
33 |
class FastTextForSeuqenceClassification(FastTextJpModel):
|
34 |
"""FastTextのベクトルをベースとした分類を行います。
|
35 |
"""
|
36 |
|
37 |
+
def __init__(self, config: FastTextForSeuqenceClassificationConfig):
|
38 |
+
|
39 |
+
self.ngram = config.ngram
|
40 |
super().__init__(config)
|
41 |
|
42 |
def forward(self, **inputs) -> SequenceClassifierOutput:
|
43 |
+
"""候補となるラベルから分類を行います。
|
44 |
|
45 |
Returns:
|
46 |
+
SequenceClassifierOutput: 候補が正解している確率
|
47 |
"""
|
48 |
input_ids = inputs["input_ids"]
|
49 |
outputs = self.word_embeddings(input_ids)
|
50 |
+
|
51 |
+
logits = []
|
52 |
+
for idx in range(len(outputs)):
|
53 |
+
output = outputs[idx]
|
54 |
+
# token_type_ids == 0が文章、1がラベルです。
|
55 |
+
token_type_ids = inputs["token_type_ids"][idx]
|
56 |
+
# attention_mask == 1がパディングでないもの
|
57 |
+
attention_mask = inputs["attention_mask"][idx]
|
58 |
+
|
59 |
+
sentence = output[torch.logical_and(token_type_ids == 0,
|
60 |
+
attention_mask == 1)]
|
61 |
+
candidate_label = output[torch.logical_and(token_type_ids == 1,
|
62 |
+
attention_mask == 1)]
|
63 |
+
sentence_words = self.split_ngram(sentence, self.ngram)
|
64 |
+
candidate_label_mean = torch.mean(candidate_label,
|
65 |
+
dim=-2,
|
66 |
+
keepdim=True)
|
67 |
+
p = self.cosine_similarity(sentence_words, candidate_label_mean)
|
68 |
+
logits.append([torch.log(p), -torch.inf, torch.log(1 - p)])
|
|
|
69 |
logits = torch.FloatTensor(logits)
|
70 |
return SequenceClassifierOutput(
|
71 |
loss=None,
|
72 |
+
logits=logits,
|
73 |
hidden_states=None,
|
74 |
attentions=None,
|
75 |
)
|
76 |
|
77 |
+
def cosine_similarity(
|
78 |
+
self, sentence_words: TensorType["words", "vectors"],
|
79 |
+
candidate_label_means: TensorType[1, "vectors"]) -> TensorType[1]:
|
80 |
+
res = torch.tensor(0.)
|
81 |
+
for sw in sentence_words:
|
82 |
+
p = torch.nn.functional.cosine_similarity(sw,
|
83 |
+
candidate_label_means[0],
|
84 |
+
dim=0)
|
85 |
+
if p > res:
|
86 |
+
res = p
|
87 |
+
return res
|
88 |
+
|
89 |
+
def split_ngram(self, sentences: TensorType["word", "vectors"],
|
90 |
+
n: int) -> TensorType["word", "vectors"]:
|
91 |
+
res = []
|
92 |
+
for i in range(len(sentences) - n + 1):
|
93 |
+
ngram = sentences[i:i + n]
|
94 |
+
res.append(torch.mean(ngram, dim=0, keepdim=False))
|
95 |
+
return torch.stack(res)
|
96 |
+
|
97 |
|
98 |
# AutoModelに登録が必要だが、いろいろやり方が変わっているようで定まっていない。(2022/11/6)
|
99 |
# https://huggingface.co/docs/transformers/custom_models#sending-the-code-to-the-hub
|
100 |
+
FastTextForSeuqenceClassificationConfig.register_for_auto_class()
|
101 |
FastTextForSeuqenceClassification.register_for_auto_class(
|
102 |
"AutoModelForSequenceClassification")
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba58a6e9bba7142a3d3507fc094345ae2e5ebb222fe98cdf5b2146487895314e
|
3 |
+
size 2400000829
|