patrickvonplaten commited on
Commit
501cb1d
1 Parent(s): 3a6299a
config.json ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.0,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.1,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "sum",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.1,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "gradient_checkpointing": false,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.1,
58
+ "hidden_size": 1024,
59
+ "initializer_range": 0.02,
60
+ "intermediate_size": 4096,
61
+ "layer_norm_eps": 1e-05,
62
+ "layerdrop": 0.1,
63
+ "mask_feature_length": 10,
64
+ "mask_feature_min_masks": 0,
65
+ "mask_feature_prob": 0.0,
66
+ "mask_time_length": 10,
67
+ "mask_time_min_masks": 2,
68
+ "mask_time_prob": 0.075,
69
+ "model_type": "wav2vec2",
70
+ "num_adapter_layers": 3,
71
+ "num_attention_heads": 16,
72
+ "num_codevector_groups": 2,
73
+ "num_codevectors_per_group": 320,
74
+ "num_conv_pos_embedding_groups": 16,
75
+ "num_conv_pos_embeddings": 128,
76
+ "num_feat_extract_layers": 7,
77
+ "num_hidden_layers": 24,
78
+ "num_negatives": 100,
79
+ "output_hidden_size": 1024,
80
+ "pad_token_id": 0,
81
+ "proj_codevector_dim": 768,
82
+ "tdnn_dilation": [
83
+ 1,
84
+ 2,
85
+ 3,
86
+ 1,
87
+ 1
88
+ ],
89
+ "tdnn_dim": [
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 512,
94
+ 1500
95
+ ],
96
+ "tdnn_kernel": [
97
+ 5,
98
+ 3,
99
+ 3,
100
+ 1,
101
+ 1
102
+ ],
103
+ "torch_dtype": "float32",
104
+ "transformers_version": "4.15.0.dev0",
105
+ "use_weighted_layer_sum": false,
106
+ "vocab_size": 52,
107
+ "xvector_output_dim": 512
108
+ }
phonesMatches_reduced.json CHANGED
@@ -1 +1 @@
1
- {"s": 0, "\u026f": 1, "r": 2, "p": 3, "j": 4, "\u025b": 5, "t": 6, "k": 7, "i": 8, "l": 9, "d": 10, "a": 11, "n": 12, "u": 13, "m": 14, "\u028a": 15, "\u026b": 16, "\u027e": 17, "b": 18, "\u0254": 19, "\u0283": 20, "\u026a": 21, "e": 22, "\u00e6": 23, "h": 24, "v": 25, "o": 26, "t\u0283": 27, "\u025f": 28, "\u00f8": 29, "d\u0292": 30, "f": 31, "a\u02d0": 32, "\u0153": 33, "z": 34, "\u0261": 35, "\u028a\u02d0": 36, "y": 37, "\u0292": 38, "u\u02d0": 39, "": 40, "c": 41, "o\u02d0": 42, "\u026f\u026f": 43, "y\u02d0": 44, "w": 45, "\u0153\u02d0": 46, "\u00f8\u02d0": 47}
 
1
+ {"s": 0, "\u026f": 1, "r": 2, "p": 3, "j": 4, "\u025b": 5, "t": 6, "k": 7, "i": 8, "l": 9, "d": 10, "a": 11, "n": 12, "u": 13, "m": 14, "\u028a": 15, "\u026b": 16, "\u027e": 17, "b": 18, "\u0254": 19, "\u0283": 20, "\u026a": 21, "e": 22, "\u00e6": 23, "h": 24, "v": 25, "o": 26, "t\u0283": 27, "\u025f": 28, "\u00f8": 29, "d\u0292": 30, "f": 31, "a\u02d0": 32, "\u0153": 33, "z": 34, "\u0261": 35, "\u028a\u02d0": 36, "y": 37, "\u0292": 38, "u\u02d0": 39, "": 40, "c": 41, "o\u02d0": 42, "\u026f\u026f": 43, "y\u02d0": 44, "w": 45, "\u0153\u02d0": 46, "\u00f8\u02d0": 47, "<pad>": 48, "<s>": 49, "</s>": 50, "<unk>": 51}
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:960d49e43ad9640ba3b5f517d99c95661af6c65d2eececb50e7182d27f730437
3
+ size 1262130993
run.sh ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ python -m torch.distributed.launch \
3
+ --nproc_per_node 8 run_speech_recognition_ctc.py \
4
+ --dataset_name="common_voice" \
5
+ --model_name_or_path="./" \
6
+ --tokenizer_name_or_path="./" \
7
+ --dataset_name="mozilla-foundation/common_voice_3_0" \
8
+ --path_to_eval_file="./valSeqs_1.0_uniform_new_version.text" \
9
+ --path_to_train_file="./trainSeqs_1.0_uniform_new_version.text" \
10
+ --dataset_config_name="tr" \
11
+ --text_column_name="sentence" \
12
+ --output_dir="./" \
13
+ --overwrite_output_dir \
14
+ --num_train_epochs="150" \
15
+ --per_device_train_batch_size="4" \
16
+ --per_device_eval_batch_size="4" \
17
+ --gradient_accumulation_steps="1" \
18
+ --learning_rate="7.5e-5" \
19
+ --warmup_steps="1000" \
20
+ --evaluation_strategy="steps" \
21
+ --save_steps="500" \
22
+ --eval_steps="2" \
23
+ --logging_steps="100" \
24
+ --layerdrop="0.0" \
25
+ --activation_dropout="0.1" \
26
+ --save_total_limit="3" \
27
+ --freeze_feature_extractor \
28
+ --feat_proj_dropout="0.0" \
29
+ --mask_time_prob="0.75" \
30
+ --mask_time_length="10" \
31
+ --mask_feature_prob="0.25" \
32
+ --mask_feature_length="64" \
33
+ --gradient_checkpointing \
34
+ --fp16 \
35
+ --group_by_length \
36
+ --do_train --do_eval
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,756 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.15.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_extractor: Optional[bool] = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
83
+ )
84
+ attention_dropout: Optional[float] = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: Optional[float] = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: Optional[float] = field(
91
+ default=0.0, metadata={"help": "The dropout ratio for the projected features."}
92
+ )
93
+ hidden_dropout: Optional[float] = field(
94
+ default=0.0,
95
+ metadata={
96
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
97
+ },
98
+ )
99
+ final_dropout: Optional[float] = field(
100
+ default=0.0,
101
+ metadata={"help": "The dropout probability for the final projection layer."},
102
+ )
103
+ mask_time_prob: Optional[float] = field(
104
+ default=0.05,
105
+ metadata={
106
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
107
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
108
+ "vectors will be masked along the time axis."
109
+ },
110
+ )
111
+ mask_time_length: Optional[int] = field(
112
+ default=10,
113
+ metadata={"help": "Length of vector span to mask along the time axis."},
114
+ )
115
+ mask_feature_prob: Optional[float] = field(
116
+ default=0.0,
117
+ metadata={
118
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
119
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
120
+ },
121
+ )
122
+ mask_feature_length: Optional[int] = field(
123
+ default=10,
124
+ metadata={"help": "Length of vector span to mask along the feature axis."},
125
+ )
126
+ layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."})
127
+ ctc_loss_reduction: Optional[str] = field(
128
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
129
+ )
130
+
131
+
132
+ @dataclass
133
+ class DataTrainingArguments:
134
+ """
135
+ Arguments pertaining to what data we are going to input our model for training and eval.
136
+
137
+ Using `HfArgumentParser` we can turn this class
138
+ into argparse arguments to be able to specify them on
139
+ the command line.
140
+ """
141
+
142
+ dataset_name: str = field(
143
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
144
+ )
145
+ dataset_config_name: Optional[str] = field(
146
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ train_split_name: Optional[str] = field(
149
+ default="train+validation",
150
+ metadata={
151
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
152
+ },
153
+ )
154
+ eval_split_name: Optional[str] = field(
155
+ default="test",
156
+ metadata={
157
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
158
+ },
159
+ )
160
+ audio_column_name: Optional[str] = field(
161
+ default="audio",
162
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
163
+ )
164
+ text_column_name: Optional[str] = field(
165
+ default="text",
166
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
167
+ )
168
+ overwrite_cache: bool = field(
169
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
170
+ )
171
+ preprocessing_num_workers: Optional[int] = field(
172
+ default=None,
173
+ metadata={"help": "The number of processes to use for the preprocessing."},
174
+ )
175
+ max_train_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
179
+ "value if set."
180
+ },
181
+ )
182
+ max_eval_samples: Optional[int] = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
186
+ "value if set."
187
+ },
188
+ )
189
+ chars_to_ignore: Optional[List[str]] = list_field(
190
+ default=None,
191
+ metadata={"help": "A list of characters to remove from the transcripts."},
192
+ )
193
+ eval_metrics: Optional[List[str]] = list_field(
194
+ default=["wer"],
195
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
196
+ )
197
+ max_duration_in_seconds: Optional[float] = field(
198
+ default=20.0,
199
+ metadata={
200
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
201
+ },
202
+ )
203
+ min_duration_in_seconds: Optional[float] = field(
204
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
205
+ )
206
+ preprocessing_only: Optional[bool] = field(
207
+ default=False,
208
+ metadata={
209
+ "help": "Whether to only do data preprocessing and skip training. "
210
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
211
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
212
+ "so that the cached datasets can consequently be loaded in distributed training"
213
+ },
214
+ )
215
+ use_auth_token: Optional[bool] = field(
216
+ default=False,
217
+ metadata={
218
+ "help": "If :obj:`True`, will use the token generated when running"
219
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
220
+ },
221
+ )
222
+ unk_token: Optional[str] = field(
223
+ default="[UNK]",
224
+ metadata={"help": "The unk token for the tokenizer"},
225
+ )
226
+ pad_token: Optional[str] = field(
227
+ default="[PAD]",
228
+ metadata={"help": "The padding token for the tokenizer"},
229
+ )
230
+ word_delimiter_token: Optional[str] = field(
231
+ default="|",
232
+ metadata={"help": "The word delimiter token for the tokenizer"},
233
+ )
234
+ phoneme_language: Optional[str] = field(
235
+ default=None,
236
+ metadata={
237
+ "help": "The target language that should be used be"
238
+ " passed to the tokenizer for tokenization. Note that"
239
+ " this is only relevant if the model classifies the"
240
+ " input audio to a sequence of phoneme sequences."
241
+ },
242
+ )
243
+ path_to_eval_file: Optional[str] = field(
244
+ default=None,
245
+ metadata={"help": "path to cv eval utterances ids"}
246
+ )
247
+ path_to_train_file: Optional[str] = field(
248
+ default=None,
249
+ metadata={"help": "path to cv train utterances ids"}
250
+ )
251
+
252
+
253
+ @dataclass
254
+ class DataCollatorCTCWithPadding:
255
+ """
256
+ Data collator that will dynamically pad the inputs received.
257
+ Args:
258
+ processor (:class:`~transformers.AutoProcessor`)
259
+ The processor used for proccessing the data.
260
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
261
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
262
+ among:
263
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
264
+ sequence if provided).
265
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
266
+ maximum acceptable input length for the model if that argument is not provided.
267
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
268
+ different lengths).
269
+ max_length (:obj:`int`, `optional`):
270
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
271
+ max_length_labels (:obj:`int`, `optional`):
272
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
273
+ pad_to_multiple_of (:obj:`int`, `optional`):
274
+ If set will pad the sequence to a multiple of the provided value.
275
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
276
+ 7.5 (Volta).
277
+ """
278
+
279
+ processor: AutoProcessor
280
+ padding: Union[bool, str] = "longest"
281
+ pad_to_multiple_of: Optional[int] = None
282
+ pad_to_multiple_of_labels: Optional[int] = None
283
+
284
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
285
+ # split inputs and labels since they have to be of different lenghts and need
286
+ # different padding methods
287
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
288
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
289
+
290
+ batch = self.processor.pad(
291
+ input_features,
292
+ padding=self.padding,
293
+ pad_to_multiple_of=self.pad_to_multiple_of,
294
+ return_tensors="pt",
295
+ )
296
+
297
+ with self.processor.as_target_processor():
298
+ labels_batch = self.processor.pad(
299
+ label_features,
300
+ padding=self.padding,
301
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
302
+ return_tensors="pt",
303
+ )
304
+
305
+ # replace padding with -100 to ignore loss correctly
306
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
307
+
308
+ batch["labels"] = labels
309
+
310
+ return batch
311
+
312
+
313
+ def create_vocabulary_from_data(
314
+ datasets: DatasetDict,
315
+ word_delimiter_token: Optional[str] = None,
316
+ unk_token: Optional[str] = None,
317
+ pad_token: Optional[str] = None,
318
+ ):
319
+ # Given training and test labels create vocabulary
320
+ def extract_all_chars(batch):
321
+ all_text = " ".join(batch["target_text"])
322
+ vocab = list(set(all_text))
323
+ return {"vocab": [vocab], "all_text": [all_text]}
324
+
325
+ vocabs = datasets.map(
326
+ extract_all_chars,
327
+ batched=True,
328
+ batch_size=-1,
329
+ keep_in_memory=True,
330
+ remove_columns=datasets["train"].column_names,
331
+ )
332
+
333
+ # take union of all unique characters in each dataset
334
+ vocab_set = functools.reduce(
335
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
336
+ )
337
+
338
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
339
+
340
+ # replace white space with delimiter token
341
+ if word_delimiter_token is not None:
342
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
343
+ del vocab_dict[" "]
344
+
345
+ # add unk and pad token
346
+ if unk_token is not None:
347
+ vocab_dict[unk_token] = len(vocab_dict)
348
+
349
+ if pad_token is not None:
350
+ vocab_dict[pad_token] = len(vocab_dict)
351
+
352
+ return vocab_dict
353
+
354
+
355
+ def filter_dataset(ds, path_to_file):
356
+ with open(path_to_file, "r") as f:
357
+ lines = f.readlines()
358
+
359
+ # retrieve ids model is evaluated on
360
+ ids = [x.split("\t")[0] for x in lines]
361
+
362
+ ds = ds.filter(lambda p: p.split("/")[-1].split(".")[0] in ids, input_columns=["path"])
363
+ return ds
364
+
365
+
366
+ def main():
367
+ # See all possible arguments in src/transformers/training_args.py
368
+ # or by passing the --help flag to this script.
369
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
370
+
371
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
372
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
373
+ # If we pass only one argument to the script and it's the path to a json file,
374
+ # let's parse it to get our arguments.
375
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
376
+ else:
377
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
378
+
379
+ # Detecting last checkpoint.
380
+ last_checkpoint = None
381
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
382
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
383
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
384
+ raise ValueError(
385
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
386
+ "Use --overwrite_output_dir to overcome."
387
+ )
388
+ elif last_checkpoint is not None:
389
+ logger.info(
390
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
391
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
392
+ )
393
+
394
+ # Setup logging
395
+ logging.basicConfig(
396
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
397
+ datefmt="%m/%d/%Y %H:%M:%S",
398
+ handlers=[logging.StreamHandler(sys.stdout)],
399
+ )
400
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
401
+
402
+ # Log on each process the small summary:
403
+ logger.warning(
404
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
405
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
406
+ )
407
+ # Set the verbosity to info of the Transformers logger (on main process only):
408
+ if is_main_process(training_args.local_rank):
409
+ transformers.utils.logging.set_verbosity_info()
410
+ logger.info("Training/evaluation parameters %s", training_args)
411
+
412
+ # Set seed before initializing model.
413
+ set_seed(training_args.seed)
414
+
415
+ # 1. First, let's load the dataset
416
+ raw_datasets = DatasetDict()
417
+
418
+ if training_args.do_train:
419
+ raw_datasets["train"] = load_dataset(
420
+ data_args.dataset_name, data_args.dataset_config_name, split="train+validation+test+other", use_auth_token=True
421
+ )
422
+ raw_datasets["train"] = filter_dataset(raw_datasets["train"], data_args.path_to_train_file)
423
+
424
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
425
+ raise ValueError(
426
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
427
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
428
+ f"{', '.join(raw_datasets['train'].column_names)}."
429
+ )
430
+
431
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
432
+ raise ValueError(
433
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
434
+ "Make sure to set `--text_column_name` to the correct text column - one of "
435
+ f"{', '.join(raw_datasets['train'].column_names)}."
436
+ )
437
+
438
+ if data_args.max_train_samples is not None:
439
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
440
+
441
+ if training_args.do_eval:
442
+ raw_datasets["eval"] = load_dataset(
443
+ data_args.dataset_name, data_args.dataset_config_name, split="train+validation+test+other", use_auth_token=True
444
+ )
445
+ raw_datasets["eval"] = filter_dataset(raw_datasets["eval"], data_args.path_to_eval_file)
446
+
447
+ if data_args.max_eval_samples is not None:
448
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
449
+
450
+ # 2. We remove some special characters from the datasets
451
+ # that make training complicated and do not help in transcribing the speech
452
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
453
+ # that could be easily picked up by the model
454
+ chars_to_ignore_regex = (
455
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
456
+ )
457
+ text_column_name = data_args.text_column_name
458
+
459
+ def remove_special_characters(batch):
460
+ if chars_to_ignore_regex is not None:
461
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
462
+ else:
463
+ batch["target_text"] = batch[text_column_name].lower() + " "
464
+ return batch
465
+
466
+ with training_args.main_process_first(desc="dataset map special characters removal"):
467
+ raw_datasets = raw_datasets.map(
468
+ remove_special_characters,
469
+ remove_columns=[text_column_name],
470
+ desc="remove special characters from datasets",
471
+ )
472
+
473
+ # save special tokens for tokenizer
474
+ word_delimiter_token = data_args.word_delimiter_token
475
+ unk_token = data_args.unk_token
476
+ pad_token = data_args.pad_token
477
+
478
+ # 3. Next, let's load the config as we might need it to create
479
+ # the tokenizer
480
+ # load config
481
+ config = AutoConfig.from_pretrained(
482
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
483
+ )
484
+
485
+ # 4. Next, if no tokenizer file is defined,
486
+ # we create the vocabulary of the model by extracting all unique characters from
487
+ # the training and evaluation datasets
488
+ # We need to make sure that only first rank saves vocabulary
489
+ # make sure all processes wait until vocab is created
490
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
491
+ tokenizer_kwargs = {}
492
+ if tokenizer_name_or_path is None:
493
+ # save vocab in training output dir
494
+ tokenizer_name_or_path = training_args.output_dir
495
+
496
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
497
+
498
+ with training_args.main_process_first():
499
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
500
+ os.remove(vocab_file)
501
+
502
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
503
+ if not os.path.isfile(vocab_file):
504
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
505
+ vocab_dict = create_vocabulary_from_data(
506
+ raw_datasets,
507
+ word_delimiter_token=word_delimiter_token,
508
+ unk_token=unk_token,
509
+ pad_token=pad_token,
510
+ )
511
+
512
+ # save vocab dict to be loaded into tokenizer
513
+ with open(vocab_file, "w") as file:
514
+ json.dump(vocab_dict, file)
515
+
516
+ # if tokenizer has just been created
517
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
518
+ tokenizer_kwargs = {
519
+ "config": config if config.tokenizer_class is not None else None,
520
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
521
+ "unk_token": unk_token,
522
+ "pad_token": pad_token,
523
+ "word_delimiter_token": word_delimiter_token,
524
+ }
525
+
526
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
527
+ # Note for distributed training, the .from_pretrained methods guarantee that only
528
+ # one local process can concurrently download model & vocab.
529
+
530
+ # load feature_extractor and tokenizer
531
+ tokenizer = AutoTokenizer.from_pretrained(
532
+ tokenizer_name_or_path,
533
+ use_auth_token=data_args.use_auth_token,
534
+ **tokenizer_kwargs,
535
+ )
536
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
537
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
538
+ )
539
+
540
+ # adapt config
541
+ config.update(
542
+ {
543
+ "feat_proj_dropout": model_args.feat_proj_dropout,
544
+ "attention_dropout": model_args.attention_dropout,
545
+ "hidden_dropout": model_args.hidden_dropout,
546
+ "final_dropout": model_args.final_dropout,
547
+ "mask_time_prob": model_args.mask_time_prob,
548
+ "mask_time_length": model_args.mask_time_length,
549
+ "mask_feature_prob": model_args.mask_feature_prob,
550
+ "mask_feature_length": model_args.mask_feature_length,
551
+ "gradient_checkpointing": training_args.gradient_checkpointing,
552
+ "layerdrop": model_args.layerdrop,
553
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
554
+ "pad_token_id": tokenizer.pad_token_id,
555
+ "vocab_size": len(tokenizer),
556
+ "activation_dropout": model_args.activation_dropout,
557
+ }
558
+ )
559
+
560
+ # create model
561
+ model = AutoModelForCTC.from_pretrained(
562
+ model_args.model_name_or_path,
563
+ cache_dir=model_args.cache_dir,
564
+ config=config,
565
+ use_auth_token=data_args.use_auth_token,
566
+ )
567
+
568
+ # freeze encoder
569
+ if model_args.freeze_feature_extractor:
570
+ model.freeze_feature_extractor()
571
+
572
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
573
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
574
+ # so that we just need to set the correct target sampling rate and normalize the input
575
+ # via the `feature_extractor`
576
+
577
+ # make sure that dataset decodes audio with correct sampling rate
578
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
579
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
580
+ raw_datasets = raw_datasets.cast_column(
581
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
582
+ )
583
+
584
+ # derive max & min input length for sample rate & max duration
585
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
586
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
587
+ audio_column_name = data_args.audio_column_name
588
+ num_workers = data_args.preprocessing_num_workers
589
+
590
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
591
+ phoneme_language = data_args.phoneme_language
592
+
593
+ # Preprocessing the datasets.
594
+ # We need to read the audio files as arrays and tokenize the targets.
595
+ def prepare_dataset(batch):
596
+ # load audio
597
+ sample = batch[audio_column_name]
598
+
599
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
600
+ batch["input_values"] = inputs.input_values[0]
601
+ batch["input_length"] = len(batch["input_values"])
602
+
603
+ # encode targets
604
+ additional_kwargs = {}
605
+ if phoneme_language is not None:
606
+ additional_kwargs["phonemizer_lang"] = phoneme_language
607
+
608
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
609
+ return batch
610
+
611
+ with training_args.main_process_first(desc="dataset map preprocessing"):
612
+ vectorized_datasets = raw_datasets.map(
613
+ prepare_dataset,
614
+ remove_columns=next(iter(raw_datasets.values())).column_names,
615
+ num_proc=num_workers,
616
+ desc="preprocess datasets",
617
+ )
618
+
619
+ def is_audio_in_length_range(length):
620
+ return length > min_input_length and length < max_input_length
621
+
622
+ # filter data that is shorter than min_input_length
623
+ vectorized_datasets = vectorized_datasets.filter(
624
+ is_audio_in_length_range,
625
+ num_proc=num_workers,
626
+ input_columns=["input_length"],
627
+ )
628
+
629
+ # 7. Next, we can prepare the training.
630
+ # Let's use word error rate (WER) as our evaluation metric,
631
+ # instantiate a data collator and the trainer
632
+
633
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
634
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
635
+
636
+ # for large datasets it is advised to run the preprocessing on a
637
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
638
+ # be a timeout when running the script in distributed mode.
639
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
640
+ # cached dataset
641
+ if data_args.preprocessing_only:
642
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
643
+ return
644
+
645
+ def compute_metrics(pred):
646
+ pred_logits = pred.predictions
647
+ pred_ids = np.argmax(pred_logits, axis=-1)
648
+
649
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
650
+
651
+ pred_str = tokenizer.batch_decode(pred_ids)
652
+ # we do not want to group tokens when computing the metrics
653
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
654
+
655
+ import ipdb; ipdb.set_trace()
656
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
657
+
658
+ return metrics
659
+
660
+ # Now create a single processor
661
+ if is_main_process(training_args.local_rank):
662
+ # save feature extractor, tokenizer and config
663
+ feature_extractor.save_pretrained(training_args.output_dir)
664
+ tokenizer.save_pretrained(training_args.output_dir)
665
+ config.save_pretrained(training_args.output_dir)
666
+
667
+ # load processor
668
+ try:
669
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
670
+ except (OSError, KeyError):
671
+ warnings.warn(
672
+ "Loading a processor from a feature extractor config that does not"
673
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
674
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
675
+ " `'processor_class': 'Wav2Vec2Processor'`",
676
+ FutureWarning,
677
+ )
678
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
679
+
680
+ # Instantiate custom data collator
681
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
682
+
683
+ # Initialize Trainer
684
+ trainer = Trainer(
685
+ model=model,
686
+ data_collator=data_collator,
687
+ args=training_args,
688
+ compute_metrics=compute_metrics,
689
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
690
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
691
+ tokenizer=feature_extractor,
692
+ )
693
+
694
+ # 8. Finally, we can start training
695
+
696
+ # Training
697
+ if training_args.do_train:
698
+
699
+ # use last checkpoint if exist
700
+ if last_checkpoint is not None:
701
+ checkpoint = last_checkpoint
702
+ elif os.path.isdir(model_args.model_name_or_path):
703
+ checkpoint = model_args.model_name_or_path
704
+ else:
705
+ checkpoint = None
706
+
707
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
708
+ trainer.save_model()
709
+
710
+ metrics = train_result.metrics
711
+ max_train_samples = (
712
+ data_args.max_train_samples
713
+ if data_args.max_train_samples is not None
714
+ else len(vectorized_datasets["train"])
715
+ )
716
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
717
+
718
+ trainer.log_metrics("train", metrics)
719
+ trainer.save_metrics("train", metrics)
720
+ trainer.save_state()
721
+
722
+ # Evaluation
723
+ results = {}
724
+ if training_args.do_eval:
725
+ logger.info("*** Evaluate ***")
726
+ metrics = trainer.evaluate()
727
+ max_eval_samples = (
728
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
729
+ )
730
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
731
+
732
+ trainer.log_metrics("eval", metrics)
733
+ trainer.save_metrics("eval", metrics)
734
+
735
+ # Write model card and (optionally) push to hub
736
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
737
+ kwargs = {
738
+ "finetuned_from": model_args.model_name_or_path,
739
+ "tasks": "speech-recognition",
740
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
741
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
742
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
743
+ }
744
+ if "common_voice" in data_args.dataset_name:
745
+ kwargs["language"] = config_name
746
+
747
+ if training_args.push_to_hub:
748
+ trainer.push_to_hub(**kwargs)
749
+ else:
750
+ trainer.create_model_card(**kwargs)
751
+
752
+ return results
753
+
754
+
755
+ if __name__ == "__main__":
756
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "word_delimiter_token": null, "phone_delimiter_token": " ", "do_phonemize": true, "phonemizer_lang": "en-us", "phonemizer_backend": "espeak", "tokenizer_class": "Wav2Vec2PhonemeCTCTokenizer"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"s": 0, "ɯ": 1, "r": 2, "p": 3, "j": 4, "ɛ": 5, "t": 6, "k": 7, "i": 8, "l": 9, "d": 10, "a": 11, "n": 12, "u": 13, "m": 14, "ʊ": 15, "ɫ": 16, "ɾ": 17, "b": 18, "ɔ": 19, "ʃ": 20, "ɪ": 21, "e": 22, "æ": 23, "h": 24, "v": 25, "o": 26, "tʃ": 27, "ɟ": 28, "ø": 29, "dʒ": 30, "f": 31, "aː": 32, "œ": 33, "z": 34, "ɡ": 35, "ʊː": 36, "y": 37, "ʒ": 38, "uː": 39, "": 40, "c": 41, "oː": 42, "ɯɯ": 43, "yː": 44, "w": 45, "œː": 46, "øː": 47, "<pad>": 48, "<s>": 49, "</s>": 50, "<unk>": 51}