#CUDA_VISIBLE_DEVICES="0" python run_speech_recognition_seq2seq.py \ | |
python -m torch.distributed.launch \ | |
--nproc_per_node 8 run_speech_recognition_seq2seq.py \ | |
--dataset_name="librispeech_asr" \ | |
--model_name_or_path="./" \ | |
--dataset_config_name="clean" \ | |
--train_split_name="train.100" \ | |
--eval_split_name="validation" \ | |
--output_dir="./" \ | |
--preprocessing_num_workers="16" \ | |
--length_column_name="input_length" \ | |
--overwrite_output_dir \ | |
--num_train_epochs="5" \ | |
--per_device_train_batch_size="8" \ | |
--per_device_eval_batch_size="8" \ | |
--gradient_accumulation_steps="1" \ | |
--learning_rate="3e-4" \ | |
--warmup_steps="400" \ | |
--evaluation_strategy="steps" \ | |
--text_column_name="text" \ | |
--save_steps="400" \ | |
--eval_steps="400" \ | |
--logging_steps="10" \ | |
--save_total_limit="1" \ | |
--freeze_feature_extractor \ | |
--gradient_checkpointing \ | |
--fp16 \ | |
--group_by_length \ | |
--predict_with_generate \ | |
--do_train --do_eval \ | |
--do_lower_case | |