patrickvonplaten
commited on
Commit
·
be76c6b
1
Parent(s):
8ee1677
add opt
Browse files- config.json +26 -0
- run.sh +1 -1
- run_model.py +32 -8
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"activation_function": "relu",
|
4 |
+
"architectures": [
|
5 |
+
"OPTModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"d_model": 1024,
|
10 |
+
"dropout": 0.1,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"ffn_dim": 4096,
|
13 |
+
"init_std": 0.02,
|
14 |
+
"layerdrop": 0.0,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"model_type": "opt",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"output_projection": true,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.19.0.dev0",
|
23 |
+
"vocab_size": 50272,
|
24 |
+
"word_embed_proj_dim": 512,
|
25 |
+
"do_layer_norm_before": false
|
26 |
+
}
|
run.sh
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
#!/usr/bin/env bash
|
2 |
-
CUDA_VISIBLE_DEVICES="0" torchrun run_model.py --pipeline-model-parallel-size 1 --tensor-model-parallel-size 1
|
|
|
1 |
#!/usr/bin/env bash
|
2 |
+
CUDA_VISIBLE_DEVICES="0,3" torchrun run_model.py --pipeline-model-parallel-size 1 --tensor-model-parallel-size 1
|
run_model.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
#!/usr/bin/env python3
|
3 |
import os
|
4 |
from transformers import AutoTokenizer, GPT2Tokenizer
|
5 |
from megatron.initialize import initialize_megatron
|
6 |
from metaseq import checkpoint_utils
|
|
|
7 |
import torch
|
8 |
|
9 |
path = "./model"
|
@@ -34,32 +34,56 @@ checkpoint = checkpoint_utils.load_model_ensemble_and_task(
|
|
34 |
)
|
35 |
|
36 |
model = checkpoint[0][0].eval()
|
37 |
-
model = model.cuda
|
|
|
|
|
38 |
|
39 |
|
40 |
# forward passes
|
41 |
def single_batch_forward_logits(prompts):
|
42 |
input_ids = tokenizer(prompts, return_tensors="pt").input_ids
|
43 |
input_ids = torch.cat([torch.tensor([[0]]), input_ids], dim=-1)
|
44 |
-
input_ids = input_ids.cuda
|
45 |
with torch.no_grad():
|
46 |
logits = model(input_ids)[0]
|
47 |
return logits
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
prompts = [
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
]
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
print("Next word generation")
|
57 |
for prompt in prompts:
|
58 |
print("-------------")
|
59 |
print(f"Prompt: {prompt}...\n")
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
pred_next_token = torch.argmax(logits[0, -1], -1)
|
62 |
next_token = tokenizer.convert_ids_to_tokens([pred_next_token])
|
63 |
next_token = next_token[0].replace("Ġ", "")
|
64 |
print(f"Next word: {next_token}")
|
65 |
print("-------------")
|
|
|
|
|
|
1 |
#!/usr/bin/env python3
|
|
|
2 |
import os
|
3 |
from transformers import AutoTokenizer, GPT2Tokenizer
|
4 |
from megatron.initialize import initialize_megatron
|
5 |
from metaseq import checkpoint_utils
|
6 |
+
from transformers import OPTForCausalLM
|
7 |
import torch
|
8 |
|
9 |
path = "./model"
|
|
|
34 |
)
|
35 |
|
36 |
model = checkpoint[0][0].eval()
|
37 |
+
model = model.to("cuda:0").half()
|
38 |
+
|
39 |
+
hf_model = OPTForCausalLM.from_pretrained("../opt-350m").to("cuda:1").half()
|
40 |
|
41 |
|
42 |
# forward passes
|
43 |
def single_batch_forward_logits(prompts):
|
44 |
input_ids = tokenizer(prompts, return_tensors="pt").input_ids
|
45 |
input_ids = torch.cat([torch.tensor([[0]]), input_ids], dim=-1)
|
46 |
+
input_ids = input_ids.to("cuda:0")
|
47 |
with torch.no_grad():
|
48 |
logits = model(input_ids)[0]
|
49 |
return logits
|
50 |
|
51 |
+
# forward hf
|
52 |
+
def forward_hf(prompts):
|
53 |
+
input_ids = tokenizer(prompts, return_tensors="pt").input_ids
|
54 |
+
input_ids = torch.cat([torch.tensor([[0]]), input_ids], dim=-1)
|
55 |
+
input_ids = input_ids.to("cuda:1")
|
56 |
+
with torch.no_grad():
|
57 |
+
logits = hf_model(input_ids)[0]
|
58 |
+
return logits
|
59 |
+
|
60 |
prompts = [
|
61 |
+
"Today is a beautiful day and I want to",
|
62 |
+
"In the city of",
|
63 |
+
"Paris is the capital of France and",
|
64 |
+
"Computers and mobile phones have taken",
|
65 |
]
|
66 |
|
67 |
+
prompts = [
|
68 |
+
"Today is a beautiful day and I want to",
|
69 |
+
]
|
70 |
+
|
71 |
+
#import ipdb; ipdb.set_trace()
|
72 |
print("Next word generation")
|
73 |
for prompt in prompts:
|
74 |
print("-------------")
|
75 |
print(f"Prompt: {prompt}...\n")
|
76 |
+
logits_fsq = single_batch_forward_logits(prompt)
|
77 |
+
pred_next_token = torch.argmax(logits_fsq[0, -1], -1)
|
78 |
+
next_token = tokenizer.convert_ids_to_tokens([pred_next_token])
|
79 |
+
next_token = next_token[0].replace("Ġ", "")
|
80 |
+
print(f"Next word: {next_token}")
|
81 |
+
print("-------------")
|
82 |
+
logits = forward_hf(prompt)
|
83 |
pred_next_token = torch.argmax(logits[0, -1], -1)
|
84 |
next_token = tokenizer.convert_ids_to_tokens([pred_next_token])
|
85 |
next_token = next_token[0].replace("Ġ", "")
|
86 |
print(f"Next word: {next_token}")
|
87 |
print("-------------")
|
88 |
+
|
89 |
+
torch.allclose(logits_fsq.cpu(), logits.cpu(), atol=1e-3)
|