parthsuresh
commited on
Commit
·
9190c6e
1
Parent(s):
208c4f1
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_lander_model.zip +3 -0
- lunar_lander_model/_stable_baselines3_version +1 -0
- lunar_lander_model/data +99 -0
- lunar_lander_model/policy.optimizer.pth +3 -0
- lunar_lander_model/policy.pth +3 -0
- lunar_lander_model/pytorch_variables.pth +3 -0
- lunar_lander_model/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 239.86 +/- 54.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4643b18550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4643b185e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4643b18670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4643b18700>", "_build": "<function ActorCriticPolicy._build at 0x7d4643b18790>", "forward": "<function ActorCriticPolicy.forward at 0x7d4643b18820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4643b188b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4643b18940>", "_predict": "<function ActorCriticPolicy._predict at 0x7d4643b189d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4643b18a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4643b18af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4643b18b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d45e7a93200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691355902066226156, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKqBgj6h9IY+37OTPQFKx74/EdI9ze1hvAAAAAAAAAAACBWGvrRvzbzSpuc6nzxOOS8MNj5S8Q26AACAPwAAgD8mtK89PklWPzaqEj5lpzK/M/WSPQ1417wAAAAAAAAAAA1sNz71Fl0/eT4cPq9AHr+S5c89klPsvAAAAAAAAAAAM6UePc7lij05fbC9jYP8vdxm57wzvZK9AAAAAAAAAAAKFDw/o0iXvi7vSrlMpGU4c4PMvjbgnzgAAIA/AACAP2ZgVb6hBLq87z+guyTDxLszBSU+UgWbPAAAgD8AAIA/YMiVPve7k72UoyE+XsPmuzZa+b77DaC8AACAPwAAgD8a7GK9G8iwP6Zkwb6gHYm+XJUDvOafpr0AAAAAAAAAAMadGr6n7iU/98s/vqd2Cr9Earq9RdX8vAAAAAAAAAAAsPBxvsG5z7wRVUC5cJHetx9ZNT6CtHk4AACAPwAAgD+aOtM+mgotPl4oYL6JNsy+3BUTPeoAxr0AAAAAAAAAANOeeb67rY68abAwO5p+Wjlhzvk9wvBRugAAgD8AAIA/EJVNvjRp9ryY7jE6gJDcONl+XD7QAHe5AACAPwAAgD8AQLY6qCONPrtyCb28Gq2+V83zOt7bEbwAAAAAAAAAAJLSCj+LyzO+9qabvL1lP7u+ouu+6hXzvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+kIg3cYZWMAWyUS9aMAXSUR0CbsKjvd/KAdX2UKGgGR0BunbNt65XmaAdNFQFoCEdAm7JVbeMyanV9lChoBkdAc2T1RtP56GgHTQ8BaAhHQJu0QXhwVCZ1fZQoaAZHQGgXKJl8PWhoB03iAWgIR0CbtSD63y7PdX2UKGgGR0Bw474CZF5OaAdLrmgIR0Cbtb/0dzXCdX2UKGgGR0BuWcwQDmr9aAdL8mgIR0CbtdvzOHFhdX2UKGgGR0BzVQRradtmaAdNLAFoCEdAm7aUq6OHWXV9lChoBkdAYK2yM1jy4GgHTegDaAhHQJu2pmYjSoh1fZQoaAZHQHM0/Fm4AjpoB01IAWgIR0CbtwmnO0LMdX2UKGgGR0BveqbBoEjgaAdLxmgIR0Cbtwmm+CbudX2UKGgGR0BuwV8NQTEjaAdLyWgIR0Cbt4DQqqffdX2UKGgGR0BxHpIK+i8GaAdL0mgIR0CbuDCGN70GdX2UKGgGR0ByEE2Ifr8jaAdL6GgIR0CbuWWyTpxFdX2UKGgGR0BvpeVJL/S6aAdLs2gIR0Cbu6yC4BmxdX2UKGgGR0Bvw+3hGYrsaAdNbgJoCEdAm7zDslb/wXV9lChoBkdAb6rGhmGucWgHS8VoCEdAm728p1A7gnV9lChoBkdAcBH9wFTvRmgHTVQBaAhHQJu9yXIEKVp1fZQoaAZHQG9m/TkQwsZoB0vRaAhHQJu/L17IDHR1fZQoaAZHQHKrpTl1bJRoB0vPaAhHQJvAX13+uNh1fZQoaAZHQHEvECA+Y+loB0u/aAhHQJvAx2eQMhJ1fZQoaAZHQHCy30Gu9vloB0vyaAhHQJvBDRF7Uod1fZQoaAZHQHClBYV6/qRoB0vfaAhHQJvBGg6EJ0J1fZQoaAZHQHDDoEbHZK5oB0vhaAhHQJvB32kBS1p1fZQoaAZHQHLiGSt/4ItoB00kAWgIR0Cbxgkv9LpSdX2UKGgGR0BxTyOktVaPaAdNQAFoCEdAm8YEMoc7yXV9lChoBkdAcRk9QoCuEGgHS7xoCEdAm8aBBqsU7HV9lChoBkdAbPUscQyylmgHTRYBaAhHQJvGjMB6rvN1fZQoaAZHQHPomgWac7RoB0vYaAhHQJvG0bfgrH51fZQoaAZHQGXz/779AHFoB03CAmgIR0Cbx026ClJpdX2UKGgGR0BuypxBE8aGaAdNCAFoCEdAm8e96ol2NnV9lChoBkdAbhxcKw6hg2gHS9BoCEdAm8gvhESdv3V9lChoBkdAcbfffGdZq2gHS6xoCEdAm8g3Roh6jXV9lChoBkdAcbi7SApazWgHS7JoCEdAm8hcvEjxC3V9lChoBkdAc7R/2TPjXGgHS9BoCEdAm8khxcVxj3V9lChoBkdAb96VrylN12gHS8toCEdAm8mtMbm2cHV9lChoBkdAc93pqREF4mgHTS8BaAhHQJvKU0waisZ1fZQoaAZHQHGuXjuKGcpoB00wAWgIR0CbzByfcvdudX2UKGgGR0BxODCKrJbMaAdLsWgIR0CbzIBS1maqdX2UKGgGR0BxS8Qz1sciaAdLtGgIR0CbzJE6kqMFdX2UKGgGR0BwAJi4J/oaaAdL2WgIR0CbzVZH/cWTdX2UKGgGR0BxESimEXchaAdL5GgIR0CbzbiiZfD2dX2UKGgGR0Bxw9rTH80laAdLx2gIR0CbzlAnlXA/dX2UKGgGR0BwmMGgSOBEaAdLwGgIR0CbzonezlcRdX2UKGgGR0BuRzr9l2/0aAdLv2gIR0CbzomZVn27dX2UKGgGR0BvGdev6j33aAdLw2gIR0CbztNNJvpAdX2UKGgGR0Bxwe/yoXKsaAdNAQFoCEdAm89YfOlfq3V9lChoBkdAbw9M0xdpqWgHS7ZoCEdAm8++ii7Ci3V9lChoBkdAcXKzyz5XVGgHTQoBaAhHQJvQEUUO/cp1fZQoaAZHQGzh2fbsWwhoB0vWaAhHQJvQPkS26TZ1fZQoaAZHQGINM1CPZIxoB03oA2gIR0Cb0htLL6k7dX2UKGgGR0By3f5FgDzRaAdL9GgIR0Cb0mSgoPTYdX2UKGgGR0BvT2hZha1UaAdLuGgIR0Cb0o5vLowFdX2UKGgGR0BxHFlMAWBSaAdL12gIR0Cb1GearmyPdX2UKGgGR0BweWxzJZGKaAdL1GgIR0Cb1LV1Oj7AdX2UKGgGR0A4nZZ0Syt3aAdLq2gIR0Cb1PtZFG5MdX2UKGgGR0BxlKOcUdq+aAdLwGgIR0Cb1S+49X9zdX2UKGgGR0BtEvHFPznSaAdNGgFoCEdAm9XZemelK3V9lChoBkdAcAG3RG+bmWgHS/5oCEdAm9bTbFjur3V9lChoBkdAcULpeu3c6GgHS+loCEdAm9enzg/C7HV9lChoBkdAcR1yLAHmimgHS+1oCEdAm9htaEBbOnV9lChoBkdAcZNiLVFx42gHTSMBaAhHQJvYfvDxb0R1fZQoaAZHQGGD4zi0fHRoB03oA2gIR0Cb2MSlWOp9dX2UKGgGR0Bw8d40Mw10aAdNAwFoCEdAm9j8pgCwKXV9lChoBkdAbygBFNL13GgHS79oCEdAm9tCXY150XV9lChoBkdAcnj3RXwLE2gHTQ0BaAhHQJvbjeXRgJF1fZQoaAZHQHB221YyO7xoB00eAWgIR0Cb3FYD1XeWdX2UKGgGR0BzDgbcXWOIaAdL5GgIR0Cb3aapPykLdX2UKGgGR0BxGINkOI69aAdLtGgIR0Cb3bhcqvvCdX2UKGgGR0BwTgGVzIV/aAdL52gIR0Cb3r0FbFCLdX2UKGgGR0BvTVDx9XtCaAdLwGgIR0Cb3tmYSg5BdX2UKGgGR0BysDMfRu0kaAdNGgFoCEdAm97qZtvXLHV9lChoBkdAbFHifg75mGgHTXcBaAhHQJve9vHcUM51fZQoaAZHQHAYn3cpLEloB0vQaAhHQJvfswBYFJR1fZQoaAZHQHB39MoMKCxoB0vLaAhHQJvfxTNt65Z1fZQoaAZHQHN/CQcPvrpoB0veaAhHQJvf5ZpztC11fZQoaAZHQGt+VN5+pfhoB02PAWgIR0Cb4sjlxOtXdX2UKGgGR0BuASO938oAaAdLvWgIR0Cb5HvWpZOjdX2UKGgGR0Bx6pKHwgDBaAdNDAFoCEdAm+TGnsLORnV9lChoBkdAbwruBtk4FWgHS85oCEdAm+USa/h2n3V9lChoBkdAcuaJ9y925mgHTQoBaAhHQJvo6DpTuOV1fZQoaAZHQHJ+76pHZsdoB00UAWgIR0Cb6SV3Ux20dX2UKGgGR0Bxyq1qnFYMaAdNCgFoCEdAm+nmaH9FWnV9lChoBkdAcoOAymALA2gHTRABaAhHQJvqZOrQw9J1fZQoaAZHQHB3Puw5eZ5oB0voaAhHQJvvLsJIDo11fZQoaAZHQGCQopx3mmtoB03oA2gIR0Cb8vpe/pMYdX2UKGgGR0BxrYY64lQeaAdLr2gIR0Cb8yrYoRZmdX2UKGgGR0BzxFStNi6QaAdNIwFoCEdAm/OkETxoZnV9lChoBkdAaqlb3XZoPGgHTW0BaAhHQJv1HEBKcut1fZQoaAZHQHJgTin5zo5oB0vUaAhHQJv3l5LRKHx1fZQoaAZHQGJzYRNATqVoB03oA2gIR0Cb98xeLNwBdX2UKGgGR0BxMGfL9uP4aAdNAwFoCEdAm/lvVRUFS3V9lChoBkdAb9bIV/MGHGgHS7BoCEdAm/oS5RTCL3V9lChoBkdAbjXtsvZh8mgHS6doCEdAm/wkPMB6r3V9lChoBkdAaJFkvsZ5zGgHTbsBaAhHQJv8SIj4YaZ1fZQoaAZHQHFv48Md92JoB0vBaAhHQJv9s/u9eyB1fZQoaAZHQG2m2RaHKwJoB0u7aAhHQJv+Y4dZJTV1fZQoaAZHQFuvyBkI5YJoB03oA2gIR0Cb/8pmVZ9vdX2UKGgGR0BxxyZfD1oQaAdLuWgIR0Cb/+xT850bdX2UKGgGR0BwTl5zHS4OaAdLxGgIR0CcAIT5ftx/dX2UKGgGR0Bx6LTYukDZaAdLwWgIR0CcAcPJaJQ+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar_lander_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:894b00a1f94e070f6ec696dfcc967db38a19e703fb2d01725c45caa4305b54f2
|
3 |
+
size 146673
|
lunar_lander_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar_lander_model/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d4643b18550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4643b185e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4643b18670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4643b18700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d4643b18790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d4643b18820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4643b188b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4643b18940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d4643b189d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4643b18a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4643b18af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4643b18b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d45e7a93200>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1691355902066226156,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKqBgj6h9IY+37OTPQFKx74/EdI9ze1hvAAAAAAAAAAACBWGvrRvzbzSpuc6nzxOOS8MNj5S8Q26AACAPwAAgD8mtK89PklWPzaqEj5lpzK/M/WSPQ1417wAAAAAAAAAAA1sNz71Fl0/eT4cPq9AHr+S5c89klPsvAAAAAAAAAAAM6UePc7lij05fbC9jYP8vdxm57wzvZK9AAAAAAAAAAAKFDw/o0iXvi7vSrlMpGU4c4PMvjbgnzgAAIA/AACAP2ZgVb6hBLq87z+guyTDxLszBSU+UgWbPAAAgD8AAIA/YMiVPve7k72UoyE+XsPmuzZa+b77DaC8AACAPwAAgD8a7GK9G8iwP6Zkwb6gHYm+XJUDvOafpr0AAAAAAAAAAMadGr6n7iU/98s/vqd2Cr9Earq9RdX8vAAAAAAAAAAAsPBxvsG5z7wRVUC5cJHetx9ZNT6CtHk4AACAPwAAgD+aOtM+mgotPl4oYL6JNsy+3BUTPeoAxr0AAAAAAAAAANOeeb67rY68abAwO5p+Wjlhzvk9wvBRugAAgD8AAIA/EJVNvjRp9ryY7jE6gJDcONl+XD7QAHe5AACAPwAAgD8AQLY6qCONPrtyCb28Gq2+V83zOt7bEbwAAAAAAAAAAJLSCj+LyzO+9qabvL1lP7u+ouu+6hXzvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+kIg3cYZWMAWyUS9aMAXSUR0CbsKjvd/KAdX2UKGgGR0BunbNt65XmaAdNFQFoCEdAm7JVbeMyanV9lChoBkdAc2T1RtP56GgHTQ8BaAhHQJu0QXhwVCZ1fZQoaAZHQGgXKJl8PWhoB03iAWgIR0CbtSD63y7PdX2UKGgGR0Bw474CZF5OaAdLrmgIR0Cbtb/0dzXCdX2UKGgGR0BuWcwQDmr9aAdL8mgIR0CbtdvzOHFhdX2UKGgGR0BzVQRradtmaAdNLAFoCEdAm7aUq6OHWXV9lChoBkdAYK2yM1jy4GgHTegDaAhHQJu2pmYjSoh1fZQoaAZHQHM0/Fm4AjpoB01IAWgIR0CbtwmnO0LMdX2UKGgGR0BveqbBoEjgaAdLxmgIR0Cbtwmm+CbudX2UKGgGR0BuwV8NQTEjaAdLyWgIR0Cbt4DQqqffdX2UKGgGR0BxHpIK+i8GaAdL0mgIR0CbuDCGN70GdX2UKGgGR0ByEE2Ifr8jaAdL6GgIR0CbuWWyTpxFdX2UKGgGR0BvpeVJL/S6aAdLs2gIR0Cbu6yC4BmxdX2UKGgGR0Bvw+3hGYrsaAdNbgJoCEdAm7zDslb/wXV9lChoBkdAb6rGhmGucWgHS8VoCEdAm728p1A7gnV9lChoBkdAcBH9wFTvRmgHTVQBaAhHQJu9yXIEKVp1fZQoaAZHQG9m/TkQwsZoB0vRaAhHQJu/L17IDHR1fZQoaAZHQHKrpTl1bJRoB0vPaAhHQJvAX13+uNh1fZQoaAZHQHEvECA+Y+loB0u/aAhHQJvAx2eQMhJ1fZQoaAZHQHCy30Gu9vloB0vyaAhHQJvBDRF7Uod1fZQoaAZHQHClBYV6/qRoB0vfaAhHQJvBGg6EJ0J1fZQoaAZHQHDDoEbHZK5oB0vhaAhHQJvB32kBS1p1fZQoaAZHQHLiGSt/4ItoB00kAWgIR0Cbxgkv9LpSdX2UKGgGR0BxTyOktVaPaAdNQAFoCEdAm8YEMoc7yXV9lChoBkdAcRk9QoCuEGgHS7xoCEdAm8aBBqsU7HV9lChoBkdAbPUscQyylmgHTRYBaAhHQJvGjMB6rvN1fZQoaAZHQHPomgWac7RoB0vYaAhHQJvG0bfgrH51fZQoaAZHQGXz/779AHFoB03CAmgIR0Cbx026ClJpdX2UKGgGR0BuypxBE8aGaAdNCAFoCEdAm8e96ol2NnV9lChoBkdAbhxcKw6hg2gHS9BoCEdAm8gvhESdv3V9lChoBkdAcbfffGdZq2gHS6xoCEdAm8g3Roh6jXV9lChoBkdAcbi7SApazWgHS7JoCEdAm8hcvEjxC3V9lChoBkdAc7R/2TPjXGgHS9BoCEdAm8khxcVxj3V9lChoBkdAb96VrylN12gHS8toCEdAm8mtMbm2cHV9lChoBkdAc93pqREF4mgHTS8BaAhHQJvKU0waisZ1fZQoaAZHQHGuXjuKGcpoB00wAWgIR0CbzByfcvdudX2UKGgGR0BxODCKrJbMaAdLsWgIR0CbzIBS1maqdX2UKGgGR0BxS8Qz1sciaAdLtGgIR0CbzJE6kqMFdX2UKGgGR0BwAJi4J/oaaAdL2WgIR0CbzVZH/cWTdX2UKGgGR0BxESimEXchaAdL5GgIR0CbzbiiZfD2dX2UKGgGR0Bxw9rTH80laAdLx2gIR0CbzlAnlXA/dX2UKGgGR0BwmMGgSOBEaAdLwGgIR0CbzonezlcRdX2UKGgGR0BuRzr9l2/0aAdLv2gIR0CbzomZVn27dX2UKGgGR0BvGdev6j33aAdLw2gIR0CbztNNJvpAdX2UKGgGR0Bxwe/yoXKsaAdNAQFoCEdAm89YfOlfq3V9lChoBkdAbw9M0xdpqWgHS7ZoCEdAm8++ii7Ci3V9lChoBkdAcXKzyz5XVGgHTQoBaAhHQJvQEUUO/cp1fZQoaAZHQGzh2fbsWwhoB0vWaAhHQJvQPkS26TZ1fZQoaAZHQGINM1CPZIxoB03oA2gIR0Cb0htLL6k7dX2UKGgGR0By3f5FgDzRaAdL9GgIR0Cb0mSgoPTYdX2UKGgGR0BvT2hZha1UaAdLuGgIR0Cb0o5vLowFdX2UKGgGR0BxHFlMAWBSaAdL12gIR0Cb1GearmyPdX2UKGgGR0BweWxzJZGKaAdL1GgIR0Cb1LV1Oj7AdX2UKGgGR0A4nZZ0Syt3aAdLq2gIR0Cb1PtZFG5MdX2UKGgGR0BxlKOcUdq+aAdLwGgIR0Cb1S+49X9zdX2UKGgGR0BtEvHFPznSaAdNGgFoCEdAm9XZemelK3V9lChoBkdAcAG3RG+bmWgHS/5oCEdAm9bTbFjur3V9lChoBkdAcULpeu3c6GgHS+loCEdAm9enzg/C7HV9lChoBkdAcR1yLAHmimgHS+1oCEdAm9htaEBbOnV9lChoBkdAcZNiLVFx42gHTSMBaAhHQJvYfvDxb0R1fZQoaAZHQGGD4zi0fHRoB03oA2gIR0Cb2MSlWOp9dX2UKGgGR0Bw8d40Mw10aAdNAwFoCEdAm9j8pgCwKXV9lChoBkdAbygBFNL13GgHS79oCEdAm9tCXY150XV9lChoBkdAcnj3RXwLE2gHTQ0BaAhHQJvbjeXRgJF1fZQoaAZHQHB221YyO7xoB00eAWgIR0Cb3FYD1XeWdX2UKGgGR0BzDgbcXWOIaAdL5GgIR0Cb3aapPykLdX2UKGgGR0BxGINkOI69aAdLtGgIR0Cb3bhcqvvCdX2UKGgGR0BwTgGVzIV/aAdL52gIR0Cb3r0FbFCLdX2UKGgGR0BvTVDx9XtCaAdLwGgIR0Cb3tmYSg5BdX2UKGgGR0BysDMfRu0kaAdNGgFoCEdAm97qZtvXLHV9lChoBkdAbFHifg75mGgHTXcBaAhHQJve9vHcUM51fZQoaAZHQHAYn3cpLEloB0vQaAhHQJvfswBYFJR1fZQoaAZHQHB39MoMKCxoB0vLaAhHQJvfxTNt65Z1fZQoaAZHQHN/CQcPvrpoB0veaAhHQJvf5ZpztC11fZQoaAZHQGt+VN5+pfhoB02PAWgIR0Cb4sjlxOtXdX2UKGgGR0BuASO938oAaAdLvWgIR0Cb5HvWpZOjdX2UKGgGR0Bx6pKHwgDBaAdNDAFoCEdAm+TGnsLORnV9lChoBkdAbwruBtk4FWgHS85oCEdAm+USa/h2n3V9lChoBkdAcuaJ9y925mgHTQoBaAhHQJvo6DpTuOV1fZQoaAZHQHJ+76pHZsdoB00UAWgIR0Cb6SV3Ux20dX2UKGgGR0Bxyq1qnFYMaAdNCgFoCEdAm+nmaH9FWnV9lChoBkdAcoOAymALA2gHTRABaAhHQJvqZOrQw9J1fZQoaAZHQHB3Puw5eZ5oB0voaAhHQJvvLsJIDo11fZQoaAZHQGCQopx3mmtoB03oA2gIR0Cb8vpe/pMYdX2UKGgGR0BxrYY64lQeaAdLr2gIR0Cb8yrYoRZmdX2UKGgGR0BzxFStNi6QaAdNIwFoCEdAm/OkETxoZnV9lChoBkdAaqlb3XZoPGgHTW0BaAhHQJv1HEBKcut1fZQoaAZHQHJgTin5zo5oB0vUaAhHQJv3l5LRKHx1fZQoaAZHQGJzYRNATqVoB03oA2gIR0Cb98xeLNwBdX2UKGgGR0BxMGfL9uP4aAdNAwFoCEdAm/lvVRUFS3V9lChoBkdAb9bIV/MGHGgHS7BoCEdAm/oS5RTCL3V9lChoBkdAbjXtsvZh8mgHS6doCEdAm/wkPMB6r3V9lChoBkdAaJFkvsZ5zGgHTbsBaAhHQJv8SIj4YaZ1fZQoaAZHQHFv48Md92JoB0vBaAhHQJv9s/u9eyB1fZQoaAZHQG2m2RaHKwJoB0u7aAhHQJv+Y4dZJTV1fZQoaAZHQFuvyBkI5YJoB03oA2gIR0Cb/8pmVZ9vdX2UKGgGR0BxxyZfD1oQaAdLuWgIR0Cb/+xT850bdX2UKGgGR0BwTl5zHS4OaAdLxGgIR0CcAIT5ftx/dX2UKGgGR0Bx6LTYukDZaAdLwWgIR0CcAcPJaJQ+dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunar_lander_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee49a2ea78eb3af136a2cbf70217ffbe94503f5caa6312ac4366073936a5a632
|
3 |
+
size 87929
|
lunar_lander_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b098ce644a4d6dec7dfe8c22462dc2aeee51c0e5565b5be138ebf5648ce3d936
|
3 |
+
size 43329
|
lunar_lander_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (181 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 239.8600356, "std_reward": 54.238106022383064, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-06T21:37:06.992017"}
|