parinzee commited on
Commit
8210eee
1 Parent(s): 699f629

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.64 +/- 0.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:578d62d891c4d89a2193e2e9bd6a0aa4b237b3ee1bbd09a5ba2c1f1861debfb1
3
+ size 108029
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f61f00f10d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f61f00f0240>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 496420,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680606073378925938,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8bJcvzdorD7dJpu/IzSxvkPaYD/NSMG/wgWRv82xhr/qFa++Hegwvmvocr55s8e/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9MfLvxk2Xj9be+C+Uo22v1vwuD/KS32/G8qkv8xRcL8esX4+0O6gv0lJTL4njte/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADxsly/N2isPt0mm7/Z686/y5ijP9SyTb8jNLG+Q9pgP81Iwb8zzty/UKXKPfH+E8DCBZG/zbGGv+oVr76t0Z2/Dq5Jv78Glz4d6DC+a+hyvnmzx799vFS94mVRvR4Zz76UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[-0.8621054 0.3367326 -1.2121235 ]\n [-0.3461009 0.8783304 -1.5100342 ]\n [-1.1329882 -1.052301 -0.34196407]\n [-0.17276044 -0.23721473 -1.5601646 ]]",
60
+ "desired_goal": "[[-1.5920396 0.86801296 -0.43844113]\n [-1.4261878 1.4448351 -0.9894377 ]\n [-1.2874178 -0.9387481 0.24872252]\n [-1.257288 -0.19949831 -1.6840256 ]]",
61
+ "observation": "[[-0.8621054 0.3367326 -1.2121235 -1.6165725 1.2781004 -0.80350995]\n [-0.3461009 0.8783304 -1.5100342 -1.7250427 0.09894812 -2.3124354 ]\n [-1.1329882 -1.052301 -0.34196407 -1.2329613 -0.7878121 0.29497334]\n [-0.17276044 -0.23721473 -1.5601646 -0.05193757 -0.05112255 -0.4044885 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkY+8PAPiTD1wihY+KmOVPYOckL3iLm8+AAjBvU409T3flgc7MxIOPnOkFT0CeYM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02301768 0.05002023 0.14701247]\n [ 0.07294305 -0.07061102 0.23357728]\n [-0.09425354 0.11972867 0.00206893]\n [ 0.1387413 0.03653378 0.06419565]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.5036,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuM6/XfZrAcCUhpRSlIwBbJRLMowBdJRHQJcZWm51/2F1fZQoaAZoCWgPQwhfzmxX6IP8v5SGlFKUaBVLMmgWR0CXGORiPQv6dX2UKGgGaAloD0MI9dVVgVqsAcCUhpRSlGgVSzJoFkdAlxhW2sq8UXV9lChoBmgJaA9DCLL1DOGY5fe/lIaUUpRoFUsyaBZHQJcX3lijL0V1fZQoaAZoCWgPQwgNVTGVfgIGwJSGlFKUaBVLMmgWR0CXG0a/RE4OdX2UKGgGaAloD0MICqLuA5Ca+b+UhpRSlGgVSzJoFkdAlxrQhKUVz3V9lChoBmgJaA9DCH2VfOwukPG/lIaUUpRoFUsyaBZHQJcaQzYVZcN1fZQoaAZoCWgPQwguVtRgGoYQwJSGlFKUaBVLMmgWR0CXGcsny/bkdX2UKGgGaAloD0MIcobijjdpEsCUhpRSlGgVSzJoFkdAlx1TLW7OFHV9lChoBmgJaA9DCOQvLeqTHAnAlIaUUpRoFUsyaBZHQJcc3aDf3vh1fZQoaAZoCWgPQwheLAyR05f0v5SGlFKUaBVLMmgWR0CXHFBAfMfSdX2UKGgGaAloD0MIMh6lEp7wAsCUhpRSlGgVSzJoFkdAlxvYYzi0fHV9lChoBmgJaA9DCH3MBwQ6IxHAlIaUUpRoFUsyaBZHQJcfVJYkmhN1fZQoaAZoCWgPQwjzGyYapOD4v5SGlFKUaBVLMmgWR0CXHt8WbgCPdX2UKGgGaAloD0MIP47myMqv7L+UhpRSlGgVSzJoFkdAlx5SExqO93V9lChoBmgJaA9DCEp/L4UHTQTAlIaUUpRoFUsyaBZHQJcd2vyLAHp1fZQoaAZoCWgPQwgxfERMiSTvv5SGlFKUaBVLMmgWR0CXInKT0QK8dX2UKGgGaAloD0MIUfpCyHm/A8CUhpRSlGgVSzJoFkdAlyH+rp7kXHV9lChoBmgJaA9DCAvPS8XGvPe/lIaUUpRoFUsyaBZHQJchc5xR2r51fZQoaAZoCWgPQwgCt+7mqY4EwJSGlFKUaBVLMmgWR0CXIP3iJfpmdX2UKGgGaAloD0MIEAUzpmAtAMCUhpRSlGgVSzJoFkdAlyXWaH9FWnV9lChoBmgJaA9DCMfXnlkSoPu/lIaUUpRoFUsyaBZHQJclYe1a4c51fZQoaAZoCWgPQwiiJ2VSQ9sEwJSGlFKUaBVLMmgWR0CXJNao/A0sdX2UKGgGaAloD0MI5EhnYOTFC8CUhpRSlGgVSzJoFkdAlyRghGH58HV9lChoBmgJaA9DCFMJT+j1Rw3AlIaUUpRoFUsyaBZHQJcpWW2PT5R1fZQoaAZoCWgPQwiw5CoWvyn+v5SGlFKUaBVLMmgWR0CXKOUF0PpZdX2UKGgGaAloD0MIHy+kw0M4DsCUhpRSlGgVSzJoFkdAlyhaR6nivXV9lChoBmgJaA9DCK2jqgmiLvS/lIaUUpRoFUsyaBZHQJcn42OyVwB1fZQoaAZoCWgPQwjmBdhHp+7xv5SGlFKUaBVLMmgWR0CXLNlIEr5JdX2UKGgGaAloD0MI4q/JGvUQ77+UhpRSlGgVSzJoFkdAlyxkrGza9XV9lChoBmgJaA9DCJboLLMIxfe/lIaUUpRoFUsyaBZHQJcr2TJQtSR1fZQoaAZoCWgPQwiMZ9DQP0EGwJSGlFKUaBVLMmgWR0CXK2KIi1RcdX2UKGgGaAloD0MIms5OBkeJ97+UhpRSlGgVSzJoFkdAlzA+ryUcGXV9lChoBmgJaA9DCAtHkEqxY/G/lIaUUpRoFUsyaBZHQJcvyf029+R1fZQoaAZoCWgPQwhYWHA/4AEBwJSGlFKUaBVLMmgWR0CXLz6wMYuTdX2UKGgGaAloD0MI0QX1LXO677+UhpRSlGgVSzJoFkdAly7IIa99MXV9lChoBmgJaA9DCExV2uIa3wXAlIaUUpRoFUsyaBZHQJczvfAKv3d1fZQoaAZoCWgPQwjHSzeJQWAFwJSGlFKUaBVLMmgWR0CXM0oUSIxhdX2UKGgGaAloD0MIqdkDrcAQ97+UhpRSlGgVSzJoFkdAlzK+v2Xb/XV9lChoBmgJaA9DCM5uLZPhuPi/lIaUUpRoFUsyaBZHQJcySLFXJYF1fZQoaAZoCWgPQwgPuK6YEZ4BwJSGlFKUaBVLMmgWR0CXNh2ZAprldX2UKGgGaAloD0MIMuNtpdcm9L+UhpRSlGgVSzJoFkdAlzWnrhR64XV9lChoBmgJaA9DCOmY84x9aQzAlIaUUpRoFUsyaBZHQJc1GgYgq3F1fZQoaAZoCWgPQwjikuNO6QADwJSGlFKUaBVLMmgWR0CXNKGoaUA1dX2UKGgGaAloD0MI5C1XPzaJCsCUhpRSlGgVSzJoFkdAlzgAr1/UfHV9lChoBmgJaA9DCKPqVzofnvC/lIaUUpRoFUsyaBZHQJc3ipeeFtd1fZQoaAZoCWgPQwjRlnMprkoAwJSGlFKUaBVLMmgWR0CXNv3Dej20dX2UKGgGaAloD0MIU14robuECMCUhpRSlGgVSzJoFkdAlzaFYlpoK3V9lChoBmgJaA9DCDvl0Y2wyAzAlIaUUpRoFUsyaBZHQJc58rxy4nZ1fZQoaAZoCWgPQwi/tRMlIbELwJSGlFKUaBVLMmgWR0CXOXymQ8wIdX2UKGgGaAloD0MIpb3BFyYT/r+UhpRSlGgVSzJoFkdAlzjvpUxVQ3V9lChoBmgJaA9DCIF2hxQDZBHAlIaUUpRoFUsyaBZHQJc4d6u4gA91fZQoaAZoCWgPQwjn/BTHgZcGwJSGlFKUaBVLMmgWR0CXPCHlwLmZdX2UKGgGaAloD0MIrb1PVaEBAcCUhpRSlGgVSzJoFkdAlzusAiml7HV9lChoBmgJaA9DCMVW0LTEig7AlIaUUpRoFUsyaBZHQJc7H60pmVZ1fZQoaAZoCWgPQwgg1bDfEyv8v5SGlFKUaBVLMmgWR0CXOqe5nUUgdX2UKGgGaAloD0MI3iBaK9p8BMCUhpRSlGgVSzJoFkdAlz5SnP3SKHV9lChoBmgJaA9DCCE82jhiLfq/lIaUUpRoFUsyaBZHQJc93IGQjlh1fZQoaAZoCWgPQwilhjYAG9ACwJSGlFKUaBVLMmgWR0CXPU/J/5LzdX2UKGgGaAloD0MIHXOesS8Z9r+UhpRSlGgVSzJoFkdAlzzXmvGIbnV9lChoBmgJaA9DCAtET8qkBvS/lIaUUpRoFUsyaBZHQJdAReruIAR1fZQoaAZoCWgPQwjgvaPGhDgLwJSGlFKUaBVLMmgWR0CXP8/keZG8dX2UKGgGaAloD0MIaCJseHoFBsCUhpRSlGgVSzJoFkdAlz9CblRxcXV9lChoBmgJaA9DCMZP4978RgDAlIaUUpRoFUsyaBZHQJc+ygXdj5N1fZQoaAZoCWgPQwguxVVl31X1v5SGlFKUaBVLMmgWR0CXQjMh5gPVdX2UKGgGaAloD0MIaHVyhuLO9r+UhpRSlGgVSzJoFkdAl0G9Net0WHV9lChoBmgJaA9DCJSJWwUxUPq/lIaUUpRoFUsyaBZHQJdBMEeQuEp1fZQoaAZoCWgPQwgqUmFsIQj2v5SGlFKUaBVLMmgWR0CXQLlzU7SzdX2UKGgGaAloD0MIPdLgtrbw/7+UhpRSlGgVSzJoFkdAl0QmA08/2XV9lChoBmgJaA9DCGNhiJy+nvm/lIaUUpRoFUsyaBZHQJdDsGRmseZ1fZQoaAZoCWgPQwhS8X9HVCjsv5SGlFKUaBVLMmgWR0CXQyOe8PFvdX2UKGgGaAloD0MI9OFZgowgCsCUhpRSlGgVSzJoFkdAl0KrV4HHFXV9lChoBmgJaA9DCACo4sYtxgDAlIaUUpRoFUsyaBZHQJdGGmO2iL51fZQoaAZoCWgPQwg5DVGFP0Pyv5SGlFKUaBVLMmgWR0CXRaS2Yv38dX2UKGgGaAloD0MIvyoXKv9a+L+UhpRSlGgVSzJoFkdAl0UXSa3I/HV9lChoBmgJaA9DCP6d7dEbLvu/lIaUUpRoFUsyaBZHQJdEnvuw5eZ1fZQoaAZoCWgPQwh7iEZ3ELvzv5SGlFKUaBVLMmgWR0CXSCtXgccVdX2UKGgGaAloD0MIuAN1yqM7BMCUhpRSlGgVSzJoFkdAl0e1eF+NLnV9lChoBmgJaA9DCPNYMzLIXf6/lIaUUpRoFUsyaBZHQJdHJ/NJOFh1fZQoaAZoCWgPQwiEY5Y9CWzpv5SGlFKUaBVLMmgWR0CXRq/o7muDdX2UKGgGaAloD0MIbJc2HJaG9L+UhpRSlGgVSzJoFkdAl0oaAJ9iMHV9lChoBmgJaA9DCNI5P8VxwArAlIaUUpRoFUsyaBZHQJdJpBzFMqV1fZQoaAZoCWgPQwie0yzQ7rACwJSGlFKUaBVLMmgWR0CXSRaHKwIMdX2UKGgGaAloD0MI8RDGT+Ne/7+UhpRSlGgVSzJoFkdAl0ieM2m52HV9lChoBmgJaA9DCNREn48yQgnAlIaUUpRoFUsyaBZHQJdMQsg+yJN1fZQoaAZoCWgPQwibyTfb3Njyv5SGlFKUaBVLMmgWR0CXS8zw+dK/dX2UKGgGaAloD0MIOj5anDGM/b+UhpRSlGgVSzJoFkdAl0s/smfGuXV9lChoBmgJaA9DCD1IT5FDRAHAlIaUUpRoFUsyaBZHQJdKx5prULF1fZQoaAZoCWgPQwgcQpWaPdD7v5SGlFKUaBVLMmgWR0CXTjjVhCtzdX2UKGgGaAloD0MIu5f75ChA6b+UhpRSlGgVSzJoFkdAl03C04R283V9lChoBmgJaA9DCGZmZmZmpv2/lIaUUpRoFUsyaBZHQJdNNWdVea91fZQoaAZoCWgPQwhuvhHds84IwJSGlFKUaBVLMmgWR0CXTL1/2Cd0dX2UKGgGaAloD0MI8rImFvgK8L+UhpRSlGgVSzJoFkdAl1BTkQwsXnV9lChoBmgJaA9DCKgck8X9BwbAlIaUUpRoFUsyaBZHQJdP3dDYywh1fZQoaAZoCWgPQwiASL99Hbj0v5SGlFKUaBVLMmgWR0CXT1Ce2/i6dX2UKGgGaAloD0MI6LtbWaKzAcCUhpRSlGgVSzJoFkdAl07YO2AoX3V9lChoBmgJaA9DCG0a22tBzw3AlIaUUpRoFUsyaBZHQJdSTy5I6Kd1fZQoaAZoCWgPQwiyYyMQrwsEwJSGlFKUaBVLMmgWR0CXUdme18b8dX2UKGgGaAloD0MIveXqxyb5/r+UhpRSlGgVSzJoFkdAl1FMjzI3i3V9lChoBmgJaA9DCIoBEk2g6A3AlIaUUpRoFUsyaBZHQJdQ1MxoIv91ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 24820,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ea6f03be09161a7015f088c76ccd6583687ca2b345ca3a932db62e5a4403d5c
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97fcbd32b8cd5d207e1c64f025f8d28f5b7dd5fee3ab13504bb39f90273baaee
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f61f00f10d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f61f00f0240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 496420, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680606073378925938, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8bJcvzdorD7dJpu/IzSxvkPaYD/NSMG/wgWRv82xhr/qFa++Hegwvmvocr55s8e/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9MfLvxk2Xj9be+C+Uo22v1vwuD/KS32/G8qkv8xRcL8esX4+0O6gv0lJTL4njte/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADxsly/N2isPt0mm7/Z686/y5ijP9SyTb8jNLG+Q9pgP81Iwb8zzty/UKXKPfH+E8DCBZG/zbGGv+oVr76t0Z2/Dq5Jv78Glz4d6DC+a+hyvnmzx799vFS94mVRvR4Zz76UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.8621054 0.3367326 -1.2121235 ]\n [-0.3461009 0.8783304 -1.5100342 ]\n [-1.1329882 -1.052301 -0.34196407]\n [-0.17276044 -0.23721473 -1.5601646 ]]", "desired_goal": "[[-1.5920396 0.86801296 -0.43844113]\n [-1.4261878 1.4448351 -0.9894377 ]\n [-1.2874178 -0.9387481 0.24872252]\n [-1.257288 -0.19949831 -1.6840256 ]]", "observation": "[[-0.8621054 0.3367326 -1.2121235 -1.6165725 1.2781004 -0.80350995]\n [-0.3461009 0.8783304 -1.5100342 -1.7250427 0.09894812 -2.3124354 ]\n [-1.1329882 -1.052301 -0.34196407 -1.2329613 -0.7878121 0.29497334]\n [-0.17276044 -0.23721473 -1.5601646 -0.05193757 -0.05112255 -0.4044885 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkY+8PAPiTD1wihY+KmOVPYOckL3iLm8+AAjBvU409T3flgc7MxIOPnOkFT0CeYM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02301768 0.05002023 0.14701247]\n [ 0.07294305 -0.07061102 0.23357728]\n [-0.09425354 0.11972867 0.00206893]\n [ 0.1387413 0.03653378 0.06419565]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5036, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuM6/XfZrAcCUhpRSlIwBbJRLMowBdJRHQJcZWm51/2F1fZQoaAZoCWgPQwhfzmxX6IP8v5SGlFKUaBVLMmgWR0CXGORiPQv6dX2UKGgGaAloD0MI9dVVgVqsAcCUhpRSlGgVSzJoFkdAlxhW2sq8UXV9lChoBmgJaA9DCLL1DOGY5fe/lIaUUpRoFUsyaBZHQJcX3lijL0V1fZQoaAZoCWgPQwgNVTGVfgIGwJSGlFKUaBVLMmgWR0CXG0a/RE4OdX2UKGgGaAloD0MICqLuA5Ca+b+UhpRSlGgVSzJoFkdAlxrQhKUVz3V9lChoBmgJaA9DCH2VfOwukPG/lIaUUpRoFUsyaBZHQJcaQzYVZcN1fZQoaAZoCWgPQwguVtRgGoYQwJSGlFKUaBVLMmgWR0CXGcsny/bkdX2UKGgGaAloD0MIcobijjdpEsCUhpRSlGgVSzJoFkdAlx1TLW7OFHV9lChoBmgJaA9DCOQvLeqTHAnAlIaUUpRoFUsyaBZHQJcc3aDf3vh1fZQoaAZoCWgPQwheLAyR05f0v5SGlFKUaBVLMmgWR0CXHFBAfMfSdX2UKGgGaAloD0MIMh6lEp7wAsCUhpRSlGgVSzJoFkdAlxvYYzi0fHV9lChoBmgJaA9DCH3MBwQ6IxHAlIaUUpRoFUsyaBZHQJcfVJYkmhN1fZQoaAZoCWgPQwjzGyYapOD4v5SGlFKUaBVLMmgWR0CXHt8WbgCPdX2UKGgGaAloD0MIP47myMqv7L+UhpRSlGgVSzJoFkdAlx5SExqO93V9lChoBmgJaA9DCEp/L4UHTQTAlIaUUpRoFUsyaBZHQJcd2vyLAHp1fZQoaAZoCWgPQwgxfERMiSTvv5SGlFKUaBVLMmgWR0CXInKT0QK8dX2UKGgGaAloD0MIUfpCyHm/A8CUhpRSlGgVSzJoFkdAlyH+rp7kXHV9lChoBmgJaA9DCAvPS8XGvPe/lIaUUpRoFUsyaBZHQJchc5xR2r51fZQoaAZoCWgPQwgCt+7mqY4EwJSGlFKUaBVLMmgWR0CXIP3iJfpmdX2UKGgGaAloD0MIEAUzpmAtAMCUhpRSlGgVSzJoFkdAlyXWaH9FWnV9lChoBmgJaA9DCMfXnlkSoPu/lIaUUpRoFUsyaBZHQJclYe1a4c51fZQoaAZoCWgPQwiiJ2VSQ9sEwJSGlFKUaBVLMmgWR0CXJNao/A0sdX2UKGgGaAloD0MI5EhnYOTFC8CUhpRSlGgVSzJoFkdAlyRghGH58HV9lChoBmgJaA9DCFMJT+j1Rw3AlIaUUpRoFUsyaBZHQJcpWW2PT5R1fZQoaAZoCWgPQwiw5CoWvyn+v5SGlFKUaBVLMmgWR0CXKOUF0PpZdX2UKGgGaAloD0MIHy+kw0M4DsCUhpRSlGgVSzJoFkdAlyhaR6nivXV9lChoBmgJaA9DCK2jqgmiLvS/lIaUUpRoFUsyaBZHQJcn42OyVwB1fZQoaAZoCWgPQwjmBdhHp+7xv5SGlFKUaBVLMmgWR0CXLNlIEr5JdX2UKGgGaAloD0MI4q/JGvUQ77+UhpRSlGgVSzJoFkdAlyxkrGza9XV9lChoBmgJaA9DCJboLLMIxfe/lIaUUpRoFUsyaBZHQJcr2TJQtSR1fZQoaAZoCWgPQwiMZ9DQP0EGwJSGlFKUaBVLMmgWR0CXK2KIi1RcdX2UKGgGaAloD0MIms5OBkeJ97+UhpRSlGgVSzJoFkdAlzA+ryUcGXV9lChoBmgJaA9DCAtHkEqxY/G/lIaUUpRoFUsyaBZHQJcvyf029+R1fZQoaAZoCWgPQwhYWHA/4AEBwJSGlFKUaBVLMmgWR0CXLz6wMYuTdX2UKGgGaAloD0MI0QX1LXO677+UhpRSlGgVSzJoFkdAly7IIa99MXV9lChoBmgJaA9DCExV2uIa3wXAlIaUUpRoFUsyaBZHQJczvfAKv3d1fZQoaAZoCWgPQwjHSzeJQWAFwJSGlFKUaBVLMmgWR0CXM0oUSIxhdX2UKGgGaAloD0MIqdkDrcAQ97+UhpRSlGgVSzJoFkdAlzK+v2Xb/XV9lChoBmgJaA9DCM5uLZPhuPi/lIaUUpRoFUsyaBZHQJcySLFXJYF1fZQoaAZoCWgPQwgPuK6YEZ4BwJSGlFKUaBVLMmgWR0CXNh2ZAprldX2UKGgGaAloD0MIMuNtpdcm9L+UhpRSlGgVSzJoFkdAlzWnrhR64XV9lChoBmgJaA9DCOmY84x9aQzAlIaUUpRoFUsyaBZHQJc1GgYgq3F1fZQoaAZoCWgPQwjikuNO6QADwJSGlFKUaBVLMmgWR0CXNKGoaUA1dX2UKGgGaAloD0MI5C1XPzaJCsCUhpRSlGgVSzJoFkdAlzgAr1/UfHV9lChoBmgJaA9DCKPqVzofnvC/lIaUUpRoFUsyaBZHQJc3ipeeFtd1fZQoaAZoCWgPQwjRlnMprkoAwJSGlFKUaBVLMmgWR0CXNv3Dej20dX2UKGgGaAloD0MIU14robuECMCUhpRSlGgVSzJoFkdAlzaFYlpoK3V9lChoBmgJaA9DCDvl0Y2wyAzAlIaUUpRoFUsyaBZHQJc58rxy4nZ1fZQoaAZoCWgPQwi/tRMlIbELwJSGlFKUaBVLMmgWR0CXOXymQ8wIdX2UKGgGaAloD0MIpb3BFyYT/r+UhpRSlGgVSzJoFkdAlzjvpUxVQ3V9lChoBmgJaA9DCIF2hxQDZBHAlIaUUpRoFUsyaBZHQJc4d6u4gA91fZQoaAZoCWgPQwjn/BTHgZcGwJSGlFKUaBVLMmgWR0CXPCHlwLmZdX2UKGgGaAloD0MIrb1PVaEBAcCUhpRSlGgVSzJoFkdAlzusAiml7HV9lChoBmgJaA9DCMVW0LTEig7AlIaUUpRoFUsyaBZHQJc7H60pmVZ1fZQoaAZoCWgPQwgg1bDfEyv8v5SGlFKUaBVLMmgWR0CXOqe5nUUgdX2UKGgGaAloD0MI3iBaK9p8BMCUhpRSlGgVSzJoFkdAlz5SnP3SKHV9lChoBmgJaA9DCCE82jhiLfq/lIaUUpRoFUsyaBZHQJc93IGQjlh1fZQoaAZoCWgPQwilhjYAG9ACwJSGlFKUaBVLMmgWR0CXPU/J/5LzdX2UKGgGaAloD0MIHXOesS8Z9r+UhpRSlGgVSzJoFkdAlzzXmvGIbnV9lChoBmgJaA9DCAtET8qkBvS/lIaUUpRoFUsyaBZHQJdAReruIAR1fZQoaAZoCWgPQwjgvaPGhDgLwJSGlFKUaBVLMmgWR0CXP8/keZG8dX2UKGgGaAloD0MIaCJseHoFBsCUhpRSlGgVSzJoFkdAlz9CblRxcXV9lChoBmgJaA9DCMZP4978RgDAlIaUUpRoFUsyaBZHQJc+ygXdj5N1fZQoaAZoCWgPQwguxVVl31X1v5SGlFKUaBVLMmgWR0CXQjMh5gPVdX2UKGgGaAloD0MIaHVyhuLO9r+UhpRSlGgVSzJoFkdAl0G9Net0WHV9lChoBmgJaA9DCJSJWwUxUPq/lIaUUpRoFUsyaBZHQJdBMEeQuEp1fZQoaAZoCWgPQwgqUmFsIQj2v5SGlFKUaBVLMmgWR0CXQLlzU7SzdX2UKGgGaAloD0MIPdLgtrbw/7+UhpRSlGgVSzJoFkdAl0QmA08/2XV9lChoBmgJaA9DCGNhiJy+nvm/lIaUUpRoFUsyaBZHQJdDsGRmseZ1fZQoaAZoCWgPQwhS8X9HVCjsv5SGlFKUaBVLMmgWR0CXQyOe8PFvdX2UKGgGaAloD0MI9OFZgowgCsCUhpRSlGgVSzJoFkdAl0KrV4HHFXV9lChoBmgJaA9DCACo4sYtxgDAlIaUUpRoFUsyaBZHQJdGGmO2iL51fZQoaAZoCWgPQwg5DVGFP0Pyv5SGlFKUaBVLMmgWR0CXRaS2Yv38dX2UKGgGaAloD0MIvyoXKv9a+L+UhpRSlGgVSzJoFkdAl0UXSa3I/HV9lChoBmgJaA9DCP6d7dEbLvu/lIaUUpRoFUsyaBZHQJdEnvuw5eZ1fZQoaAZoCWgPQwh7iEZ3ELvzv5SGlFKUaBVLMmgWR0CXSCtXgccVdX2UKGgGaAloD0MIuAN1yqM7BMCUhpRSlGgVSzJoFkdAl0e1eF+NLnV9lChoBmgJaA9DCPNYMzLIXf6/lIaUUpRoFUsyaBZHQJdHJ/NJOFh1fZQoaAZoCWgPQwiEY5Y9CWzpv5SGlFKUaBVLMmgWR0CXRq/o7muDdX2UKGgGaAloD0MIbJc2HJaG9L+UhpRSlGgVSzJoFkdAl0oaAJ9iMHV9lChoBmgJaA9DCNI5P8VxwArAlIaUUpRoFUsyaBZHQJdJpBzFMqV1fZQoaAZoCWgPQwie0yzQ7rACwJSGlFKUaBVLMmgWR0CXSRaHKwIMdX2UKGgGaAloD0MI8RDGT+Ne/7+UhpRSlGgVSzJoFkdAl0ieM2m52HV9lChoBmgJaA9DCNREn48yQgnAlIaUUpRoFUsyaBZHQJdMQsg+yJN1fZQoaAZoCWgPQwibyTfb3Njyv5SGlFKUaBVLMmgWR0CXS8zw+dK/dX2UKGgGaAloD0MIOj5anDGM/b+UhpRSlGgVSzJoFkdAl0s/smfGuXV9lChoBmgJaA9DCD1IT5FDRAHAlIaUUpRoFUsyaBZHQJdKx5prULF1fZQoaAZoCWgPQwgcQpWaPdD7v5SGlFKUaBVLMmgWR0CXTjjVhCtzdX2UKGgGaAloD0MIu5f75ChA6b+UhpRSlGgVSzJoFkdAl03C04R283V9lChoBmgJaA9DCGZmZmZmpv2/lIaUUpRoFUsyaBZHQJdNNWdVea91fZQoaAZoCWgPQwhuvhHds84IwJSGlFKUaBVLMmgWR0CXTL1/2Cd0dX2UKGgGaAloD0MI8rImFvgK8L+UhpRSlGgVSzJoFkdAl1BTkQwsXnV9lChoBmgJaA9DCKgck8X9BwbAlIaUUpRoFUsyaBZHQJdP3dDYywh1fZQoaAZoCWgPQwiASL99Hbj0v5SGlFKUaBVLMmgWR0CXT1Ce2/i6dX2UKGgGaAloD0MI6LtbWaKzAcCUhpRSlGgVSzJoFkdAl07YO2AoX3V9lChoBmgJaA9DCG0a22tBzw3AlIaUUpRoFUsyaBZHQJdSTy5I6Kd1fZQoaAZoCWgPQwiyYyMQrwsEwJSGlFKUaBVLMmgWR0CXUdme18b8dX2UKGgGaAloD0MIveXqxyb5/r+UhpRSlGgVSzJoFkdAl1FMjzI3i3V9lChoBmgJaA9DCIoBEk2g6A3AlIaUUpRoFUsyaBZHQJdQ1MxoIv91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24820, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (660 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.6414801978040487, "std_reward": 0.6335938029996118, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T11:27:19.408806"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee7491d3566876d1682e0d5579c20befc0a36c40ad24d51aff2f25b5c78df185
3
+ size 3056