First use of package_to_hub
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 227.99 +/- 21.59
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e4792e290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e4792e320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e4792e3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e4792e440>", "_build": "<function ActorCriticPolicy._build at 0x7f2e4792e4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e4792e560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e4792e5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e4792e680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e4792e710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e4792e7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e4792e830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2e47902300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651946647.5869193, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2khT2pG1A/m1qrPXJptb7FtBo92bYLvQAAAAAAAAAAGvkIPY9qObrKHDK6fkpKNsqdCruTuEw5AACAPwAAgD8g6nI+UzZxP1KEUT7KFq2++42uPoSyA74AAAAAAAAAADM5rr32eAC6Ku4FuZLUVrUb6he7Xk4dOAAAAAAAAIA/5sXAvVy7ILqWCec6VpxRNgDVUjtRTQa6AACAPwAAgD+ArxW99lxGusqLsbv9fDk2Nd7LulVapbUAAIA/AACAP+3eHb4sE3U+ai2XPepxVr5NZug8iO41vQAAAAAAAAAAQIgevlIfprvwONI5N2w0N0pd5zzFnvm4AACAPwAAgD8zF089SOutuj6WiDrAgyc3w6djOYABnDMAAIA/AACAP6Y4vr2Pkke6a+you/PMYDi3DAq7tlffOAAAgD8AAIA/OiR6PpK1TT92BAo+Y+pFvuxG1jwzw9I7AAAAAAAAAADNlJG8FL6JOe0QgruxYDe2w2IlO+hAnToAAIA/AACAP9p5mT3hvIK60vpQOhudYTYG+RQ6MOltuQAAgD8AAIA/Wq9WPgr2bTyuW9A5tFIGOAC76z1ZDwG5AACAPwAAgD8A2pu8e2aRusXA5jnr86A1X0ZOO9bqBbkAAIA/AACAP1om0T2PBh+61cGGudUNV7TBDxQ6IdWaOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMIFbd/P0UECUhpRSlIwBbJRN6AOMAXSUR0CJoIySmqHXdX2UKGgGaAloD0MI8N+8OPFzQ0CUhpRSlGgVS95oFkdAiaRAiV0LdHV9lChoBmgJaA9DCP/r3LQZVURAlIaUUpRoFUvxaBZHQInGQWSEDhd1fZQoaAZoCWgPQwipv15hwdtAwJSGlFKUaBVN6ANoFkdAidcky+HrQnV9lChoBmgJaA9DCPNWXYdqdVdAlIaUUpRoFU3oA2gWR0CJ47Da4+bFdX2UKGgGaAloD0MIhUAuceRPXECUhpRSlGgVTegDaBZHQInn9Qfp2U11fZQoaAZoCWgPQwj8GHPXkhVjQJSGlFKUaBVN6ANoFkdAielWM0gr6XV9lChoBmgJaA9DCKVquwm+DGBAlIaUUpRoFU3oA2gWR0CJ6s1baAWjdX2UKGgGaAloD0MIhLhy9s5tVkCUhpRSlGgVTegDaBZHQInw8eXAuZl1fZQoaAZoCWgPQwhQ/YNIhtFbQJSGlFKUaBVN6ANoFkdAifRBkI5YHXV9lChoBmgJaA9DCMxgjEgU+gDAlIaUUpRoFUveaBZHQIoEM/6frbB1fZQoaAZoCWgPQwgm32xz4+ZhQJSGlFKUaBVN6ANoFkdAignSw4bS7XV9lChoBmgJaA9DCE57Ss6JwVNAlIaUUpRoFU3oA2gWR0CKE3paA4GVdX2UKGgGaAloD0MIy5wui4lVWkCUhpRSlGgVTegDaBZHQIoUKreZXuF1fZQoaAZoCWgPQwgpWU5C6bc5QJSGlFKUaBVN6ANoFkdAiheVjiGWU3V9lChoBmgJaA9DCLoQqz/C0CTAlIaUUpRoFU0NAWgWR0CKLXEZzgdfdX2UKGgGaAloD0MIeLeyROdSZ0CUhpRSlGgVTeEBaBZHQIovuI0qH451fZQoaAZoCWgPQwhdFhObj/dbQJSGlFKUaBVN6ANoFkdAii/ApjMFEHV9lChoBmgJaA9DCMTPfw9e4WBAlIaUUpRoFU3oA2gWR0CKMHuF6AvtdX2UKGgGaAloD0MIXwzlRLuUQECUhpRSlGgVTQcBaBZHQIo6wXGff411fZQoaAZoCWgPQwjPvYdLjiBdQJSGlFKUaBVN6ANoFkdAinCTrE9+w3V9lChoBmgJaA9DCAjpKXKIfl1AlIaUUpRoFU3oA2gWR0CKdauCf6GhdX2UKGgGaAloD0MIPPVIg9saEsCUhpRSlGgVS9RoFkdAioFLXL/0d3V9lChoBmgJaA9DCM9oq5LIfve/lIaUUpRoFUvXaBZHQIqCYZl4C6p1fZQoaAZoCWgPQwg7cTlegRJDwJSGlFKUaBVNAQFoFkdAioe4AKfFrHV9lChoBmgJaA9DCD27fOvDJjHAlIaUUpRoFUvzaBZHQIqSoood+5R1fZQoaAZoCWgPQwilaybfbG1bQJSGlFKUaBVN6ANoFkdAipPyyMUAUHV9lChoBmgJaA9DCItvKHy23F5AlIaUUpRoFU3oA2gWR0CKoYl+mWMTdX2UKGgGaAloD0MIPbZlwFnMT0CUhpRSlGgVS7BoFkdAiq7vJq7AcnV9lChoBmgJaA9DCHFYGvhRTFhAlIaUUpRoFU3oA2gWR0CKsUX2ugYhdX2UKGgGaAloD0MI46dxb34AXUCUhpRSlGgVTegDaBZHQIqyrSJCSid1fZQoaAZoCWgPQwgUzm4tk0EZwJSGlFKUaBVL+GgWR0CKuCBbwBo3dX2UKGgGaAloD0MIcy8wKxRgYECUhpRSlGgVTegDaBZHQIq4Q9eQdS51fZQoaAZoCWgPQwj3IW+5+lheQJSGlFKUaBVN6ANoFkdAirsw/5ckdHV9lChoBmgJaA9DCBQ98DFY5UdAlIaUUpRoFUvUaBZHQIrNETQE6kt1fZQoaAZoCWgPQwjP86eNau1gQJSGlFKUaBVN6ANoFkdAis9fVAiV0XV9lChoBmgJaA9DCEM9fQR+rGNAlIaUUpRoFU3oA2gWR0CK2CIoE0SAdX2UKGgGaAloD0MIufqxSX5DW0CUhpRSlGgVTegDaBZHQIrbGNLlFMJ1fZQoaAZoCWgPQwg2BMdl3E5bQJSGlFKUaBVN6ANoFkdAiu7UxEfDDXV9lChoBmgJaA9DCLIPsiyYSBTAlIaUUpRoFUvvaBZHQIr5gzFdcB51fZQoaAZoCWgPQwhsWikEcvNZQJSGlFKUaBVN6ANoFkdAivxreQ+2VnV9lChoBmgJaA9DCJkoQup2lhfAlIaUUpRoFU0JAWgWR0CLNf7XxvvSdX2UKGgGaAloD0MIP6n26XjtX0CUhpRSlGgVTegDaBZHQIs4Q8GLUCt1fZQoaAZoCWgPQwhu36P++rRgQJSGlFKUaBVN6ANoFkdAi0Tk9Mbm2nV9lChoBmgJaA9DCCI4LuOmpFtAlIaUUpRoFU3oA2gWR0CLRf7k4m1IdX2UKGgGaAloD0MIM40mF2NoYECUhpRSlGgVTegDaBZHQItLEIHC4z91fZQoaAZoCWgPQwhcPSe9b+pDwJSGlFKUaBVL+2gWR0CLUpRc/t6YdX2UKGgGaAloD0MIigPo933aZ0CUhpRSlGgVTegDaBZHQItkMEcKgI11fZQoaAZoCWgPQwhRvMraplBJQJSGlFKUaBVL+mgWR0CLaad1dPcjdX2UKGgGaAloD0MITMPwEbGjY0CUhpRSlGgVTegDaBZHQItyV5yEL6V1fZQoaAZoCWgPQwiXVkPinhRgQJSGlFKUaBVN6ANoFkdAi3ZclXzUZ3V9lChoBmgJaA9DCHb51od1KmBAlIaUUpRoFU3oA2gWR0CLfKrWAf+1dX2UKGgGaAloD0MICXB6F++AXkCUhpRSlGgVTegDaBZHQIt8023rleZ1fZQoaAZoCWgPQwj53An2XyhhQJSGlFKUaBVN6ANoFkdAi3/Eyk9EC3V9lChoBmgJaA9DCNbG2AkvoTRAlIaUUpRoFUvuaBZHQIuH0ijcmBx1fZQoaAZoCWgPQwhJTFDDt6lfQJSGlFKUaBVN6ANoFkdAi5GqfFrEcnV9lChoBmgJaA9DCPLpsS0DV15AlIaUUpRoFU3oA2gWR0CLk5Zs9B8hdX2UKGgGaAloD0MIQURq2sU4QECUhpRSlGgVTQUBaBZHQIuhKUxEfDF1fZQoaAZoCWgPQwg57L5jeDRZQJSGlFKUaBVN6ANoFkdAi7M5B1LamHV9lChoBmgJaA9DCA677xge+9K/lIaUUpRoFUvsaBZHQIuz57eEZix1fZQoaAZoCWgPQwiB64oZ4XBgQJSGlFKUaBVN6ANoFkdAi8AnsTnJT3V9lChoBmgJaA9DCDlGskcob2FAlIaUUpRoFU3oA2gWR0CLw+/wAlv7dX2UKGgGaAloD0MIiA6BI4FPYECUhpRSlGgVTegDaBZHQIvGPwuuiex1fZQoaAZoCWgPQwjfwrrx7jw5QJSGlFKUaBVLyGgWR0CMA7JNj9XLdX2UKGgGaAloD0MI2EroLonPYUCUhpRSlGgVTegDaBZHQIwHvQ4S6Dp1fZQoaAZoCWgPQwhA3qtWJsRdQJSGlFKUaBVN6ANoFkdAjAy31BdD6XV9lChoBmgJaA9DCAEXZMvysWJAlIaUUpRoFU3oA2gWR0CME6H2ys0YdX2UKGgGaAloD0MIt5p1xveDW0CUhpRSlGgVTegDaBZHQIwqF1ZDArR1fZQoaAZoCWgPQwiZRpOLMbDYv5SGlFKUaBVNFQFoFkdAjC+YCyQgcXV9lChoBmgJaA9DCD8e+u5WTl5AlIaUUpRoFU3oA2gWR0CMMiD6Fds0dX2UKGgGaAloD0MIBaT9DzDZZECUhpRSlGgVTegDaBZHQIw1pY/3WWh1fZQoaAZoCWgPQwjLu+oB84pGQJSGlFKUaBVN6ANoFkdAjDumiHqNZXV9lChoBmgJaA9DCHpU/N8RTF5AlIaUUpRoFU3oA2gWR0CMO86ij+JhdX2UKGgGaAloD0MIYye8BKdOWkCUhpRSlGgVTegDaBZHQIxIHBi1Aqx1fZQoaAZoCWgPQwiKq8q+q1lkQJSGlFKUaBVN6ANoFkdAjFLCwSrYG3V9lChoBmgJaA9DCMP0vYbgOOK/lIaUUpRoFU0NAWgWR0CMYybbUPQOdX2UKGgGaAloD0MIOGvwvqquYECUhpRSlGgVTegDaBZHQIxlhqdpZfV1fZQoaAZoCWgPQwi7RzZXTRRlQJSGlFKUaBVN6ANoFkdAjHmmig00nHV9lChoBmgJaA9DCM+7saCwJmJAlIaUUpRoFU3oA2gWR0CMieHY6GQCdX2UKGgGaAloD0MIfXiWIKMwYUCUhpRSlGgVTegDaBZHQIyO0Gkep4t1fZQoaAZoCWgPQwiY2lIHeRhbQJSGlFKUaBVN6ANoFkdAjJFwl8gIQnV9lChoBmgJaA9DCNqpudzgR2FAlIaUUpRoFU3oA2gWR0CM0bX5FgDzdX2UKGgGaAloD0MIgeuKGWG8YkCUhpRSlGgVTegDaBZHQIzchjOLR8d1fZQoaAZoCWgPQwhQHEC/b0pjQJSGlFKUaBVN6ANoFkdAjOUXrD63zHV9lChoBmgJaA9DCHfc8LvpVhJAlIaUUpRoFU0LAWgWR0CM779MsYl6dX2UKGgGaAloD0MI12zlJX99YkCUhpRSlGgVTegDaBZHQIz+f029+PR1fZQoaAZoCWgPQwhJD0Ork7hdQJSGlFKUaBVN6ANoFkdAjQSOZCv5g3V9lChoBmgJaA9DCAU0ETY8I1xAlIaUUpRoFU3oA2gWR0CNBzTz/ZM+dX2UKGgGaAloD0MIfsUaLvLvYkCUhpRSlGgVTegDaBZHQI0KxCjUNKB1fZQoaAZoCWgPQwhaSSu+oV5EwJSGlFKUaBVL62gWR0CNDAvboKUndX2UKGgGaAloD0MIdcjNcAOoXECUhpRSlGgVTegDaBZHQI0QMu6ErXl1fZQoaAZoCWgPQwj8juGxn79iQJSGlFKUaBVN6ANoFkdAjRw9iUgSvnV9lChoBmgJaA9DCDc0ZacfaFtAlIaUUpRoFU3oA2gWR0CNJlU4JeE7dX2UKGgGaAloD0MIl3X/WIjSMkCUhpRSlGgVTQMBaBZHQI0vtgfEGaB1fZQoaAZoCWgPQwjaOc0C7QhfQJSGlFKUaBVN6ANoFkdAjTZhx5s0pHV9lChoBmgJaA9DCNDwZg3eUl5AlIaUUpRoFU3oA2gWR0CNOLgNwzcidX2UKGgGaAloD0MI/kgRGdbXYUCUhpRSlGgVTegDaBZHQI1MoJC0F8p1fZQoaAZoCWgPQwieew+XHItiQJSGlFKUaBVN6ANoFkdAjVv//WDpT3V9lChoBmgJaA9DCM78ag4QlC1AlIaUUpRoFUv1aBZHQI1eGViWmgt1fZQoaAZoCWgPQwheS8gHPb9eQJSGlFKUaBVN6ANoFkdAjWN9sSCe3HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bf27d24c3a57df0e74bc179c4acf659bcdfc21cbf52b6ea6e6d0cd53e0cea9c
|
3 |
+
size 144028
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e4792e290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e4792e320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e4792e3b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e4792e440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2e4792e4d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2e4792e560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e4792e5f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2e4792e680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e4792e710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e4792e7a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e4792e830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2e47902300>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651946647.5869193,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2khT2pG1A/m1qrPXJptb7FtBo92bYLvQAAAAAAAAAAGvkIPY9qObrKHDK6fkpKNsqdCruTuEw5AACAPwAAgD8g6nI+UzZxP1KEUT7KFq2++42uPoSyA74AAAAAAAAAADM5rr32eAC6Ku4FuZLUVrUb6he7Xk4dOAAAAAAAAIA/5sXAvVy7ILqWCec6VpxRNgDVUjtRTQa6AACAPwAAgD+ArxW99lxGusqLsbv9fDk2Nd7LulVapbUAAIA/AACAP+3eHb4sE3U+ai2XPepxVr5NZug8iO41vQAAAAAAAAAAQIgevlIfprvwONI5N2w0N0pd5zzFnvm4AACAPwAAgD8zF089SOutuj6WiDrAgyc3w6djOYABnDMAAIA/AACAP6Y4vr2Pkke6a+you/PMYDi3DAq7tlffOAAAgD8AAIA/OiR6PpK1TT92BAo+Y+pFvuxG1jwzw9I7AAAAAAAAAADNlJG8FL6JOe0QgruxYDe2w2IlO+hAnToAAIA/AACAP9p5mT3hvIK60vpQOhudYTYG+RQ6MOltuQAAgD8AAIA/Wq9WPgr2bTyuW9A5tFIGOAC76z1ZDwG5AACAPwAAgD8A2pu8e2aRusXA5jnr86A1X0ZOO9bqBbkAAIA/AACAP1om0T2PBh+61cGGudUNV7TBDxQ6IdWaOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMIFbd/P0UECUhpRSlIwBbJRN6AOMAXSUR0CJoIySmqHXdX2UKGgGaAloD0MI8N+8OPFzQ0CUhpRSlGgVS95oFkdAiaRAiV0LdHV9lChoBmgJaA9DCP/r3LQZVURAlIaUUpRoFUvxaBZHQInGQWSEDhd1fZQoaAZoCWgPQwipv15hwdtAwJSGlFKUaBVN6ANoFkdAidcky+HrQnV9lChoBmgJaA9DCPNWXYdqdVdAlIaUUpRoFU3oA2gWR0CJ47Da4+bFdX2UKGgGaAloD0MIhUAuceRPXECUhpRSlGgVTegDaBZHQInn9Qfp2U11fZQoaAZoCWgPQwj8GHPXkhVjQJSGlFKUaBVN6ANoFkdAielWM0gr6XV9lChoBmgJaA9DCKVquwm+DGBAlIaUUpRoFU3oA2gWR0CJ6s1baAWjdX2UKGgGaAloD0MIhLhy9s5tVkCUhpRSlGgVTegDaBZHQInw8eXAuZl1fZQoaAZoCWgPQwhQ/YNIhtFbQJSGlFKUaBVN6ANoFkdAifRBkI5YHXV9lChoBmgJaA9DCMxgjEgU+gDAlIaUUpRoFUveaBZHQIoEM/6frbB1fZQoaAZoCWgPQwgm32xz4+ZhQJSGlFKUaBVN6ANoFkdAignSw4bS7XV9lChoBmgJaA9DCE57Ss6JwVNAlIaUUpRoFU3oA2gWR0CKE3paA4GVdX2UKGgGaAloD0MIy5wui4lVWkCUhpRSlGgVTegDaBZHQIoUKreZXuF1fZQoaAZoCWgPQwgpWU5C6bc5QJSGlFKUaBVN6ANoFkdAiheVjiGWU3V9lChoBmgJaA9DCLoQqz/C0CTAlIaUUpRoFU0NAWgWR0CKLXEZzgdfdX2UKGgGaAloD0MIeLeyROdSZ0CUhpRSlGgVTeEBaBZHQIovuI0qH451fZQoaAZoCWgPQwhdFhObj/dbQJSGlFKUaBVN6ANoFkdAii/ApjMFEHV9lChoBmgJaA9DCMTPfw9e4WBAlIaUUpRoFU3oA2gWR0CKMHuF6AvtdX2UKGgGaAloD0MIXwzlRLuUQECUhpRSlGgVTQcBaBZHQIo6wXGff411fZQoaAZoCWgPQwjPvYdLjiBdQJSGlFKUaBVN6ANoFkdAinCTrE9+w3V9lChoBmgJaA9DCAjpKXKIfl1AlIaUUpRoFU3oA2gWR0CKdauCf6GhdX2UKGgGaAloD0MIPPVIg9saEsCUhpRSlGgVS9RoFkdAioFLXL/0d3V9lChoBmgJaA9DCM9oq5LIfve/lIaUUpRoFUvXaBZHQIqCYZl4C6p1fZQoaAZoCWgPQwg7cTlegRJDwJSGlFKUaBVNAQFoFkdAioe4AKfFrHV9lChoBmgJaA9DCD27fOvDJjHAlIaUUpRoFUvzaBZHQIqSoood+5R1fZQoaAZoCWgPQwilaybfbG1bQJSGlFKUaBVN6ANoFkdAipPyyMUAUHV9lChoBmgJaA9DCItvKHy23F5AlIaUUpRoFU3oA2gWR0CKoYl+mWMTdX2UKGgGaAloD0MIPbZlwFnMT0CUhpRSlGgVS7BoFkdAiq7vJq7AcnV9lChoBmgJaA9DCHFYGvhRTFhAlIaUUpRoFU3oA2gWR0CKsUX2ugYhdX2UKGgGaAloD0MI46dxb34AXUCUhpRSlGgVTegDaBZHQIqyrSJCSid1fZQoaAZoCWgPQwgUzm4tk0EZwJSGlFKUaBVL+GgWR0CKuCBbwBo3dX2UKGgGaAloD0MIcy8wKxRgYECUhpRSlGgVTegDaBZHQIq4Q9eQdS51fZQoaAZoCWgPQwj3IW+5+lheQJSGlFKUaBVN6ANoFkdAirsw/5ckdHV9lChoBmgJaA9DCBQ98DFY5UdAlIaUUpRoFUvUaBZHQIrNETQE6kt1fZQoaAZoCWgPQwjP86eNau1gQJSGlFKUaBVN6ANoFkdAis9fVAiV0XV9lChoBmgJaA9DCEM9fQR+rGNAlIaUUpRoFU3oA2gWR0CK2CIoE0SAdX2UKGgGaAloD0MIufqxSX5DW0CUhpRSlGgVTegDaBZHQIrbGNLlFMJ1fZQoaAZoCWgPQwg2BMdl3E5bQJSGlFKUaBVN6ANoFkdAiu7UxEfDDXV9lChoBmgJaA9DCLIPsiyYSBTAlIaUUpRoFUvvaBZHQIr5gzFdcB51fZQoaAZoCWgPQwhsWikEcvNZQJSGlFKUaBVN6ANoFkdAivxreQ+2VnV9lChoBmgJaA9DCJkoQup2lhfAlIaUUpRoFU0JAWgWR0CLNf7XxvvSdX2UKGgGaAloD0MIP6n26XjtX0CUhpRSlGgVTegDaBZHQIs4Q8GLUCt1fZQoaAZoCWgPQwhu36P++rRgQJSGlFKUaBVN6ANoFkdAi0Tk9Mbm2nV9lChoBmgJaA9DCCI4LuOmpFtAlIaUUpRoFU3oA2gWR0CLRf7k4m1IdX2UKGgGaAloD0MIM40mF2NoYECUhpRSlGgVTegDaBZHQItLEIHC4z91fZQoaAZoCWgPQwhcPSe9b+pDwJSGlFKUaBVL+2gWR0CLUpRc/t6YdX2UKGgGaAloD0MIigPo933aZ0CUhpRSlGgVTegDaBZHQItkMEcKgI11fZQoaAZoCWgPQwhRvMraplBJQJSGlFKUaBVL+mgWR0CLaad1dPcjdX2UKGgGaAloD0MITMPwEbGjY0CUhpRSlGgVTegDaBZHQItyV5yEL6V1fZQoaAZoCWgPQwiXVkPinhRgQJSGlFKUaBVN6ANoFkdAi3ZclXzUZ3V9lChoBmgJaA9DCHb51od1KmBAlIaUUpRoFU3oA2gWR0CLfKrWAf+1dX2UKGgGaAloD0MICXB6F++AXkCUhpRSlGgVTegDaBZHQIt8023rleZ1fZQoaAZoCWgPQwj53An2XyhhQJSGlFKUaBVN6ANoFkdAi3/Eyk9EC3V9lChoBmgJaA9DCNbG2AkvoTRAlIaUUpRoFUvuaBZHQIuH0ijcmBx1fZQoaAZoCWgPQwhJTFDDt6lfQJSGlFKUaBVN6ANoFkdAi5GqfFrEcnV9lChoBmgJaA9DCPLpsS0DV15AlIaUUpRoFU3oA2gWR0CLk5Zs9B8hdX2UKGgGaAloD0MIQURq2sU4QECUhpRSlGgVTQUBaBZHQIuhKUxEfDF1fZQoaAZoCWgPQwg57L5jeDRZQJSGlFKUaBVN6ANoFkdAi7M5B1LamHV9lChoBmgJaA9DCA677xge+9K/lIaUUpRoFUvsaBZHQIuz57eEZix1fZQoaAZoCWgPQwiB64oZ4XBgQJSGlFKUaBVN6ANoFkdAi8AnsTnJT3V9lChoBmgJaA9DCDlGskcob2FAlIaUUpRoFU3oA2gWR0CLw+/wAlv7dX2UKGgGaAloD0MIiA6BI4FPYECUhpRSlGgVTegDaBZHQIvGPwuuiex1fZQoaAZoCWgPQwjfwrrx7jw5QJSGlFKUaBVLyGgWR0CMA7JNj9XLdX2UKGgGaAloD0MI2EroLonPYUCUhpRSlGgVTegDaBZHQIwHvQ4S6Dp1fZQoaAZoCWgPQwhA3qtWJsRdQJSGlFKUaBVN6ANoFkdAjAy31BdD6XV9lChoBmgJaA9DCAEXZMvysWJAlIaUUpRoFU3oA2gWR0CME6H2ys0YdX2UKGgGaAloD0MIt5p1xveDW0CUhpRSlGgVTegDaBZHQIwqF1ZDArR1fZQoaAZoCWgPQwiZRpOLMbDYv5SGlFKUaBVNFQFoFkdAjC+YCyQgcXV9lChoBmgJaA9DCD8e+u5WTl5AlIaUUpRoFU3oA2gWR0CMMiD6Fds0dX2UKGgGaAloD0MIBaT9DzDZZECUhpRSlGgVTegDaBZHQIw1pY/3WWh1fZQoaAZoCWgPQwjLu+oB84pGQJSGlFKUaBVN6ANoFkdAjDumiHqNZXV9lChoBmgJaA9DCHpU/N8RTF5AlIaUUpRoFU3oA2gWR0CMO86ij+JhdX2UKGgGaAloD0MIYye8BKdOWkCUhpRSlGgVTegDaBZHQIxIHBi1Aqx1fZQoaAZoCWgPQwiKq8q+q1lkQJSGlFKUaBVN6ANoFkdAjFLCwSrYG3V9lChoBmgJaA9DCMP0vYbgOOK/lIaUUpRoFU0NAWgWR0CMYybbUPQOdX2UKGgGaAloD0MIOGvwvqquYECUhpRSlGgVTegDaBZHQIxlhqdpZfV1fZQoaAZoCWgPQwi7RzZXTRRlQJSGlFKUaBVN6ANoFkdAjHmmig00nHV9lChoBmgJaA9DCM+7saCwJmJAlIaUUpRoFU3oA2gWR0CMieHY6GQCdX2UKGgGaAloD0MIfXiWIKMwYUCUhpRSlGgVTegDaBZHQIyO0Gkep4t1fZQoaAZoCWgPQwiY2lIHeRhbQJSGlFKUaBVN6ANoFkdAjJFwl8gIQnV9lChoBmgJaA9DCNqpudzgR2FAlIaUUpRoFU3oA2gWR0CM0bX5FgDzdX2UKGgGaAloD0MIgeuKGWG8YkCUhpRSlGgVTegDaBZHQIzchjOLR8d1fZQoaAZoCWgPQwhQHEC/b0pjQJSGlFKUaBVN6ANoFkdAjOUXrD63zHV9lChoBmgJaA9DCHfc8LvpVhJAlIaUUpRoFU0LAWgWR0CM779MsYl6dX2UKGgGaAloD0MI12zlJX99YkCUhpRSlGgVTegDaBZHQIz+f029+PR1fZQoaAZoCWgPQwhJD0Ork7hdQJSGlFKUaBVN6ANoFkdAjQSOZCv5g3V9lChoBmgJaA9DCAU0ETY8I1xAlIaUUpRoFU3oA2gWR0CNBzTz/ZM+dX2UKGgGaAloD0MIfsUaLvLvYkCUhpRSlGgVTegDaBZHQI0KxCjUNKB1fZQoaAZoCWgPQwhaSSu+oV5EwJSGlFKUaBVL62gWR0CNDAvboKUndX2UKGgGaAloD0MIdcjNcAOoXECUhpRSlGgVTegDaBZHQI0QMu6ErXl1fZQoaAZoCWgPQwj8juGxn79iQJSGlFKUaBVN6ANoFkdAjRw9iUgSvnV9lChoBmgJaA9DCDc0ZacfaFtAlIaUUpRoFU3oA2gWR0CNJlU4JeE7dX2UKGgGaAloD0MIl3X/WIjSMkCUhpRSlGgVTQMBaBZHQI0vtgfEGaB1fZQoaAZoCWgPQwjaOc0C7QhfQJSGlFKUaBVN6ANoFkdAjTZhx5s0pHV9lChoBmgJaA9DCNDwZg3eUl5AlIaUUpRoFU3oA2gWR0CNOLgNwzcidX2UKGgGaAloD0MI/kgRGdbXYUCUhpRSlGgVTegDaBZHQI1MoJC0F8p1fZQoaAZoCWgPQwieew+XHItiQJSGlFKUaBVN6ANoFkdAjVv//WDpT3V9lChoBmgJaA9DCM78ag4QlC1AlIaUUpRoFUv1aBZHQI1eGViWmgt1fZQoaAZoCWgPQwheS8gHPb9eQJSGlFKUaBVN6ANoFkdAjWN9sSCe3HVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e20d7a9f9f0888934a3229284926b1b1c0702eb9ca5649def5bb6df4fd9af0ae
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:888d2a9d0bf02209799ebfec0ddd85a6cb9f890fbe0394315db717a349ed2e33
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edc7933fe3a39eaef58307ffbf170381d24698cc4a997f7c7d8df31e055321cf
|
3 |
+
size 254475
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 227.99238349419585, "std_reward": 21.588036143295202, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T18:27:25.829203"}
|