pakawadeep commited on
Commit
16cf945
1 Parent(s): 2cd4930

Training in progress, step 100, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: scb10x/typhoon-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.10.0
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "scb10x/typhoon-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "down_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "up_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbc779994213d871e1f4070d7c034d94cf7454b01af940bf22136e01d1a1a59e
3
+ size 42002584
last-checkpoint/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37db02300cf84f2628252409e2eec85a0a16ed24e9a1a956fda27fef6bd9d65f
3
+ size 251710672
last-checkpoint/global_step100/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56b171df51745eee09fcc81a6fd53f574f41702e91c3d62fa11c7976f1389eaf
3
+ size 153726841
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step100
last-checkpoint/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c514d3eff35e36088fb0b96868a3f7a54f5fe77734350e00ca17637049d51d54
3
+ size 14244
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.10982976386600769,
5
+ "eval_steps": 1000,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 11.704396157183714,
14
+ "learning_rate": 0.0,
15
+ "loss": 2.6917,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "grad_norm": 14.261265634920543,
21
+ "learning_rate": 6.020599913279623e-05,
22
+ "loss": 2.0455,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "grad_norm": 9.252464584699219,
28
+ "learning_rate": 9.542425094393248e-05,
29
+ "loss": 2.1024,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0,
34
+ "grad_norm": 7.478072090774749,
35
+ "learning_rate": 0.00012041199826559246,
36
+ "loss": 1.9419,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.01,
41
+ "grad_norm": 6.996421444202911,
42
+ "learning_rate": 0.00013979400086720374,
43
+ "loss": 1.2142,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "grad_norm": 9.62925923224712,
49
+ "learning_rate": 0.00015563025007672872,
50
+ "loss": 1.4192,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "grad_norm": 5.9971192119861545,
56
+ "learning_rate": 0.00016901960800285134,
57
+ "loss": 1.1698,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.01,
62
+ "grad_norm": 15.448410811680446,
63
+ "learning_rate": 0.00018061799739838867,
64
+ "loss": 1.0663,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.01,
69
+ "grad_norm": 6.664012698560983,
70
+ "learning_rate": 0.00019084850188786495,
71
+ "loss": 1.0346,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.01,
76
+ "grad_norm": 5.9872198688383325,
77
+ "learning_rate": 0.00019999999999999998,
78
+ "loss": 1.2899,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.01,
83
+ "grad_norm": 5.492858411635369,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.733,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.01,
90
+ "grad_norm": 4.117272508239465,
91
+ "learning_rate": 0.00019931271477663232,
92
+ "loss": 0.7529,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.01,
97
+ "grad_norm": 4.57016142244955,
98
+ "learning_rate": 0.0001986254295532646,
99
+ "loss": 0.9221,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.02,
104
+ "grad_norm": 5.106703686957636,
105
+ "learning_rate": 0.00019793814432989693,
106
+ "loss": 1.1292,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.02,
111
+ "grad_norm": 4.4331559960790115,
112
+ "learning_rate": 0.00019725085910652924,
113
+ "loss": 0.9505,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.02,
118
+ "grad_norm": 4.871898936371301,
119
+ "learning_rate": 0.0001965635738831615,
120
+ "loss": 1.0894,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.02,
125
+ "grad_norm": 5.546128257668831,
126
+ "learning_rate": 0.00019587628865979381,
127
+ "loss": 1.0915,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.02,
132
+ "grad_norm": 5.426135233570764,
133
+ "learning_rate": 0.00019518900343642613,
134
+ "loss": 1.2174,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.02,
139
+ "grad_norm": 3.7481567939197316,
140
+ "learning_rate": 0.00019450171821305842,
141
+ "loss": 0.8281,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.02,
146
+ "grad_norm": 6.264747615275931,
147
+ "learning_rate": 0.00019381443298969073,
148
+ "loss": 1.1069,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.02,
153
+ "grad_norm": 4.850720515264914,
154
+ "learning_rate": 0.00019312714776632305,
155
+ "loss": 1.1216,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.02,
160
+ "grad_norm": 4.583277384098615,
161
+ "learning_rate": 0.00019243986254295533,
162
+ "loss": 1.0751,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.03,
167
+ "grad_norm": 4.923174586611154,
168
+ "learning_rate": 0.00019175257731958765,
169
+ "loss": 1.1915,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.03,
174
+ "grad_norm": 4.21422328394722,
175
+ "learning_rate": 0.00019106529209621996,
176
+ "loss": 1.1412,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.03,
181
+ "grad_norm": 3.9312652393524803,
182
+ "learning_rate": 0.00019037800687285222,
183
+ "loss": 0.9699,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.03,
188
+ "grad_norm": 4.511161102577495,
189
+ "learning_rate": 0.00018969072164948454,
190
+ "loss": 1.1289,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.03,
195
+ "grad_norm": 3.9233152624949454,
196
+ "learning_rate": 0.00018900343642611685,
197
+ "loss": 0.8803,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.03,
202
+ "grad_norm": 5.413459689226915,
203
+ "learning_rate": 0.00018831615120274914,
204
+ "loss": 1.0594,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.03,
209
+ "grad_norm": 4.2106489602848685,
210
+ "learning_rate": 0.00018762886597938145,
211
+ "loss": 1.1003,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.03,
216
+ "grad_norm": 4.568263346040736,
217
+ "learning_rate": 0.00018694158075601377,
218
+ "loss": 1.0816,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.03,
223
+ "grad_norm": 3.12202434010765,
224
+ "learning_rate": 0.00018625429553264605,
225
+ "loss": 0.9053,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.04,
230
+ "grad_norm": 4.282623293516478,
231
+ "learning_rate": 0.00018556701030927837,
232
+ "loss": 1.206,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.04,
237
+ "grad_norm": 6.45030819651884,
238
+ "learning_rate": 0.00018487972508591068,
239
+ "loss": 0.9049,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.04,
244
+ "grad_norm": 4.871975082534186,
245
+ "learning_rate": 0.00018419243986254294,
246
+ "loss": 1.1436,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.04,
251
+ "grad_norm": 4.715014058776802,
252
+ "learning_rate": 0.00018350515463917526,
253
+ "loss": 1.3847,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.04,
258
+ "grad_norm": 3.3808462582338707,
259
+ "learning_rate": 0.00018281786941580757,
260
+ "loss": 0.7817,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.04,
265
+ "grad_norm": 3.8976964456454866,
266
+ "learning_rate": 0.00018213058419243986,
267
+ "loss": 1.0001,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.04,
272
+ "grad_norm": 5.355867444757705,
273
+ "learning_rate": 0.00018144329896907217,
274
+ "loss": 0.9259,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.04,
279
+ "grad_norm": 5.178991855035252,
280
+ "learning_rate": 0.0001807560137457045,
281
+ "loss": 0.794,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.04,
286
+ "grad_norm": 4.14441205427679,
287
+ "learning_rate": 0.00018006872852233677,
288
+ "loss": 1.0384,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.05,
293
+ "grad_norm": 3.7176836552561974,
294
+ "learning_rate": 0.0001793814432989691,
295
+ "loss": 0.75,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.05,
300
+ "grad_norm": 5.011588210132538,
301
+ "learning_rate": 0.0001786941580756014,
302
+ "loss": 1.3034,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.05,
307
+ "grad_norm": 5.111725152950483,
308
+ "learning_rate": 0.00017800687285223366,
309
+ "loss": 1.3023,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.05,
314
+ "grad_norm": 4.021959822322685,
315
+ "learning_rate": 0.00017731958762886598,
316
+ "loss": 0.9624,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.05,
321
+ "grad_norm": 2.943541786297702,
322
+ "learning_rate": 0.0001766323024054983,
323
+ "loss": 0.6659,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.05,
328
+ "grad_norm": 4.534002060279327,
329
+ "learning_rate": 0.00017594501718213058,
330
+ "loss": 1.1354,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.05,
335
+ "grad_norm": 5.108426720583385,
336
+ "learning_rate": 0.0001752577319587629,
337
+ "loss": 1.4258,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.05,
342
+ "grad_norm": 7.235810963301271,
343
+ "learning_rate": 0.0001745704467353952,
344
+ "loss": 1.3918,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.05,
349
+ "grad_norm": 4.207791712185817,
350
+ "learning_rate": 0.0001738831615120275,
351
+ "loss": 1.2796,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.05,
356
+ "grad_norm": 4.050243728273998,
357
+ "learning_rate": 0.0001731958762886598,
358
+ "loss": 1.244,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.06,
363
+ "grad_norm": 4.657182228931627,
364
+ "learning_rate": 0.00017250859106529212,
365
+ "loss": 1.2068,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.06,
370
+ "grad_norm": 3.5652582299228643,
371
+ "learning_rate": 0.00017182130584192438,
372
+ "loss": 0.8897,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.06,
377
+ "grad_norm": 4.529701968193304,
378
+ "learning_rate": 0.0001711340206185567,
379
+ "loss": 1.1582,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.06,
384
+ "grad_norm": 4.49586529984068,
385
+ "learning_rate": 0.000170446735395189,
386
+ "loss": 1.1379,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.06,
391
+ "grad_norm": 5.845994813972232,
392
+ "learning_rate": 0.0001697594501718213,
393
+ "loss": 1.4724,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.06,
398
+ "grad_norm": 4.732950229095352,
399
+ "learning_rate": 0.00016907216494845361,
400
+ "loss": 0.886,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.06,
405
+ "grad_norm": 3.8567901480339426,
406
+ "learning_rate": 0.00016838487972508593,
407
+ "loss": 0.7763,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.06,
412
+ "grad_norm": 4.931804800794497,
413
+ "learning_rate": 0.00016769759450171822,
414
+ "loss": 1.1761,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.06,
419
+ "grad_norm": 3.7294788904744625,
420
+ "learning_rate": 0.00016701030927835053,
421
+ "loss": 0.6722,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.07,
426
+ "grad_norm": 3.688890615204965,
427
+ "learning_rate": 0.00016632302405498285,
428
+ "loss": 0.9642,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.07,
433
+ "grad_norm": 4.022317141495382,
434
+ "learning_rate": 0.00016563573883161513,
435
+ "loss": 0.8865,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.07,
440
+ "grad_norm": 6.55573614414137,
441
+ "learning_rate": 0.00016494845360824742,
442
+ "loss": 1.217,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.07,
447
+ "grad_norm": 4.5890564068710615,
448
+ "learning_rate": 0.00016426116838487973,
449
+ "loss": 1.0791,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.07,
454
+ "grad_norm": 5.435288078022071,
455
+ "learning_rate": 0.00016357388316151202,
456
+ "loss": 1.1501,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.07,
461
+ "grad_norm": 4.965664463354534,
462
+ "learning_rate": 0.00016288659793814434,
463
+ "loss": 1.4109,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.07,
468
+ "grad_norm": 7.483997056692371,
469
+ "learning_rate": 0.00016219931271477665,
470
+ "loss": 1.0735,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.07,
475
+ "grad_norm": 4.9923544603584915,
476
+ "learning_rate": 0.00016151202749140894,
477
+ "loss": 0.9927,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.07,
482
+ "grad_norm": 5.143678077389599,
483
+ "learning_rate": 0.00016082474226804125,
484
+ "loss": 1.1299,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.08,
489
+ "grad_norm": 4.420855401236021,
490
+ "learning_rate": 0.00016013745704467357,
491
+ "loss": 1.0263,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.08,
496
+ "grad_norm": 5.02485050719212,
497
+ "learning_rate": 0.00015945017182130585,
498
+ "loss": 1.1168,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.08,
503
+ "grad_norm": 4.524608717382107,
504
+ "learning_rate": 0.00015876288659793814,
505
+ "loss": 1.1015,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.08,
510
+ "grad_norm": 3.9028726855074054,
511
+ "learning_rate": 0.00015807560137457046,
512
+ "loss": 1.091,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.08,
517
+ "grad_norm": 3.271315148375007,
518
+ "learning_rate": 0.00015738831615120274,
519
+ "loss": 0.9397,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.08,
524
+ "grad_norm": 4.5227145076761515,
525
+ "learning_rate": 0.00015670103092783506,
526
+ "loss": 1.0062,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.08,
531
+ "grad_norm": 3.344752651586208,
532
+ "learning_rate": 0.00015601374570446737,
533
+ "loss": 1.0027,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.08,
538
+ "grad_norm": 4.102353206893142,
539
+ "learning_rate": 0.00015532646048109966,
540
+ "loss": 1.3915,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.08,
545
+ "grad_norm": 4.722343844673861,
546
+ "learning_rate": 0.00015463917525773197,
547
+ "loss": 1.1678,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.09,
552
+ "grad_norm": 6.017428516681286,
553
+ "learning_rate": 0.0001539518900343643,
554
+ "loss": 1.329,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.09,
559
+ "grad_norm": 3.7313811619387516,
560
+ "learning_rate": 0.00015326460481099657,
561
+ "loss": 0.887,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.09,
566
+ "grad_norm": 3.7179924970759406,
567
+ "learning_rate": 0.00015257731958762886,
568
+ "loss": 1.0153,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.09,
573
+ "grad_norm": 4.499981774187266,
574
+ "learning_rate": 0.00015189003436426118,
575
+ "loss": 1.3911,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.09,
580
+ "grad_norm": 5.955286629774712,
581
+ "learning_rate": 0.00015120274914089346,
582
+ "loss": 1.215,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.09,
587
+ "grad_norm": 3.5953610996772984,
588
+ "learning_rate": 0.00015051546391752578,
589
+ "loss": 0.9343,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.09,
594
+ "grad_norm": 3.8040779769157687,
595
+ "learning_rate": 0.0001498281786941581,
596
+ "loss": 1.062,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.09,
601
+ "grad_norm": 5.755142565965664,
602
+ "learning_rate": 0.00014914089347079038,
603
+ "loss": 1.2539,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.09,
608
+ "grad_norm": 3.7550494212874264,
609
+ "learning_rate": 0.0001484536082474227,
610
+ "loss": 0.8594,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.1,
615
+ "grad_norm": 6.7330159455584635,
616
+ "learning_rate": 0.000147766323024055,
617
+ "loss": 0.9157,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.1,
622
+ "grad_norm": 4.438479463179745,
623
+ "learning_rate": 0.0001470790378006873,
624
+ "loss": 1.1235,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.1,
629
+ "grad_norm": 3.87421384650703,
630
+ "learning_rate": 0.00014639175257731958,
631
+ "loss": 0.9763,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.1,
636
+ "grad_norm": 2.4000323333151683,
637
+ "learning_rate": 0.0001457044673539519,
638
+ "loss": 0.5867,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.1,
643
+ "grad_norm": 5.866412115354472,
644
+ "learning_rate": 0.00014501718213058418,
645
+ "loss": 1.5134,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.1,
650
+ "grad_norm": 3.023945137404242,
651
+ "learning_rate": 0.0001443298969072165,
652
+ "loss": 0.7887,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.1,
657
+ "grad_norm": 3.7174822786238435,
658
+ "learning_rate": 0.00014364261168384881,
659
+ "loss": 0.925,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.1,
664
+ "grad_norm": 4.007705895268358,
665
+ "learning_rate": 0.0001429553264604811,
666
+ "loss": 0.9114,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.1,
671
+ "grad_norm": 3.852559484855566,
672
+ "learning_rate": 0.00014226804123711342,
673
+ "loss": 1.2322,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.11,
678
+ "grad_norm": 3.9331976985714006,
679
+ "learning_rate": 0.00014158075601374573,
680
+ "loss": 1.021,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.11,
685
+ "grad_norm": 3.7472774795317676,
686
+ "learning_rate": 0.00014089347079037802,
687
+ "loss": 0.9222,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.11,
692
+ "grad_norm": 5.430655545449399,
693
+ "learning_rate": 0.0001402061855670103,
694
+ "loss": 1.0648,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.11,
699
+ "grad_norm": 3.8259440534841365,
700
+ "learning_rate": 0.00013951890034364262,
701
+ "loss": 0.9769,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.11,
706
+ "grad_norm": 4.784794509604932,
707
+ "learning_rate": 0.0001388316151202749,
708
+ "loss": 1.0134,
709
+ "step": 100
710
+ }
711
+ ],
712
+ "logging_steps": 1,
713
+ "max_steps": 301,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 1,
716
+ "save_steps": 25,
717
+ "total_flos": 1192784269148160.0,
718
+ "train_batch_size": 2,
719
+ "trial_name": null,
720
+ "trial_params": null
721
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae82d01f8f983f767da1b994efbf6cd066f8d5d97f5b71458226d055ebeb49a4
3
+ size 6648
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)