paj commited on
Commit
97f3874
1 Parent(s): f1a0c84
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 185.34 +/- 41.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc48ad3ab00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc48ad3ab90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc48ad3ac20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc48ad3acb0>", "_build": "<function ActorCriticPolicy._build at 0x7fc48ad3ad40>", "forward": "<function ActorCriticPolicy.forward at 0x7fc48ad3add0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc48ad3ae60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc48ad3aef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc48ad3af80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc48ad40050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc48ad400e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc48ad887e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666398371428512687, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrg5r3DaRG6+1hlu7JwrLbw/VE6M3qDOgAAgD8AAIA/84vBPeEYnLpiXFy6ubUFtFswr7rg6bkzAACAPwAAgD/tLGO+VrUjPdUPVLoMc5E40N+5vn36obcAAIA/AACAPwDKNrxS6KC5GbHCuk2kqjVyCRm7k4zkOQAAgD8AAIA/ZiquveEalLitueG6keAys2hNMbkFnk8zAACAPwAAgD+mnqk9e5SdN4AUxDsJ/Xw4/dVKuyUQE7kAAIA/AACAP/gzgL6SdpE8SnMAOh37TriGjh6+wWQiuQAAgD8AAIA/cw6ZvcMRD7qjwFK7/P5CtsTCirpOYG86AACAPwAAgD8z89+5zFCzP38Esbw2EnG+wBcCOuq1njsAAAAAAAAAAFPyb76X4AW9VEnKuQ3pg7gGh2w+5JgFOQAAgD8AAIA/Wk68vY8mBbpozka6cnhiNqvUyrp7AWU5AACAPwAAgD+AJWu9uQS/P4JoHr+iXJc+l2mTPFKlOL0AAAAAAAAAAHrjnT7oDCc/qIB1PR5ocr7jwj897jSPuwAAAAAAAAAAjQkpvk9yYrzGom46uxOAOKsMwD3jZ5m5AACAPwAAgD/rvpa+coyMPn41cjrWpIa+VTyyPICv1D0AAAAAAAAAAMb3ij4PUAq8WGVCPNoYvjzHGr49ivKZvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoz7JHTa5XECUhpRSlIwBbJRN6AOMAXSUR0CDQ9JQLux9dX2UKGgGaAloD0MIjnVxGw1SYkCUhpRSlGgVTegDaBZHQINHTnA6+391fZQoaAZoCWgPQwiE8GjjiJ5ZQJSGlFKUaBVN6ANoFkdAg0zOv2Xb/XV9lChoBmgJaA9DCNdnzvqUdlxAlIaUUpRoFU3oA2gWR0CDUQFhXr+pdX2UKGgGaAloD0MIwvo/h/kbYECUhpRSlGgVTegDaBZHQIOQK5oXbdt1fZQoaAZoCWgPQwhVpMLYQopbQJSGlFKUaBVN6ANoFkdAg5YDBl+VknV9lChoBmgJaA9DCM8xIHu9J1FAlIaUUpRoFU3oA2gWR0CDqoAf+0gKdX2UKGgGaAloD0MI32+044Z9VkCUhpRSlGgVTegDaBZHQIO68u6ErXl1fZQoaAZoCWgPQwgZkL3e/U5WQJSGlFKUaBVN6ANoFkdAg8NFdTo+wHV9lChoBmgJaA9DCPIiE/BryF3AlIaUUpRoFU1bA2gWR0CDzITlkpZwdX2UKGgGaAloD0MImn0eozzUVECUhpRSlGgVTegDaBZHQIPOYNAkcCJ1fZQoaAZoCWgPQwiafLPNjRdfQJSGlFKUaBVN6ANoFkdAg91rpA2Q4nV9lChoBmgJaA9DCMAg6dMqKV1AlIaUUpRoFU3oA2gWR0CD7RRTjvNNdX2UKGgGaAloD0MIn8ppT8lfY0CUhpRSlGgVTegDaBZHQIPxVSVGCqZ1fZQoaAZoCWgPQwjNWgpIe05lQJSGlFKUaBVN6ANoFkdAg/RJ6hQFcXV9lChoBmgJaA9DCEA08+SauVBAlIaUUpRoFU3oA2gWR0CD+0V5a/yodX2UKGgGaAloD0MIDhKifMEkYECUhpRSlGgVTegDaBZHQIP9ZgeA/cF1fZQoaAZoCWgPQwi9VGzM68FfQJSGlFKUaBVN6ANoFkdAhADa19fCynV9lChoBmgJaA9DCM8wtaUOg1VAlIaUUpRoFU3oA2gWR0CEBiXfIjnndX2UKGgGaAloD0MIVPzfEZV9YECUhpRSlGgVTegDaBZHQIQKPYQJ5Vx1fZQoaAZoCWgPQwiZnrDEAwr7P5SGlFKUaBVL+mgWR0CEOCdSVGCqdX2UKGgGaAloD0MI3C+frBhLXECUhpRSlGgVTegDaBZHQIQ9Z4yGi6B1fZQoaAZoCWgPQwjV6UDWU0scQJSGlFKUaBVNBQFoFkdAhEHZFPSDy3V9lChoBmgJaA9DCA9j0t/LEWBAlIaUUpRoFU3oA2gWR0CEQrz+3pfQdX2UKGgGaAloD0MIpgux+iO0M8CUhpRSlGgVS/loFkdAhEOuiN83M3V9lChoBmgJaA9DCDzbozfcWzFAlIaUUpRoFUvlaBZHQIRGkYXO4Xp1fZQoaAZoCWgPQwiTGW8rPSViQJSGlFKUaBVN6ANoFkdAhFKMa86FNHV9lChoBmgJaA9DCCRfCaTElF9AlIaUUpRoFU3oA2gWR0CEX8uq3mV8dX2UKGgGaAloD0MIP+CBAYQBRsCUhpRSlGgVTRUBaBZHQIRi0OXmeUZ1fZQoaAZoCWgPQwgSFhVxOmNbQJSGlFKUaBVN6ANoFkdAhGcKXfIjnnV9lChoBmgJaA9DCGXjwRa7JGBAlIaUUpRoFU3oA2gWR0CEb6erdWQwdX2UKGgGaAloD0MI2BAcl3FQW0CUhpRSlGgVTegDaBZHQIRxShBZ6ld1fZQoaAZoCWgPQwgBT1q4rAxjQJSGlFKUaBVN6ANoFkdAhH5NhE0BO3V9lChoBmgJaA9DCL9+iA0W92lAlIaUUpRoFU0qAmgWR0CEgFdZ7ojfdX2UKGgGaAloD0MImzxlNV2PWUCUhpRSlGgVTegDaBZHQISL1PDYRNB1fZQoaAZoCWgPQwhnZfuQt31jQJSGlFKUaBVN6ANoFkdAhI+tV7x/eHV9lChoBmgJaA9DCFa7JqQ10FVAlIaUUpRoFU3oA2gWR0CEmlwgkka/dX2UKGgGaAloD0MIPZtVn6t7Z0CUhpRSlGgVTXwCaBZHQISi7riVB2R1fZQoaAZoCWgPQwjgoL36+KphQJSGlFKUaBVN6ANoFkdAhKvESdvsJXV9lChoBmgJaA9DCKcgPxu5Ji1AlIaUUpRoFUu4aBZHQISy+3z+WGB1fZQoaAZoCWgPQwifAmA8Ax1hQJSGlFKUaBVN6ANoFkdAhLQhhQWN3nV9lChoBmgJaA9DCBvyzwziH2FAlIaUUpRoFU3oA2gWR0CE5xK/VRUFdX2UKGgGaAloD0MIrdwLzApiWkCUhpRSlGgVTegDaBZHQIToLoUzsQd1fZQoaAZoCWgPQwhqpnud1BBeQJSGlFKUaBVN6ANoFkdAhOt+jmCAc3V9lChoBmgJaA9DCD3uW60ToWFAlIaUUpRoFU3oA2gWR0CFBYa8Yht+dX2UKGgGaAloD0MI+kLIef/JWkCUhpRSlGgVTegDaBZHQIUImNo8IRh1fZQoaAZoCWgPQwj/klSmmLFaQJSGlFKUaBVN6ANoFkdAhQzBD5TIenV9lChoBmgJaA9DCJxpwvaTEmBAlIaUUpRoFU3oA2gWR0CFFaw6hg3MdX2UKGgGaAloD0MIXTKOkez5W0CUhpRSlGgVTegDaBZHQIUXZjFyaNN1fZQoaAZoCWgPQwicFrzoK2FhQJSGlFKUaBVN6ANoFkdAhSTl2mpEQXV9lChoBmgJaA9DCL5p+uyAUVZAlIaUUpRoFU3oA2gWR0CFJxeANG3GdX2UKGgGaAloD0MINX12wHUhRMCUhpRSlGgVS8hoFkdAhTCCn5zo2XV9lChoBmgJaA9DCNcYdELoNWNAlIaUUpRoFU3oA2gWR0CFMy0svqTsdX2UKGgGaAloD0MI3lomw3EwYUCUhpRSlGgVTegDaBZHQIU3Mb5uZTh1fZQoaAZoCWgPQwjYgXNGlF5rQJSGlFKUaBVNVgFoFkdAhTiaunuRcXV9lChoBmgJaA9DCG9FYoIa9FNAlIaUUpRoFU3oA2gWR0CFSitknTiLdX2UKGgGaAloD0MIa/C+KhfJWUCUhpRSlGgVTegDaBZHQIVTf6AOJ+F1fZQoaAZoCWgPQwgRUrezr9RgQJSGlFKUaBVN6ANoFkdAhVtF4TsY23V9lChoBmgJaA9DCHy45LjTBWJAlIaUUpRoFU3oA2gWR0CFXIq4pc5bdX2UKGgGaAloD0MIEce6uI2Ya0CUhpRSlGgVTVQBaBZHQIVeqYNRWLh1fZQoaAZoCWgPQwjDDmPS30tkQJSGlFKUaBVN6ANoFkdAhZDnlnyup3V9lChoBmgJaA9DCOj500Z1UVtAlIaUUpRoFU3oA2gWR0CFkiOmzjWDdX2UKGgGaAloD0MIARb59cMMZECUhpRSlGgVTegDaBZHQIWVKpcX3xp1fZQoaAZoCWgPQwh7n6pCA59DQJSGlFKUaBVL3WgWR0CFn31SwW30dX2UKGgGaAloD0MIAIv8+iGeOECUhpRSlGgVTQcBaBZHQIWmmPzWf9R1fZQoaAZoCWgPQwi+9WG90UlmQJSGlFKUaBVNQwJoFkdAhan83uNPxnV9lChoBmgJaA9DCLTIdr6f2lpAlIaUUpRoFU3oA2gWR0CFrm0O3DvWdX2UKGgGaAloD0MIKEcBomBG7D+UhpRSlGgVS+5oFkdAha6SKNyYHHV9lChoBmgJaA9DCF34wfnUc1hAlIaUUpRoFU3oA2gWR0CFsSo7V8TjdX2UKGgGaAloD0MI26M33EfuJ8CUhpRSlGgVS/doFkdAhbKtIsiB5HV9lChoBmgJaA9DCD1H5LsUXGJAlIaUUpRoFU3oA2gWR0CFvJR64UeudX2UKGgGaAloD0MIVz7L8+AYYUCUhpRSlGgVTegDaBZHQIXLP6VMVUN1fZQoaAZoCWgPQwju7ZbkgN9eQJSGlFKUaBVN6ANoFkdAhc2kZR8+inV9lChoBmgJaA9DCIy8rIkFPuK/lIaUUpRoFUvmaBZHQIXaE2m51/51fZQoaAZoCWgPQwjc1EDzuYNgQJSGlFKUaBVN6ANoFkdAhdp8c+7lJnV9lChoBmgJaA9DCHkB9tEp4GFAlIaUUpRoFU3oA2gWR0CF39wb2lEadX2UKGgGaAloD0MIms+52/USB0CUhpRSlGgVS95oFkdAherwHJLdvnV9lChoBmgJaA9DCDhLyXISxV1AlIaUUpRoFU3oA2gWR0CF8UNGViWndX2UKGgGaAloD0MIqaPjamS7X0CUhpRSlGgVTegDaBZHQIX5HNiYsup1fZQoaAZoCWgPQwiiYTHqWtxgQJSGlFKUaBVN6ANoFkdAhf+xSxZ+yHV9lChoBmgJaA9DCGsNpfYiZj7AlIaUUpRoFUvYaBZHQIYzAymALAp1fZQoaAZoCWgPQwi+Zrls9I9gQJSGlFKUaBVN6ANoFkdAhjPkvTPSlXV9lChoBmgJaA9DCG9JDtjVvVlAlIaUUpRoFU3oA2gWR0CGQ/eyAxzrdX2UKGgGaAloD0MItg4O9qaiYkCUhpRSlGgVTegDaBZHQIZLiC+UQkJ1fZQoaAZoCWgPQwh3hT5YRqdhQJSGlFKUaBVN6ANoFkdAhk8j/VAiV3V9lChoBmgJaA9DCJVgcTjz+VhAlIaUUpRoFU3oA2gWR0CGU3AkcCHRdX2UKGgGaAloD0MI/kgRGVYiYUCUhpRSlGgVTegDaBZHQIZTkwztTk11fZQoaAZoCWgPQwhNSGsMOnVkQJSGlFKUaBVN6ANoFkdAhlX/DUExI3V9lChoBmgJaA9DCAHChxItI2BAlIaUUpRoFU3oA2gWR0CGV5ga3qiXdX2UKGgGaAloD0MIJa/OMSBHQkCUhpRSlGgVS95oFkdAhmjAaNuLrHV9lChoBmgJaA9DCOT09XzNDVxAlIaUUpRoFU3oA2gWR0CGd6i8nNPhdX2UKGgGaAloD0MIgZcZNsqhYECUhpRSlGgVTegDaBZHQIaGqBRQ7911fZQoaAZoCWgPQwhdwTbiyR1eQJSGlFKUaBVN6ANoFkdAhocbWNFSbnV9lChoBmgJaA9DCDDysiYW62dAlIaUUpRoFU1eAWgWR0CGid3A2ycDdX2UKGgGaAloD0MI6x9EMuRRYkCUhpRSlGgVTegDaBZHQIaQf3vhIe51fZQoaAZoCWgPQwinWaDdIR9aQJSGlFKUaBVN6ANoFkdAhqNFo11nunV9lChoBmgJaA9DCEGchxOYTWJAlIaUUpRoFU3oA2gWR0CGuEmdAgPmdX2UKGgGaAloD0MIOBWpMLY9Y0CUhpRSlGgVTegDaBZHQIbAAf8uSOl1fZQoaAZoCWgPQwjarWUyHF5YQJSGlFKUaBVN6ANoFkdAhs5+MZP2wnV9lChoBmgJaA9DCJSI8C+Cx2JAlIaUUpRoFU3oA2gWR0CGz3ZPl+3IdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d955e21feeb31136c0bd230970e7979eb98aec00e39307ca52985ee6b693143
3
+ size 147138
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc48ad3ab00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc48ad3ab90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc48ad3ac20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc48ad3acb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc48ad3ad40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc48ad3add0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc48ad3ae60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc48ad3aef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc48ad3af80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc48ad40050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc48ad400e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc48ad887e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1666398371428512687,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrg5r3DaRG6+1hlu7JwrLbw/VE6M3qDOgAAgD8AAIA/84vBPeEYnLpiXFy6ubUFtFswr7rg6bkzAACAPwAAgD/tLGO+VrUjPdUPVLoMc5E40N+5vn36obcAAIA/AACAPwDKNrxS6KC5GbHCuk2kqjVyCRm7k4zkOQAAgD8AAIA/ZiquveEalLitueG6keAys2hNMbkFnk8zAACAPwAAgD+mnqk9e5SdN4AUxDsJ/Xw4/dVKuyUQE7kAAIA/AACAP/gzgL6SdpE8SnMAOh37TriGjh6+wWQiuQAAgD8AAIA/cw6ZvcMRD7qjwFK7/P5CtsTCirpOYG86AACAPwAAgD8z89+5zFCzP38Esbw2EnG+wBcCOuq1njsAAAAAAAAAAFPyb76X4AW9VEnKuQ3pg7gGh2w+5JgFOQAAgD8AAIA/Wk68vY8mBbpozka6cnhiNqvUyrp7AWU5AACAPwAAgD+AJWu9uQS/P4JoHr+iXJc+l2mTPFKlOL0AAAAAAAAAAHrjnT7oDCc/qIB1PR5ocr7jwj897jSPuwAAAAAAAAAAjQkpvk9yYrzGom46uxOAOKsMwD3jZ5m5AACAPwAAgD/rvpa+coyMPn41cjrWpIa+VTyyPICv1D0AAAAAAAAAAMb3ij4PUAq8WGVCPNoYvjzHGr49ivKZvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoz7JHTa5XECUhpRSlIwBbJRN6AOMAXSUR0CDQ9JQLux9dX2UKGgGaAloD0MIjnVxGw1SYkCUhpRSlGgVTegDaBZHQINHTnA6+391fZQoaAZoCWgPQwiE8GjjiJ5ZQJSGlFKUaBVN6ANoFkdAg0zOv2Xb/XV9lChoBmgJaA9DCNdnzvqUdlxAlIaUUpRoFU3oA2gWR0CDUQFhXr+pdX2UKGgGaAloD0MIwvo/h/kbYECUhpRSlGgVTegDaBZHQIOQK5oXbdt1fZQoaAZoCWgPQwhVpMLYQopbQJSGlFKUaBVN6ANoFkdAg5YDBl+VknV9lChoBmgJaA9DCM8xIHu9J1FAlIaUUpRoFU3oA2gWR0CDqoAf+0gKdX2UKGgGaAloD0MI32+044Z9VkCUhpRSlGgVTegDaBZHQIO68u6ErXl1fZQoaAZoCWgPQwgZkL3e/U5WQJSGlFKUaBVN6ANoFkdAg8NFdTo+wHV9lChoBmgJaA9DCPIiE/BryF3AlIaUUpRoFU1bA2gWR0CDzITlkpZwdX2UKGgGaAloD0MImn0eozzUVECUhpRSlGgVTegDaBZHQIPOYNAkcCJ1fZQoaAZoCWgPQwiafLPNjRdfQJSGlFKUaBVN6ANoFkdAg91rpA2Q4nV9lChoBmgJaA9DCMAg6dMqKV1AlIaUUpRoFU3oA2gWR0CD7RRTjvNNdX2UKGgGaAloD0MIn8ppT8lfY0CUhpRSlGgVTegDaBZHQIPxVSVGCqZ1fZQoaAZoCWgPQwjNWgpIe05lQJSGlFKUaBVN6ANoFkdAg/RJ6hQFcXV9lChoBmgJaA9DCEA08+SauVBAlIaUUpRoFU3oA2gWR0CD+0V5a/yodX2UKGgGaAloD0MIDhKifMEkYECUhpRSlGgVTegDaBZHQIP9ZgeA/cF1fZQoaAZoCWgPQwi9VGzM68FfQJSGlFKUaBVN6ANoFkdAhADa19fCynV9lChoBmgJaA9DCM8wtaUOg1VAlIaUUpRoFU3oA2gWR0CEBiXfIjnndX2UKGgGaAloD0MIVPzfEZV9YECUhpRSlGgVTegDaBZHQIQKPYQJ5Vx1fZQoaAZoCWgPQwiZnrDEAwr7P5SGlFKUaBVL+mgWR0CEOCdSVGCqdX2UKGgGaAloD0MI3C+frBhLXECUhpRSlGgVTegDaBZHQIQ9Z4yGi6B1fZQoaAZoCWgPQwjV6UDWU0scQJSGlFKUaBVNBQFoFkdAhEHZFPSDy3V9lChoBmgJaA9DCA9j0t/LEWBAlIaUUpRoFU3oA2gWR0CEQrz+3pfQdX2UKGgGaAloD0MIpgux+iO0M8CUhpRSlGgVS/loFkdAhEOuiN83M3V9lChoBmgJaA9DCDzbozfcWzFAlIaUUpRoFUvlaBZHQIRGkYXO4Xp1fZQoaAZoCWgPQwiTGW8rPSViQJSGlFKUaBVN6ANoFkdAhFKMa86FNHV9lChoBmgJaA9DCCRfCaTElF9AlIaUUpRoFU3oA2gWR0CEX8uq3mV8dX2UKGgGaAloD0MIP+CBAYQBRsCUhpRSlGgVTRUBaBZHQIRi0OXmeUZ1fZQoaAZoCWgPQwgSFhVxOmNbQJSGlFKUaBVN6ANoFkdAhGcKXfIjnnV9lChoBmgJaA9DCGXjwRa7JGBAlIaUUpRoFU3oA2gWR0CEb6erdWQwdX2UKGgGaAloD0MI2BAcl3FQW0CUhpRSlGgVTegDaBZHQIRxShBZ6ld1fZQoaAZoCWgPQwgBT1q4rAxjQJSGlFKUaBVN6ANoFkdAhH5NhE0BO3V9lChoBmgJaA9DCL9+iA0W92lAlIaUUpRoFU0qAmgWR0CEgFdZ7ojfdX2UKGgGaAloD0MImzxlNV2PWUCUhpRSlGgVTegDaBZHQISL1PDYRNB1fZQoaAZoCWgPQwhnZfuQt31jQJSGlFKUaBVN6ANoFkdAhI+tV7x/eHV9lChoBmgJaA9DCFa7JqQ10FVAlIaUUpRoFU3oA2gWR0CEmlwgkka/dX2UKGgGaAloD0MIPZtVn6t7Z0CUhpRSlGgVTXwCaBZHQISi7riVB2R1fZQoaAZoCWgPQwjgoL36+KphQJSGlFKUaBVN6ANoFkdAhKvESdvsJXV9lChoBmgJaA9DCKcgPxu5Ji1AlIaUUpRoFUu4aBZHQISy+3z+WGB1fZQoaAZoCWgPQwifAmA8Ax1hQJSGlFKUaBVN6ANoFkdAhLQhhQWN3nV9lChoBmgJaA9DCBvyzwziH2FAlIaUUpRoFU3oA2gWR0CE5xK/VRUFdX2UKGgGaAloD0MIrdwLzApiWkCUhpRSlGgVTegDaBZHQIToLoUzsQd1fZQoaAZoCWgPQwhqpnud1BBeQJSGlFKUaBVN6ANoFkdAhOt+jmCAc3V9lChoBmgJaA9DCD3uW60ToWFAlIaUUpRoFU3oA2gWR0CFBYa8Yht+dX2UKGgGaAloD0MI+kLIef/JWkCUhpRSlGgVTegDaBZHQIUImNo8IRh1fZQoaAZoCWgPQwj/klSmmLFaQJSGlFKUaBVN6ANoFkdAhQzBD5TIenV9lChoBmgJaA9DCJxpwvaTEmBAlIaUUpRoFU3oA2gWR0CFFaw6hg3MdX2UKGgGaAloD0MIXTKOkez5W0CUhpRSlGgVTegDaBZHQIUXZjFyaNN1fZQoaAZoCWgPQwicFrzoK2FhQJSGlFKUaBVN6ANoFkdAhSTl2mpEQXV9lChoBmgJaA9DCL5p+uyAUVZAlIaUUpRoFU3oA2gWR0CFJxeANG3GdX2UKGgGaAloD0MINX12wHUhRMCUhpRSlGgVS8hoFkdAhTCCn5zo2XV9lChoBmgJaA9DCNcYdELoNWNAlIaUUpRoFU3oA2gWR0CFMy0svqTsdX2UKGgGaAloD0MI3lomw3EwYUCUhpRSlGgVTegDaBZHQIU3Mb5uZTh1fZQoaAZoCWgPQwjYgXNGlF5rQJSGlFKUaBVNVgFoFkdAhTiaunuRcXV9lChoBmgJaA9DCG9FYoIa9FNAlIaUUpRoFU3oA2gWR0CFSitknTiLdX2UKGgGaAloD0MIa/C+KhfJWUCUhpRSlGgVTegDaBZHQIVTf6AOJ+F1fZQoaAZoCWgPQwgRUrezr9RgQJSGlFKUaBVN6ANoFkdAhVtF4TsY23V9lChoBmgJaA9DCHy45LjTBWJAlIaUUpRoFU3oA2gWR0CFXIq4pc5bdX2UKGgGaAloD0MIEce6uI2Ya0CUhpRSlGgVTVQBaBZHQIVeqYNRWLh1fZQoaAZoCWgPQwjDDmPS30tkQJSGlFKUaBVN6ANoFkdAhZDnlnyup3V9lChoBmgJaA9DCOj500Z1UVtAlIaUUpRoFU3oA2gWR0CFkiOmzjWDdX2UKGgGaAloD0MIARb59cMMZECUhpRSlGgVTegDaBZHQIWVKpcX3xp1fZQoaAZoCWgPQwh7n6pCA59DQJSGlFKUaBVL3WgWR0CFn31SwW30dX2UKGgGaAloD0MIAIv8+iGeOECUhpRSlGgVTQcBaBZHQIWmmPzWf9R1fZQoaAZoCWgPQwi+9WG90UlmQJSGlFKUaBVNQwJoFkdAhan83uNPxnV9lChoBmgJaA9DCLTIdr6f2lpAlIaUUpRoFU3oA2gWR0CFrm0O3DvWdX2UKGgGaAloD0MIKEcBomBG7D+UhpRSlGgVS+5oFkdAha6SKNyYHHV9lChoBmgJaA9DCF34wfnUc1hAlIaUUpRoFU3oA2gWR0CFsSo7V8TjdX2UKGgGaAloD0MI26M33EfuJ8CUhpRSlGgVS/doFkdAhbKtIsiB5HV9lChoBmgJaA9DCD1H5LsUXGJAlIaUUpRoFU3oA2gWR0CFvJR64UeudX2UKGgGaAloD0MIVz7L8+AYYUCUhpRSlGgVTegDaBZHQIXLP6VMVUN1fZQoaAZoCWgPQwju7ZbkgN9eQJSGlFKUaBVN6ANoFkdAhc2kZR8+inV9lChoBmgJaA9DCIy8rIkFPuK/lIaUUpRoFUvmaBZHQIXaE2m51/51fZQoaAZoCWgPQwjc1EDzuYNgQJSGlFKUaBVN6ANoFkdAhdp8c+7lJnV9lChoBmgJaA9DCHkB9tEp4GFAlIaUUpRoFU3oA2gWR0CF39wb2lEadX2UKGgGaAloD0MIms+52/USB0CUhpRSlGgVS95oFkdAherwHJLdvnV9lChoBmgJaA9DCDhLyXISxV1AlIaUUpRoFU3oA2gWR0CF8UNGViWndX2UKGgGaAloD0MIqaPjamS7X0CUhpRSlGgVTegDaBZHQIX5HNiYsup1fZQoaAZoCWgPQwiiYTHqWtxgQJSGlFKUaBVN6ANoFkdAhf+xSxZ+yHV9lChoBmgJaA9DCGsNpfYiZj7AlIaUUpRoFUvYaBZHQIYzAymALAp1fZQoaAZoCWgPQwi+Zrls9I9gQJSGlFKUaBVN6ANoFkdAhjPkvTPSlXV9lChoBmgJaA9DCG9JDtjVvVlAlIaUUpRoFU3oA2gWR0CGQ/eyAxzrdX2UKGgGaAloD0MItg4O9qaiYkCUhpRSlGgVTegDaBZHQIZLiC+UQkJ1fZQoaAZoCWgPQwh3hT5YRqdhQJSGlFKUaBVN6ANoFkdAhk8j/VAiV3V9lChoBmgJaA9DCJVgcTjz+VhAlIaUUpRoFU3oA2gWR0CGU3AkcCHRdX2UKGgGaAloD0MI/kgRGVYiYUCUhpRSlGgVTegDaBZHQIZTkwztTk11fZQoaAZoCWgPQwhNSGsMOnVkQJSGlFKUaBVN6ANoFkdAhlX/DUExI3V9lChoBmgJaA9DCAHChxItI2BAlIaUUpRoFU3oA2gWR0CGV5ga3qiXdX2UKGgGaAloD0MIJa/OMSBHQkCUhpRSlGgVS95oFkdAhmjAaNuLrHV9lChoBmgJaA9DCOT09XzNDVxAlIaUUpRoFU3oA2gWR0CGd6i8nNPhdX2UKGgGaAloD0MIgZcZNsqhYECUhpRSlGgVTegDaBZHQIaGqBRQ7911fZQoaAZoCWgPQwhdwTbiyR1eQJSGlFKUaBVN6ANoFkdAhocbWNFSbnV9lChoBmgJaA9DCDDysiYW62dAlIaUUpRoFU1eAWgWR0CGid3A2ycDdX2UKGgGaAloD0MI6x9EMuRRYkCUhpRSlGgVTegDaBZHQIaQf3vhIe51fZQoaAZoCWgPQwinWaDdIR9aQJSGlFKUaBVN6ANoFkdAhqNFo11nunV9lChoBmgJaA9DCEGchxOYTWJAlIaUUpRoFU3oA2gWR0CGuEmdAgPmdX2UKGgGaAloD0MIOBWpMLY9Y0CUhpRSlGgVTegDaBZHQIbAAf8uSOl1fZQoaAZoCWgPQwjarWUyHF5YQJSGlFKUaBVN6ANoFkdAhs5+MZP2wnV9lChoBmgJaA9DCJSI8C+Cx2JAlIaUUpRoFU3oA2gWR0CGz3ZPl+3IdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bcb94b2f979886e0bb8e1881efc5b8efe341ab0d7671c0a458183df0427c373
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93ea1af98d4ee229c140994a0c1c64ff3062e3a286acfd6dc4899df4465cbc50
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 185.3441991559067, "std_reward": 41.63758652634317, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-22T00:41:11.127295"}