pahri commited on
Commit
27fc639
1 Parent(s): f836d3f

Add SetFit ABSA model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: nihh, buat bumbu masih kurang berani:Kemaren kebetulan makan babat sama nyobain
13
+ cumi, buat tekstur babatnya itu engga alot sama sekali dan tidak amis, sedangkan
14
+ buat cumi utuh lumayan gede juga tekstur kenyel kenyelnya dapet dan mateng juga
15
+ sampe ke dalem. Tapi ada tapinyaa nihh, buat bumbu masih kurang berani dan kurang
16
+ meresap.
17
+ - text: servicenya😊..Menunya variatif, delicious:Baru pertama kali coba baby dutch
18
+ pancake..Overall sukaa dengan food, place & servicenya😊..Menunya variatif, delicious,
19
+ penyajian cepat & pelayanan sangat baik.
20
+ - text: enak, tapi porsinya kecil untuk harganya:Makanannya enak, tapi porsinya kecil
21
+ untuk harganya. Suasana bagus, tetapi layanannya lambat.
22
+ - text: specialist itu. Varian minumnya juga cuma sedikit:Menunya gak banyak, pancake
23
+ dan rosti aja. Karena specialist itu. Varian minumnya juga cuma sedikit.
24
+ - text: enak. Favorit selada air krispi dan ayam bakar:Warung Sunda murah meriah dan
25
+ makanannya enak. Favorit selada air krispi dan ayam bakar. Bakwan dan perkedelnya
26
+ juga enak. Paru gorengnya lembut. Tak lengkap kalau kebandung. Kalau tidak makan
27
+ siang disini
28
+ pipeline_tag: text-classification
29
+ inference: false
30
+ ---
31
+
32
+ # SetFit Polarity Model
33
+
34
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
35
+
36
+ The model has been trained using an efficient few-shot learning technique that involves:
37
+
38
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
39
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
40
+
41
+ This model was trained within the context of a larger system for ABSA, which looks like so:
42
+
43
+ 1. Use a spaCy model to select possible aspect span candidates.
44
+ 2. Use a SetFit model to filter these possible aspect span candidates.
45
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **spaCy Model:** id_core_news_trf
54
+ - **SetFitABSA Aspect Model:** [pahri/setfit-indo-restomix-aspect](https://huggingface.co/pahri/setfit-indo-restomix-aspect)
55
+ - **SetFitABSA Polarity Model:** [pahri/setfit-indo-restomix-polarity](https://huggingface.co/pahri/setfit-indo-restomix-polarity)
56
+ - **Maximum Sequence Length:** 8192 tokens
57
+ - **Number of Classes:** 2 classes
58
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
65
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
66
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
67
+
68
+ ### Model Labels
69
+ | Label | Examples |
70
+ |:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
71
+ | negative | <ul><li>'tempatnya, tp pilihan makanannya terbatas, kalo:instagramable tempatnya, tp pilihan makanannya terbatas, kalo untuk nongkrong ngemil sih enak tempatnya,tp kl yg mau makan berart krg bnyk variasi menunya'</li><li>'cuma menurut saya overpriced sih , untuk:untuk makanan rasa enak cuma menurut saya overpriced sih , untuk pancake tipis gtu dibandrol harga 65rb dengan topping yg sedikit , cuma 2 blueberry dan 2 raspberry dan pistachionya jg sedikit.'</li><li>'Menunggu 50menit dan pesanan tak kunjung datang:Gak worthed. Menunggu 50menit dan pesanan tak kunjung datang. Gak lagi deh ke tempat ini. Keterlaluan servisnya.'</li></ul> |
72
+ | positive | <ul><li>'ngemil sih enak tempatnya,tp kl:instagramable tempatnya, tp pilihan makanannya terbatas, kalo untuk nongkrong ngemil sih enak tempatnya,tp kl yg mau makan berart krg bnyk variasi menunya'</li><li>'Harganya juga masih terjangkau:Harganya juga masih terjangkau'</li><li>'nyambung, dan sambal leunca-nya enak beutullll....:Rasa ayam goreng/ati-ampela goreng gurih asinnya pas, sayur asem yang isinya banyak dan ras asam-manisnya nyambung, dan sambal leunca-nya enak beutullll.... Pakai petai dan tempe/tahu lebih sempurna.'</li></ul> |
73
+
74
+ ## Uses
75
+
76
+ ### Direct Use for Inference
77
+
78
+ First install the SetFit library:
79
+
80
+ ```bash
81
+ pip install setfit
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+
86
+ ```python
87
+ from setfit import AbsaModel
88
+
89
+ # Download from the 🤗 Hub
90
+ model = AbsaModel.from_pretrained(
91
+ "pahri/setfit-indo-restomix-aspect",
92
+ "pahri/setfit-indo-restomix-polarity",
93
+ )
94
+ # Run inference
95
+ preds = model("The food was great, but the venue is just way too busy.")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:--------|:----|
127
+ | Word count | 7 | 28.3207 | 90 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:--------|:----------------------|
131
+ | konflik | 0 |
132
+ | negatif | 0 |
133
+ | netral | 0 |
134
+ | positif | 0 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (6, 6)
138
+ - num_epochs: (1, 16)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - body_learning_rate: (2e-05, 1e-05)
142
+ - head_learning_rate: 0.01
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: True
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: False
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:------:|:----:|:-------------:|:---------------:|
156
+ | 0.0003 | 1 | 0.3326 | - |
157
+
158
+ ### Framework Versions
159
+ - Python: 3.10.13
160
+ - SetFit: 1.0.3
161
+ - Sentence Transformers: 2.7.0
162
+ - spaCy: 3.7.4
163
+ - Transformers: 4.36.2
164
+ - PyTorch: 2.1.2
165
+ - Datasets: 2.18.0
166
+ - Tokenizers: 0.15.2
167
+
168
+ ## Citation
169
+
170
+ ### BibTeX
171
+ ```bibtex
172
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
173
+ doi = {10.48550/ARXIV.2209.11055},
174
+ url = {https://arxiv.org/abs/2209.11055},
175
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
176
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
177
+ title = {Efficient Few-Shot Learning Without Prompts},
178
+ publisher = {arXiv},
179
+ year = {2022},
180
+ copyright = {Creative Commons Attribution 4.0 International}
181
+ }
182
+ ```
183
+
184
+ <!--
185
+ ## Glossary
186
+
187
+ *Clearly define terms in order to be accessible across audiences.*
188
+ -->
189
+
190
+ <!--
191
+ ## Model Card Authors
192
+
193
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
194
+ -->
195
+
196
+ <!--
197
+ ## Model Card Contact
198
+
199
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
200
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.36.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "konflik",
4
+ "negatif",
5
+ "netral",
6
+ "positif"
7
+ ],
8
+ "spacy_model": "id_core_news_trf",
9
+ "normalize_embeddings": false,
10
+ "span_context": 3
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f63dee23a0bf95fda64e8d449f3b986d248f47902b6bd425fe8c3c8a990cf1a
3
+ size 2271064456
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b969a8393f074faca1b3632bbec9d7cc8f87bdee2a40bd4058c693cbcf86b58c
3
+ size 33735
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
3
+ size 17083075
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 8192,
50
+ "model_max_length": 8192,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }