Add SetFit ABSA model
Browse files- 1_Pooling/config.json +10 -0
- README.md +685 -0
- config.json +47 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
widget:
|
12 |
+
- text: Suasana:Tempatnya ramai sekali dan ngantei banget. Suasana di dalam resto
|
13 |
+
sangat panas dan padat. Makanannya enak enak.
|
14 |
+
- text: bener2 pedes puolll:Rasanya sgt gak cocok dilidah gue orang bekasi.. ayamnya
|
15 |
+
ayam kampung sih tp kecil bgt (beli yg dada).. terus tempe bacem sgt padet dan
|
16 |
+
tahunya enak sih.. untuk sambel pedes bgt bener2 pedes puolll, tp rasanya gasukaa.
|
17 |
+
- text: gang:Suasana di dalam resto sangat panas dan padat. Makanannya enak enak.
|
18 |
+
Dan restonya ada di beberapa tempat dalam satu gang.
|
19 |
+
- text: tempe:Menu makanannya khas Sunda ada ayam, pepes ikan, babat, tahu, tempe,
|
20 |
+
sayur-sayur. Tidak banyak variasinya tapi kualitas rasanya oke. Saat itu pesen
|
21 |
+
ayam bakar, jukut goreng, tempe sama pepes tahu. Ini semuanya enak (menurut pendapat
|
22 |
+
pribadi).
|
23 |
+
- text: 'babat:Kemaren kebetulan makan babat sama nyobain cumi, buat tekstur babatnya
|
24 |
+
itu engga alot sama sekali dan tidak amis, sedangkan buat cumi utuh lumayan gede
|
25 |
+
juga tekstur kenyel kenyelnya dapet dan mateng juga sampe ke dalem. '
|
26 |
+
pipeline_tag: text-classification
|
27 |
+
inference: false
|
28 |
+
model-index:
|
29 |
+
- name: SetFit Aspect Model
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
type: text-classification
|
33 |
+
name: Text Classification
|
34 |
+
dataset:
|
35 |
+
name: Unknown
|
36 |
+
type: unknown
|
37 |
+
split: test
|
38 |
+
metrics:
|
39 |
+
- type: accuracy
|
40 |
+
value: 0.80625
|
41 |
+
name: Accuracy
|
42 |
+
---
|
43 |
+
|
44 |
+
# SetFit Aspect Model
|
45 |
+
|
46 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
47 |
+
|
48 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
49 |
+
|
50 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
51 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
52 |
+
|
53 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
54 |
+
|
55 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
56 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
57 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
58 |
+
|
59 |
+
## Model Details
|
60 |
+
|
61 |
+
### Model Description
|
62 |
+
- **Model Type:** SetFit
|
63 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
64 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
65 |
+
- **spaCy Model:** id_core_news_trf
|
66 |
+
- **SetFitABSA Aspect Model:** [pahri/setfit-indo-resto-RM-ibu-imas-aspect](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-aspect)
|
67 |
+
- **SetFitABSA Polarity Model:** [pahri/setfit-indo-resto-RM-ibu-imas-polarity](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-polarity)
|
68 |
+
- **Maximum Sequence Length:** 512 tokens
|
69 |
+
- **Number of Classes:** 2 classes
|
70 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
71 |
+
<!-- - **Language:** Unknown -->
|
72 |
+
<!-- - **License:** Unknown -->
|
73 |
+
|
74 |
+
### Model Sources
|
75 |
+
|
76 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
77 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
78 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
79 |
+
|
80 |
+
### Model Labels
|
81 |
+
| Label | Examples |
|
82 |
+
|:----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
83 |
+
| no aspect | <ul><li>'ambel leuncanya:ambel leuncanya enak terus pedesss'</li><li>'Warung Sunda:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li><li>'makanannya:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li></ul> |
|
84 |
+
| aspect | <ul><li>'ayam bakar:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li><li>'Ayam bakar:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li><li>'sambel terasi merah:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li></ul> |
|
85 |
+
|
86 |
+
## Evaluation
|
87 |
+
|
88 |
+
### Metrics
|
89 |
+
| Label | Accuracy |
|
90 |
+
|:--------|:---------|
|
91 |
+
| **all** | 0.8063 |
|
92 |
+
|
93 |
+
## Uses
|
94 |
+
|
95 |
+
### Direct Use for Inference
|
96 |
+
|
97 |
+
First install the SetFit library:
|
98 |
+
|
99 |
+
```bash
|
100 |
+
pip install setfit
|
101 |
+
```
|
102 |
+
|
103 |
+
Then you can load this model and run inference.
|
104 |
+
|
105 |
+
```python
|
106 |
+
from setfit import AbsaModel
|
107 |
+
|
108 |
+
# Download from the 🤗 Hub
|
109 |
+
model = AbsaModel.from_pretrained(
|
110 |
+
"pahri/setfit-indo-resto-RM-ibu-imas-aspect",
|
111 |
+
"pahri/setfit-indo-resto-RM-ibu-imas-polarity",
|
112 |
+
)
|
113 |
+
# Run inference
|
114 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
115 |
+
```
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Downstream Use
|
119 |
+
|
120 |
+
*List how someone could finetune this model on their own dataset.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Out-of-Scope Use
|
125 |
+
|
126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
## Bias, Risks and Limitations
|
131 |
+
|
132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Recommendations
|
137 |
+
|
138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
## Training Details
|
142 |
+
|
143 |
+
### Training Set Metrics
|
144 |
+
| Training set | Min | Median | Max |
|
145 |
+
|:-------------|:----|:--------|:----|
|
146 |
+
| Word count | 4 | 37.7180 | 93 |
|
147 |
+
|
148 |
+
| Label | Training Sample Count |
|
149 |
+
|:----------|:----------------------|
|
150 |
+
| no aspect | 371 |
|
151 |
+
| aspect | 51 |
|
152 |
+
|
153 |
+
### Training Hyperparameters
|
154 |
+
- batch_size: (6, 6)
|
155 |
+
- num_epochs: (1, 16)
|
156 |
+
- max_steps: -1
|
157 |
+
- sampling_strategy: oversampling
|
158 |
+
- body_learning_rate: (2e-05, 1e-05)
|
159 |
+
- head_learning_rate: 0.01
|
160 |
+
- loss: CosineSimilarityLoss
|
161 |
+
- distance_metric: cosine_distance
|
162 |
+
- margin: 0.25
|
163 |
+
- end_to_end: False
|
164 |
+
- use_amp: True
|
165 |
+
- warmup_proportion: 0.1
|
166 |
+
- seed: 42
|
167 |
+
- eval_max_steps: -1
|
168 |
+
- load_best_model_at_end: False
|
169 |
+
|
170 |
+
### Training Results
|
171 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
172 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
173 |
+
| 0.0000 | 1 | 0.4225 | - |
|
174 |
+
| 0.0021 | 50 | 0.2528 | - |
|
175 |
+
| 0.0043 | 100 | 0.3611 | - |
|
176 |
+
| 0.0064 | 150 | 0.2989 | - |
|
177 |
+
| 0.0085 | 200 | 0.2907 | - |
|
178 |
+
| 0.0107 | 250 | 0.1609 | - |
|
179 |
+
| 0.0128 | 300 | 0.3534 | - |
|
180 |
+
| 0.0149 | 350 | 0.1294 | - |
|
181 |
+
| 0.0171 | 400 | 0.2797 | - |
|
182 |
+
| 0.0192 | 450 | 0.3119 | - |
|
183 |
+
| 0.0213 | 500 | 0.004 | - |
|
184 |
+
| 0.0235 | 550 | 0.1057 | - |
|
185 |
+
| 0.0256 | 600 | 0.1049 | - |
|
186 |
+
| 0.0277 | 650 | 0.1601 | - |
|
187 |
+
| 0.0299 | 700 | 0.151 | - |
|
188 |
+
| 0.0320 | 750 | 0.1034 | - |
|
189 |
+
| 0.0341 | 800 | 0.2356 | - |
|
190 |
+
| 0.0363 | 850 | 0.1335 | - |
|
191 |
+
| 0.0384 | 900 | 0.0559 | - |
|
192 |
+
| 0.0405 | 950 | 0.0028 | - |
|
193 |
+
| 0.0427 | 1000 | 0.1307 | - |
|
194 |
+
| 0.0448 | 1050 | 0.0049 | - |
|
195 |
+
| 0.0469 | 1100 | 0.1348 | - |
|
196 |
+
| 0.0491 | 1150 | 0.0392 | - |
|
197 |
+
| 0.0512 | 1200 | 0.054 | - |
|
198 |
+
| 0.0533 | 1250 | 0.0016 | - |
|
199 |
+
| 0.0555 | 1300 | 0.0012 | - |
|
200 |
+
| 0.0576 | 1350 | 0.0414 | - |
|
201 |
+
| 0.0597 | 1400 | 0.1087 | - |
|
202 |
+
| 0.0618 | 1450 | 0.0464 | - |
|
203 |
+
| 0.0640 | 1500 | 0.0095 | - |
|
204 |
+
| 0.0661 | 1550 | 0.0011 | - |
|
205 |
+
| 0.0682 | 1600 | 0.0002 | - |
|
206 |
+
| 0.0704 | 1650 | 0.1047 | - |
|
207 |
+
| 0.0725 | 1700 | 0.001 | - |
|
208 |
+
| 0.0746 | 1750 | 0.0965 | - |
|
209 |
+
| 0.0768 | 1800 | 0.0002 | - |
|
210 |
+
| 0.0789 | 1850 | 0.1436 | - |
|
211 |
+
| 0.0810 | 1900 | 0.0011 | - |
|
212 |
+
| 0.0832 | 1950 | 0.001 | - |
|
213 |
+
| 0.0853 | 2000 | 0.1765 | - |
|
214 |
+
| 0.0874 | 2050 | 0.1401 | - |
|
215 |
+
| 0.0896 | 2100 | 0.0199 | - |
|
216 |
+
| 0.0917 | 2150 | 0.0 | - |
|
217 |
+
| 0.0938 | 2200 | 0.0023 | - |
|
218 |
+
| 0.0960 | 2250 | 0.0034 | - |
|
219 |
+
| 0.0981 | 2300 | 0.0001 | - |
|
220 |
+
| 0.1002 | 2350 | 0.0948 | - |
|
221 |
+
| 0.1024 | 2400 | 0.1634 | - |
|
222 |
+
| 0.1045 | 2450 | 0.0 | - |
|
223 |
+
| 0.1066 | 2500 | 0.0005 | - |
|
224 |
+
| 0.1088 | 2550 | 0.0695 | - |
|
225 |
+
| 0.1109 | 2600 | 0.0 | - |
|
226 |
+
| 0.1130 | 2650 | 0.0067 | - |
|
227 |
+
| 0.1152 | 2700 | 0.0025 | - |
|
228 |
+
| 0.1173 | 2750 | 0.0013 | - |
|
229 |
+
| 0.1194 | 2800 | 0.1426 | - |
|
230 |
+
| 0.1216 | 2850 | 0.0001 | - |
|
231 |
+
| 0.1237 | 2900 | 0.0 | - |
|
232 |
+
| 0.1258 | 2950 | 0.0 | - |
|
233 |
+
| 0.1280 | 3000 | 0.0001 | - |
|
234 |
+
| 0.1301 | 3050 | 0.0001 | - |
|
235 |
+
| 0.1322 | 3100 | 0.0122 | - |
|
236 |
+
| 0.1344 | 3150 | 0.0 | - |
|
237 |
+
| 0.1365 | 3200 | 0.0001 | - |
|
238 |
+
| 0.1386 | 3250 | 0.0041 | - |
|
239 |
+
| 0.1408 | 3300 | 0.2549 | - |
|
240 |
+
| 0.1429 | 3350 | 0.0062 | - |
|
241 |
+
| 0.1450 | 3400 | 0.0154 | - |
|
242 |
+
| 0.1472 | 3450 | 0.1776 | - |
|
243 |
+
| 0.1493 | 3500 | 0.0039 | - |
|
244 |
+
| 0.1514 | 3550 | 0.0183 | - |
|
245 |
+
| 0.1536 | 3600 | 0.0045 | - |
|
246 |
+
| 0.1557 | 3650 | 0.1108 | - |
|
247 |
+
| 0.1578 | 3700 | 0.0002 | - |
|
248 |
+
| 0.1600 | 3750 | 0.01 | - |
|
249 |
+
| 0.1621 | 3800 | 0.0002 | - |
|
250 |
+
| 0.1642 | 3850 | 0.0001 | - |
|
251 |
+
| 0.1664 | 3900 | 0.1612 | - |
|
252 |
+
| 0.1685 | 3950 | 0.0107 | - |
|
253 |
+
| 0.1706 | 4000 | 0.0548 | - |
|
254 |
+
| 0.1728 | 4050 | 0.0001 | - |
|
255 |
+
| 0.1749 | 4100 | 0.0162 | - |
|
256 |
+
| 0.1770 | 4150 | 0.1294 | - |
|
257 |
+
| 0.1792 | 4200 | 0.0 | - |
|
258 |
+
| 0.1813 | 4250 | 0.0032 | - |
|
259 |
+
| 0.1834 | 4300 | 0.0051 | - |
|
260 |
+
| 0.1855 | 4350 | 0.0 | - |
|
261 |
+
| 0.1877 | 4400 | 0.0151 | - |
|
262 |
+
| 0.1898 | 4450 | 0.0097 | - |
|
263 |
+
| 0.1919 | 4500 | 0.0002 | - |
|
264 |
+
| 0.1941 | 4550 | 0.0045 | - |
|
265 |
+
| 0.1962 | 4600 | 0.0001 | - |
|
266 |
+
| 0.1983 | 4650 | 0.0001 | - |
|
267 |
+
| 0.2005 | 4700 | 0.0227 | - |
|
268 |
+
| 0.2026 | 4750 | 0.0018 | - |
|
269 |
+
| 0.2047 | 4800 | 0.0 | - |
|
270 |
+
| 0.2069 | 4850 | 0.0001 | - |
|
271 |
+
| 0.2090 | 4900 | 0.0 | - |
|
272 |
+
| 0.2111 | 4950 | 0.0 | - |
|
273 |
+
| 0.2133 | 5000 | 0.0 | - |
|
274 |
+
| 0.2154 | 5050 | 0.0002 | - |
|
275 |
+
| 0.2175 | 5100 | 0.0002 | - |
|
276 |
+
| 0.2197 | 5150 | 0.0038 | - |
|
277 |
+
| 0.2218 | 5200 | 0.0 | - |
|
278 |
+
| 0.2239 | 5250 | 0.0 | - |
|
279 |
+
| 0.2261 | 5300 | 0.0 | - |
|
280 |
+
| 0.2282 | 5350 | 0.0028 | - |
|
281 |
+
| 0.2303 | 5400 | 0.0 | - |
|
282 |
+
| 0.2325 | 5450 | 0.1146 | - |
|
283 |
+
| 0.2346 | 5500 | 0.0 | - |
|
284 |
+
| 0.2367 | 5550 | 0.0073 | - |
|
285 |
+
| 0.2389 | 5600 | 0.0467 | - |
|
286 |
+
| 0.2410 | 5650 | 0.0092 | - |
|
287 |
+
| 0.2431 | 5700 | 0.0196 | - |
|
288 |
+
| 0.2453 | 5750 | 0.0002 | - |
|
289 |
+
| 0.2474 | 5800 | 0.0043 | - |
|
290 |
+
| 0.2495 | 5850 | 0.0378 | - |
|
291 |
+
| 0.2517 | 5900 | 0.0049 | - |
|
292 |
+
| 0.2538 | 5950 | 0.0054 | - |
|
293 |
+
| 0.2559 | 6000 | 0.1757 | - |
|
294 |
+
| 0.2581 | 6050 | 0.0 | - |
|
295 |
+
| 0.2602 | 6100 | 0.0001 | - |
|
296 |
+
| 0.2623 | 6150 | 0.1327 | - |
|
297 |
+
| 0.2645 | 6200 | 0.0 | - |
|
298 |
+
| 0.2666 | 6250 | 0.0 | - |
|
299 |
+
| 0.2687 | 6300 | 0.0 | - |
|
300 |
+
| 0.2709 | 6350 | 0.0134 | - |
|
301 |
+
| 0.2730 | 6400 | 0.0001 | - |
|
302 |
+
| 0.2751 | 6450 | 0.0112 | - |
|
303 |
+
| 0.2773 | 6500 | 0.0864 | - |
|
304 |
+
| 0.2794 | 6550 | 0.0 | - |
|
305 |
+
| 0.2815 | 6600 | 0.0094 | - |
|
306 |
+
| 0.2837 | 6650 | 0.1358 | - |
|
307 |
+
| 0.2858 | 6700 | 0.0155 | - |
|
308 |
+
| 0.2879 | 6750 | 0.0025 | - |
|
309 |
+
| 0.2901 | 6800 | 0.0002 | - |
|
310 |
+
| 0.2922 | 6850 | 0.0001 | - |
|
311 |
+
| 0.2943 | 6900 | 0.2809 | - |
|
312 |
+
| 0.2965 | 6950 | 0.0 | - |
|
313 |
+
| 0.2986 | 7000 | 0.0242 | - |
|
314 |
+
| 0.3007 | 7050 | 0.0015 | - |
|
315 |
+
| 0.3028 | 7100 | 0.0 | - |
|
316 |
+
| 0.3050 | 7150 | 0.1064 | - |
|
317 |
+
| 0.3071 | 7200 | 0.1636 | - |
|
318 |
+
| 0.3092 | 7250 | 0.267 | - |
|
319 |
+
| 0.3114 | 7300 | 0.1656 | - |
|
320 |
+
| 0.3135 | 7350 | 0.0943 | - |
|
321 |
+
| 0.3156 | 7400 | 0.189 | - |
|
322 |
+
| 0.3178 | 7450 | 0.0055 | - |
|
323 |
+
| 0.3199 | 7500 | 0.1286 | - |
|
324 |
+
| 0.3220 | 7550 | 0.1062 | - |
|
325 |
+
| 0.3242 | 7600 | 0.1275 | - |
|
326 |
+
| 0.3263 | 7650 | 0.0101 | - |
|
327 |
+
| 0.3284 | 7700 | 0.0162 | - |
|
328 |
+
| 0.3306 | 7750 | 0.0001 | - |
|
329 |
+
| 0.3327 | 7800 | 0.0001 | - |
|
330 |
+
| 0.3348 | 7850 | 0.0003 | - |
|
331 |
+
| 0.3370 | 7900 | 0.0 | - |
|
332 |
+
| 0.3391 | 7950 | 0.135 | - |
|
333 |
+
| 0.3412 | 8000 | 0.0 | - |
|
334 |
+
| 0.3434 | 8050 | 0.0125 | - |
|
335 |
+
| 0.3455 | 8100 | 0.0004 | - |
|
336 |
+
| 0.3476 | 8150 | 0.0 | - |
|
337 |
+
| 0.3498 | 8200 | 0.2229 | - |
|
338 |
+
| 0.3519 | 8250 | 0.0 | - |
|
339 |
+
| 0.3540 | 8300 | 0.0051 | - |
|
340 |
+
| 0.3562 | 8350 | 0.0 | - |
|
341 |
+
| 0.3583 | 8400 | 0.0001 | - |
|
342 |
+
| 0.3604 | 8450 | 0.0 | - |
|
343 |
+
| 0.3626 | 8500 | 0.1261 | - |
|
344 |
+
| 0.3647 | 8550 | 0.0054 | - |
|
345 |
+
| 0.3668 | 8600 | 0.1636 | - |
|
346 |
+
| 0.3690 | 8650 | 0.0036 | - |
|
347 |
+
| 0.3711 | 8700 | 0.0 | - |
|
348 |
+
| 0.3732 | 8750 | 0.0027 | - |
|
349 |
+
| 0.3754 | 8800 | 0.0 | - |
|
350 |
+
| 0.3775 | 8850 | 0.1422 | - |
|
351 |
+
| 0.3796 | 8900 | 0.1314 | - |
|
352 |
+
| 0.3818 | 8950 | 0.003 | - |
|
353 |
+
| 0.3839 | 9000 | 0.0 | - |
|
354 |
+
| 0.3860 | 9050 | 0.0092 | - |
|
355 |
+
| 0.3882 | 9100 | 0.0129 | - |
|
356 |
+
| 0.3903 | 9150 | 0.0 | - |
|
357 |
+
| 0.3924 | 9200 | 0.0 | - |
|
358 |
+
| 0.3946 | 9250 | 0.1659 | - |
|
359 |
+
| 0.3967 | 9300 | 0.0 | - |
|
360 |
+
| 0.3988 | 9350 | 0.0 | - |
|
361 |
+
| 0.4010 | 9400 | 0.0085 | - |
|
362 |
+
| 0.4031 | 9450 | 0.0 | - |
|
363 |
+
| 0.4052 | 9500 | 0.0 | - |
|
364 |
+
| 0.4074 | 9550 | 0.0 | - |
|
365 |
+
| 0.4095 | 9600 | 0.0112 | - |
|
366 |
+
| 0.4116 | 9650 | 0.0 | - |
|
367 |
+
| 0.4138 | 9700 | 0.0154 | - |
|
368 |
+
| 0.4159 | 9750 | 0.0011 | - |
|
369 |
+
| 0.4180 | 9800 | 0.0077 | - |
|
370 |
+
| 0.4202 | 9850 | 0.0064 | - |
|
371 |
+
| 0.4223 | 9900 | 0.0 | - |
|
372 |
+
| 0.4244 | 9950 | 0.0 | - |
|
373 |
+
| 0.4265 | 10000 | 0.0121 | - |
|
374 |
+
| 0.4287 | 10050 | 0.0 | - |
|
375 |
+
| 0.4308 | 10100 | 0.0 | - |
|
376 |
+
| 0.4329 | 10150 | 0.0076 | - |
|
377 |
+
| 0.4351 | 10200 | 0.0039 | - |
|
378 |
+
| 0.4372 | 10250 | 0.2153 | - |
|
379 |
+
| 0.4393 | 10300 | 0.0 | - |
|
380 |
+
| 0.4415 | 10350 | 0.1218 | - |
|
381 |
+
| 0.4436 | 10400 | 0.0077 | - |
|
382 |
+
| 0.4457 | 10450 | 0.1311 | - |
|
383 |
+
| 0.4479 | 10500 | 0.0 | - |
|
384 |
+
| 0.4500 | 10550 | 0.0 | - |
|
385 |
+
| 0.4521 | 10600 | 0.0 | - |
|
386 |
+
| 0.4543 | 10650 | 0.0041 | - |
|
387 |
+
| 0.4564 | 10700 | 0.0073 | - |
|
388 |
+
| 0.4585 | 10750 | 0.0051 | - |
|
389 |
+
| 0.4607 | 10800 | 0.0 | - |
|
390 |
+
| 0.4628 | 10850 | 0.0 | - |
|
391 |
+
| 0.4649 | 10900 | 0.0 | - |
|
392 |
+
| 0.4671 | 10950 | 0.0001 | - |
|
393 |
+
| 0.4692 | 11000 | 0.0 | - |
|
394 |
+
| 0.4713 | 11050 | 0.1696 | - |
|
395 |
+
| 0.4735 | 11100 | 0.0 | - |
|
396 |
+
| 0.4756 | 11150 | 0.1243 | - |
|
397 |
+
| 0.4777 | 11200 | 0.0 | - |
|
398 |
+
| 0.4799 | 11250 | 0.0 | - |
|
399 |
+
| 0.4820 | 11300 | 0.0003 | - |
|
400 |
+
| 0.4841 | 11350 | 0.0707 | - |
|
401 |
+
| 0.4863 | 11400 | 0.166 | - |
|
402 |
+
| 0.4884 | 11450 | 0.4964 | - |
|
403 |
+
| 0.4905 | 11500 | 0.0023 | - |
|
404 |
+
| 0.4927 | 11550 | 0.0 | - |
|
405 |
+
| 0.4948 | 11600 | 0.0 | - |
|
406 |
+
| 0.4969 | 11650 | 0.173 | - |
|
407 |
+
| 0.4991 | 11700 | 0.0 | - |
|
408 |
+
| 0.5012 | 11750 | 0.0004 | - |
|
409 |
+
| 0.5033 | 11800 | 0.0 | - |
|
410 |
+
| 0.5055 | 11850 | 0.125 | - |
|
411 |
+
| 0.5076 | 11900 | 0.0042 | - |
|
412 |
+
| 0.5097 | 11950 | 0.012 | - |
|
413 |
+
| 0.5119 | 12000 | 0.0046 | - |
|
414 |
+
| 0.5140 | 12050 | 0.0001 | - |
|
415 |
+
| 0.5161 | 12100 | 0.0062 | - |
|
416 |
+
| 0.5183 | 12150 | 0.0 | - |
|
417 |
+
| 0.5204 | 12200 | 0.017 | - |
|
418 |
+
| 0.5225 | 12250 | 0.2668 | - |
|
419 |
+
| 0.5247 | 12300 | 0.0986 | - |
|
420 |
+
| 0.5268 | 12350 | 0.0071 | - |
|
421 |
+
| 0.5289 | 12400 | 0.0055 | - |
|
422 |
+
| 0.5311 | 12450 | 0.006 | - |
|
423 |
+
| 0.5332 | 12500 | 0.0057 | - |
|
424 |
+
| 0.5353 | 12550 | 0.0044 | - |
|
425 |
+
| 0.5375 | 12600 | 0.0039 | - |
|
426 |
+
| 0.5396 | 12650 | 0.1685 | - |
|
427 |
+
| 0.5417 | 12700 | 0.125 | - |
|
428 |
+
| 0.5438 | 12750 | 0.0026 | - |
|
429 |
+
| 0.5460 | 12800 | 0.0 | - |
|
430 |
+
| 0.5481 | 12850 | 0.0 | - |
|
431 |
+
| 0.5502 | 12900 | 0.1024 | - |
|
432 |
+
| 0.5524 | 12950 | 0.0 | - |
|
433 |
+
| 0.5545 | 13000 | 0.0 | - |
|
434 |
+
| 0.5566 | 13050 | 0.0083 | - |
|
435 |
+
| 0.5588 | 13100 | 0.0 | - |
|
436 |
+
| 0.5609 | 13150 | 0.0001 | - |
|
437 |
+
| 0.5630 | 13200 | 0.0 | - |
|
438 |
+
| 0.5652 | 13250 | 0.095 | - |
|
439 |
+
| 0.5673 | 13300 | 0.0001 | - |
|
440 |
+
| 0.5694 | 13350 | 0.0026 | - |
|
441 |
+
| 0.5716 | 13400 | 0.0 | - |
|
442 |
+
| 0.5737 | 13450 | 0.0041 | - |
|
443 |
+
| 0.5758 | 13500 | 0.1654 | - |
|
444 |
+
| 0.5780 | 13550 | 0.0003 | - |
|
445 |
+
| 0.5801 | 13600 | 0.0056 | - |
|
446 |
+
| 0.5822 | 13650 | 0.0 | - |
|
447 |
+
| 0.5844 | 13700 | 0.1012 | - |
|
448 |
+
| 0.5865 | 13750 | 0.0 | - |
|
449 |
+
| 0.5886 | 13800 | 0.0001 | - |
|
450 |
+
| 0.5908 | 13850 | 0.0042 | - |
|
451 |
+
| 0.5929 | 13900 | 0.0122 | - |
|
452 |
+
| 0.5950 | 13950 | 0.1047 | - |
|
453 |
+
| 0.5972 | 14000 | 0.0 | - |
|
454 |
+
| 0.5993 | 14050 | 0.0121 | - |
|
455 |
+
| 0.6014 | 14100 | 0.0 | - |
|
456 |
+
| 0.6036 | 14150 | 0.0 | - |
|
457 |
+
| 0.6057 | 14200 | 0.0 | - |
|
458 |
+
| 0.6078 | 14250 | 0.0105 | - |
|
459 |
+
| 0.6100 | 14300 | 0.0 | - |
|
460 |
+
| 0.6121 | 14350 | 0.011 | - |
|
461 |
+
| 0.6142 | 14400 | 0.0329 | - |
|
462 |
+
| 0.6164 | 14450 | 0.0942 | - |
|
463 |
+
| 0.6185 | 14500 | 0.0173 | - |
|
464 |
+
| 0.6206 | 14550 | 0.0 | - |
|
465 |
+
| 0.6228 | 14600 | 0.1032 | - |
|
466 |
+
| 0.6249 | 14650 | 0.016 | - |
|
467 |
+
| 0.6270 | 14700 | 0.0079 | - |
|
468 |
+
| 0.6292 | 14750 | 0.0 | - |
|
469 |
+
| 0.6313 | 14800 | 0.1088 | - |
|
470 |
+
| 0.6334 | 14850 | 0.0091 | - |
|
471 |
+
| 0.6356 | 14900 | 0.0039 | - |
|
472 |
+
| 0.6377 | 14950 | 0.0 | - |
|
473 |
+
| 0.6398 | 15000 | 0.0 | - |
|
474 |
+
| 0.6420 | 15050 | 0.0 | - |
|
475 |
+
| 0.6441 | 15100 | 0.1654 | - |
|
476 |
+
| 0.6462 | 15150 | 0.0 | - |
|
477 |
+
| 0.6484 | 15200 | 0.0002 | - |
|
478 |
+
| 0.6505 | 15250 | 0.0 | - |
|
479 |
+
| 0.6526 | 15300 | 0.1745 | - |
|
480 |
+
| 0.6548 | 15350 | 0.0 | - |
|
481 |
+
| 0.6569 | 15400 | 0.156 | - |
|
482 |
+
| 0.6590 | 15450 | 0.0 | - |
|
483 |
+
| 0.6611 | 15500 | 0.0 | - |
|
484 |
+
| 0.6633 | 15550 | 0.1755 | - |
|
485 |
+
| 0.6654 | 15600 | 0.008 | - |
|
486 |
+
| 0.6675 | 15650 | 0.0 | - |
|
487 |
+
| 0.6697 | 15700 | 0.0 | - |
|
488 |
+
| 0.6718 | 15750 | 0.0041 | - |
|
489 |
+
| 0.6739 | 15800 | 0.0037 | - |
|
490 |
+
| 0.6761 | 15850 | 0.0 | - |
|
491 |
+
| 0.6782 | 15900 | 0.0 | - |
|
492 |
+
| 0.6803 | 15950 | 0.0092 | - |
|
493 |
+
| 0.6825 | 16000 | 0.0071 | - |
|
494 |
+
| 0.6846 | 16050 | 0.0053 | - |
|
495 |
+
| 0.6867 | 16100 | 0.0 | - |
|
496 |
+
| 0.6889 | 16150 | 0.004 | - |
|
497 |
+
| 0.6910 | 16200 | 0.0036 | - |
|
498 |
+
| 0.6931 | 16250 | 0.0 | - |
|
499 |
+
| 0.6953 | 16300 | 0.0 | - |
|
500 |
+
| 0.6974 | 16350 | 0.184 | - |
|
501 |
+
| 0.6995 | 16400 | 0.0 | - |
|
502 |
+
| 0.7017 | 16450 | 0.0133 | - |
|
503 |
+
| 0.7038 | 16500 | 0.0 | - |
|
504 |
+
| 0.7059 | 16550 | 0.174 | - |
|
505 |
+
| 0.7081 | 16600 | 0.0 | - |
|
506 |
+
| 0.7102 | 16650 | 0.0233 | - |
|
507 |
+
| 0.7123 | 16700 | 0.0117 | - |
|
508 |
+
| 0.7145 | 16750 | 0.0272 | - |
|
509 |
+
| 0.7166 | 16800 | 0.0095 | - |
|
510 |
+
| 0.7187 | 16850 | 0.0 | - |
|
511 |
+
| 0.7209 | 16900 | 0.1656 | - |
|
512 |
+
| 0.7230 | 16950 | 0.0055 | - |
|
513 |
+
| 0.7251 | 17000 | 0.0 | - |
|
514 |
+
| 0.7273 | 17050 | 0.1716 | - |
|
515 |
+
| 0.7294 | 17100 | 0.0 | - |
|
516 |
+
| 0.7315 | 17150 | 0.0 | - |
|
517 |
+
| 0.7337 | 17200 | 0.1035 | - |
|
518 |
+
| 0.7358 | 17250 | 0.0694 | - |
|
519 |
+
| 0.7379 | 17300 | 0.1733 | - |
|
520 |
+
| 0.7401 | 17350 | 0.0092 | - |
|
521 |
+
| 0.7422 | 17400 | 0.1656 | - |
|
522 |
+
| 0.7443 | 17450 | 0.0 | - |
|
523 |
+
| 0.7465 | 17500 | 0.1655 | - |
|
524 |
+
| 0.7486 | 17550 | 0.0059 | - |
|
525 |
+
| 0.7507 | 17600 | 0.1116 | - |
|
526 |
+
| 0.7529 | 17650 | 0.0 | - |
|
527 |
+
| 0.7550 | 17700 | 0.0068 | - |
|
528 |
+
| 0.7571 | 17750 | 0.0053 | - |
|
529 |
+
| 0.7593 | 17800 | 0.0 | - |
|
530 |
+
| 0.7614 | 17850 | 0.0062 | - |
|
531 |
+
| 0.7635 | 17900 | 0.0104 | - |
|
532 |
+
| 0.7657 | 17950 | 0.1727 | - |
|
533 |
+
| 0.7678 | 18000 | 0.0 | - |
|
534 |
+
| 0.7699 | 18050 | 0.0 | - |
|
535 |
+
| 0.7721 | 18100 | 0.0 | - |
|
536 |
+
| 0.7742 | 18150 | 0.0714 | - |
|
537 |
+
| 0.7763 | 18200 | 0.0 | - |
|
538 |
+
| 0.7785 | 18250 | 0.0 | - |
|
539 |
+
| 0.7806 | 18300 | 0.0002 | - |
|
540 |
+
| 0.7827 | 18350 | 0.0 | - |
|
541 |
+
| 0.7848 | 18400 | 0.0 | - |
|
542 |
+
| 0.7870 | 18450 | 0.0996 | - |
|
543 |
+
| 0.7891 | 18500 | 0.0 | - |
|
544 |
+
| 0.7912 | 18550 | 0.0 | - |
|
545 |
+
| 0.7934 | 18600 | 0.0139 | - |
|
546 |
+
| 0.7955 | 18650 | 0.0 | - |
|
547 |
+
| 0.7976 | 18700 | 0.1701 | - |
|
548 |
+
| 0.7998 | 18750 | 0.0 | - |
|
549 |
+
| 0.8019 | 18800 | 0.0001 | - |
|
550 |
+
| 0.8040 | 18850 | 0.0 | - |
|
551 |
+
| 0.8062 | 18900 | 0.0 | - |
|
552 |
+
| 0.8083 | 18950 | 0.0 | - |
|
553 |
+
| 0.8104 | 19000 | 0.0 | - |
|
554 |
+
| 0.8126 | 19050 | 0.0 | - |
|
555 |
+
| 0.8147 | 19100 | 0.1093 | - |
|
556 |
+
| 0.8168 | 19150 | 0.0 | - |
|
557 |
+
| 0.8190 | 19200 | 0.0 | - |
|
558 |
+
| 0.8211 | 19250 | 0.0075 | - |
|
559 |
+
| 0.8232 | 19300 | 0.1079 | - |
|
560 |
+
| 0.8254 | 19350 | 0.0112 | - |
|
561 |
+
| 0.8275 | 19400 | 0.1655 | - |
|
562 |
+
| 0.8296 | 19450 | 0.0152 | - |
|
563 |
+
| 0.8318 | 19500 | 0.1152 | - |
|
564 |
+
| 0.8339 | 19550 | 0.0 | - |
|
565 |
+
| 0.8360 | 19600 | 0.0 | - |
|
566 |
+
| 0.8382 | 19650 | 0.0079 | - |
|
567 |
+
| 0.8403 | 19700 | 0.0 | - |
|
568 |
+
| 0.8424 | 19750 | 0.0 | - |
|
569 |
+
| 0.8446 | 19800 | 0.0 | - |
|
570 |
+
| 0.8467 | 19850 | 0.0 | - |
|
571 |
+
| 0.8488 | 19900 | 0.1161 | - |
|
572 |
+
| 0.8510 | 19950 | 0.0057 | - |
|
573 |
+
| 0.8531 | 20000 | 0.0 | - |
|
574 |
+
| 0.8552 | 20050 | 0.0046 | - |
|
575 |
+
| 0.8574 | 20100 | 0.0 | - |
|
576 |
+
| 0.8595 | 20150 | 0.0068 | - |
|
577 |
+
| 0.8616 | 20200 | 0.0 | - |
|
578 |
+
| 0.8638 | 20250 | 0.0 | - |
|
579 |
+
| 0.8659 | 20300 | 0.0 | - |
|
580 |
+
| 0.8680 | 20350 | 0.0 | - |
|
581 |
+
| 0.8702 | 20400 | 0.0141 | - |
|
582 |
+
| 0.8723 | 20450 | 0.0001 | - |
|
583 |
+
| 0.8744 | 20500 | 0.0 | - |
|
584 |
+
| 0.8766 | 20550 | 0.0 | - |
|
585 |
+
| 0.8787 | 20600 | 0.0171 | - |
|
586 |
+
| 0.8808 | 20650 | 0.0 | - |
|
587 |
+
| 0.8830 | 20700 | 0.0 | - |
|
588 |
+
| 0.8851 | 20750 | 0.0077 | - |
|
589 |
+
| 0.8872 | 20800 | 0.0 | - |
|
590 |
+
| 0.8894 | 20850 | 0.0 | - |
|
591 |
+
| 0.8915 | 20900 | 0.0 | - |
|
592 |
+
| 0.8936 | 20950 | 0.0 | - |
|
593 |
+
| 0.8958 | 21000 | 0.0 | - |
|
594 |
+
| 0.8979 | 21050 | 0.0 | - |
|
595 |
+
| 0.9000 | 21100 | 0.0 | - |
|
596 |
+
| 0.9021 | 21150 | 0.0 | - |
|
597 |
+
| 0.9043 | 21200 | 0.0 | - |
|
598 |
+
| 0.9064 | 21250 | 0.1048 | - |
|
599 |
+
| 0.9085 | 21300 | 0.006 | - |
|
600 |
+
| 0.9107 | 21350 | 0.0 | - |
|
601 |
+
| 0.9128 | 21400 | 0.0 | - |
|
602 |
+
| 0.9149 | 21450 | 0.005 | - |
|
603 |
+
| 0.9171 | 21500 | 0.0 | - |
|
604 |
+
| 0.9192 | 21550 | 0.0325 | - |
|
605 |
+
| 0.9213 | 21600 | 0.0136 | - |
|
606 |
+
| 0.9235 | 21650 | 0.0 | - |
|
607 |
+
| 0.9256 | 21700 | 0.0062 | - |
|
608 |
+
| 0.9277 | 21750 | 0.1656 | - |
|
609 |
+
| 0.9299 | 21800 | 0.1648 | - |
|
610 |
+
| 0.9320 | 21850 | 0.0 | - |
|
611 |
+
| 0.9341 | 21900 | 0.0 | - |
|
612 |
+
| 0.9363 | 21950 | 0.0 | - |
|
613 |
+
| 0.9384 | 22000 | 0.2844 | - |
|
614 |
+
| 0.9405 | 22050 | 0.0 | - |
|
615 |
+
| 0.9427 | 22100 | 0.0 | - |
|
616 |
+
| 0.9448 | 22150 | 0.0 | - |
|
617 |
+
| 0.9469 | 22200 | 0.0 | - |
|
618 |
+
| 0.9491 | 22250 | 0.0 | - |
|
619 |
+
| 0.9512 | 22300 | 0.2096 | - |
|
620 |
+
| 0.9533 | 22350 | 0.0073 | - |
|
621 |
+
| 0.9555 | 22400 | 0.006 | - |
|
622 |
+
| 0.9576 | 22450 | 0.0 | - |
|
623 |
+
| 0.9597 | 22500 | 0.0079 | - |
|
624 |
+
| 0.9619 | 22550 | 0.0071 | - |
|
625 |
+
| 0.9640 | 22600 | 0.0 | - |
|
626 |
+
| 0.9661 | 22650 | 0.006 | - |
|
627 |
+
| 0.9683 | 22700 | 0.1048 | - |
|
628 |
+
| 0.9704 | 22750 | 0.007 | - |
|
629 |
+
| 0.9725 | 22800 | 0.0 | - |
|
630 |
+
| 0.9747 | 22850 | 0.0 | - |
|
631 |
+
| 0.9768 | 22900 | 0.007 | - |
|
632 |
+
| 0.9789 | 22950 | 0.0 | - |
|
633 |
+
| 0.9811 | 23000 | 0.1049 | - |
|
634 |
+
| 0.9832 | 23050 | 0.0069 | - |
|
635 |
+
| 0.9853 | 23100 | 0.0 | - |
|
636 |
+
| 0.9875 | 23150 | 0.0 | - |
|
637 |
+
| 0.9896 | 23200 | 0.0 | - |
|
638 |
+
| 0.9917 | 23250 | 0.0 | - |
|
639 |
+
| 0.9939 | 23300 | 0.007 | - |
|
640 |
+
| 0.9960 | 23350 | 0.0147 | - |
|
641 |
+
| 0.9981 | 23400 | 0.0 | - |
|
642 |
+
|
643 |
+
### Framework Versions
|
644 |
+
- Python: 3.10.13
|
645 |
+
- SetFit: 1.0.3
|
646 |
+
- Sentence Transformers: 2.7.0
|
647 |
+
- spaCy: 3.7.4
|
648 |
+
- Transformers: 4.36.2
|
649 |
+
- PyTorch: 2.1.2
|
650 |
+
- Datasets: 2.18.0
|
651 |
+
- Tokenizers: 0.15.2
|
652 |
+
|
653 |
+
## Citation
|
654 |
+
|
655 |
+
### BibTeX
|
656 |
+
```bibtex
|
657 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
658 |
+
doi = {10.48550/ARXIV.2209.11055},
|
659 |
+
url = {https://arxiv.org/abs/2209.11055},
|
660 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
661 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
662 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
663 |
+
publisher = {arXiv},
|
664 |
+
year = {2022},
|
665 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
666 |
+
}
|
667 |
+
```
|
668 |
+
|
669 |
+
<!--
|
670 |
+
## Glossary
|
671 |
+
|
672 |
+
*Clearly define terms in order to be accessible across audiences.*
|
673 |
+
-->
|
674 |
+
|
675 |
+
<!--
|
676 |
+
## Model Card Authors
|
677 |
+
|
678 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
679 |
+
-->
|
680 |
+
|
681 |
+
<!--
|
682 |
+
## Model Card Contact
|
683 |
+
|
684 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
685 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-aspect",
|
3 |
+
"_num_labels": 5,
|
4 |
+
"architectures": [
|
5 |
+
"BertModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"directionality": "bidi",
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4"
|
19 |
+
},
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"label2id": {
|
23 |
+
"LABEL_0": 0,
|
24 |
+
"LABEL_1": 1,
|
25 |
+
"LABEL_2": 2,
|
26 |
+
"LABEL_3": 3,
|
27 |
+
"LABEL_4": 4
|
28 |
+
},
|
29 |
+
"layer_norm_eps": 1e-12,
|
30 |
+
"max_position_embeddings": 512,
|
31 |
+
"model_type": "bert",
|
32 |
+
"num_attention_heads": 12,
|
33 |
+
"num_hidden_layers": 12,
|
34 |
+
"output_past": true,
|
35 |
+
"pad_token_id": 0,
|
36 |
+
"pooler_fc_size": 768,
|
37 |
+
"pooler_num_attention_heads": 12,
|
38 |
+
"pooler_num_fc_layers": 3,
|
39 |
+
"pooler_size_per_head": 128,
|
40 |
+
"pooler_type": "first_token_transform",
|
41 |
+
"position_embedding_type": "absolute",
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.36.2",
|
44 |
+
"type_vocab_size": 2,
|
45 |
+
"use_cache": true,
|
46 |
+
"vocab_size": 50000
|
47 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.20.1",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"spacy_model": "id_core_news_trf",
|
3 |
+
"normalize_embeddings": false,
|
4 |
+
"labels": [
|
5 |
+
"no aspect",
|
6 |
+
"aspect"
|
7 |
+
],
|
8 |
+
"span_context": 0
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d76329740c3ee73b309c6ba37d70785ba71c1d8e31059fcb23a1db19cd1b0ec2
|
3 |
+
size 497787752
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba0b442521c86f62eb81b979efbff33f2e73ca24e654a11f9a7327e828b6a920
|
3 |
+
size 6991
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|