pahri commited on
Commit
bbdb9e5
1 Parent(s): 35aec36

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,685 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: Suasana:Tempatnya ramai sekali dan ngantei banget. Suasana di dalam resto
13
+ sangat panas dan padat. Makanannya enak enak.
14
+ - text: bener2 pedes puolll:Rasanya sgt gak cocok dilidah gue orang bekasi.. ayamnya
15
+ ayam kampung sih tp kecil bgt (beli yg dada).. terus tempe bacem sgt padet dan
16
+ tahunya enak sih.. untuk sambel pedes bgt bener2 pedes puolll, tp rasanya gasukaa.
17
+ - text: gang:Suasana di dalam resto sangat panas dan padat. Makanannya enak enak.
18
+ Dan restonya ada di beberapa tempat dalam satu gang.
19
+ - text: tempe:Menu makanannya khas Sunda ada ayam, pepes ikan, babat, tahu, tempe,
20
+ sayur-sayur. Tidak banyak variasinya tapi kualitas rasanya oke. Saat itu pesen
21
+ ayam bakar, jukut goreng, tempe sama pepes tahu. Ini semuanya enak (menurut pendapat
22
+ pribadi).
23
+ - text: 'babat:Kemaren kebetulan makan babat sama nyobain cumi, buat tekstur babatnya
24
+ itu engga alot sama sekali dan tidak amis, sedangkan buat cumi utuh lumayan gede
25
+ juga tekstur kenyel kenyelnya dapet dan mateng juga sampe ke dalem. '
26
+ pipeline_tag: text-classification
27
+ inference: false
28
+ model-index:
29
+ - name: SetFit Aspect Model
30
+ results:
31
+ - task:
32
+ type: text-classification
33
+ name: Text Classification
34
+ dataset:
35
+ name: Unknown
36
+ type: unknown
37
+ split: test
38
+ metrics:
39
+ - type: accuracy
40
+ value: 0.80625
41
+ name: Accuracy
42
+ ---
43
+
44
+ # SetFit Aspect Model
45
+
46
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
47
+
48
+ The model has been trained using an efficient few-shot learning technique that involves:
49
+
50
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
51
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
52
+
53
+ This model was trained within the context of a larger system for ABSA, which looks like so:
54
+
55
+ 1. Use a spaCy model to select possible aspect span candidates.
56
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
57
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
58
+
59
+ ## Model Details
60
+
61
+ ### Model Description
62
+ - **Model Type:** SetFit
63
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
64
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
65
+ - **spaCy Model:** id_core_news_trf
66
+ - **SetFitABSA Aspect Model:** [pahri/setfit-indo-resto-RM-ibu-imas-aspect](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-aspect)
67
+ - **SetFitABSA Polarity Model:** [pahri/setfit-indo-resto-RM-ibu-imas-polarity](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-polarity)
68
+ - **Maximum Sequence Length:** 512 tokens
69
+ - **Number of Classes:** 2 classes
70
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
71
+ <!-- - **Language:** Unknown -->
72
+ <!-- - **License:** Unknown -->
73
+
74
+ ### Model Sources
75
+
76
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
77
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
78
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
79
+
80
+ ### Model Labels
81
+ | Label | Examples |
82
+ |:----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
83
+ | no aspect | <ul><li>'ambel leuncanya:ambel leuncanya enak terus pedesss'</li><li>'Warung Sunda:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li><li>'makanannya:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li></ul> |
84
+ | aspect | <ul><li>'ayam bakar:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li><li>'Ayam bakar:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li><li>'sambel terasi merah:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li></ul> |
85
+
86
+ ## Evaluation
87
+
88
+ ### Metrics
89
+ | Label | Accuracy |
90
+ |:--------|:---------|
91
+ | **all** | 0.8063 |
92
+
93
+ ## Uses
94
+
95
+ ### Direct Use for Inference
96
+
97
+ First install the SetFit library:
98
+
99
+ ```bash
100
+ pip install setfit
101
+ ```
102
+
103
+ Then you can load this model and run inference.
104
+
105
+ ```python
106
+ from setfit import AbsaModel
107
+
108
+ # Download from the 🤗 Hub
109
+ model = AbsaModel.from_pretrained(
110
+ "pahri/setfit-indo-resto-RM-ibu-imas-aspect",
111
+ "pahri/setfit-indo-resto-RM-ibu-imas-polarity",
112
+ )
113
+ # Run inference
114
+ preds = model("The food was great, but the venue is just way too busy.")
115
+ ```
116
+
117
+ <!--
118
+ ### Downstream Use
119
+
120
+ *List how someone could finetune this model on their own dataset.*
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Set Metrics
144
+ | Training set | Min | Median | Max |
145
+ |:-------------|:----|:--------|:----|
146
+ | Word count | 4 | 37.7180 | 93 |
147
+
148
+ | Label | Training Sample Count |
149
+ |:----------|:----------------------|
150
+ | no aspect | 371 |
151
+ | aspect | 51 |
152
+
153
+ ### Training Hyperparameters
154
+ - batch_size: (6, 6)
155
+ - num_epochs: (1, 16)
156
+ - max_steps: -1
157
+ - sampling_strategy: oversampling
158
+ - body_learning_rate: (2e-05, 1e-05)
159
+ - head_learning_rate: 0.01
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: True
165
+ - warmup_proportion: 0.1
166
+ - seed: 42
167
+ - eval_max_steps: -1
168
+ - load_best_model_at_end: False
169
+
170
+ ### Training Results
171
+ | Epoch | Step | Training Loss | Validation Loss |
172
+ |:------:|:-----:|:-------------:|:---------------:|
173
+ | 0.0000 | 1 | 0.4225 | - |
174
+ | 0.0021 | 50 | 0.2528 | - |
175
+ | 0.0043 | 100 | 0.3611 | - |
176
+ | 0.0064 | 150 | 0.2989 | - |
177
+ | 0.0085 | 200 | 0.2907 | - |
178
+ | 0.0107 | 250 | 0.1609 | - |
179
+ | 0.0128 | 300 | 0.3534 | - |
180
+ | 0.0149 | 350 | 0.1294 | - |
181
+ | 0.0171 | 400 | 0.2797 | - |
182
+ | 0.0192 | 450 | 0.3119 | - |
183
+ | 0.0213 | 500 | 0.004 | - |
184
+ | 0.0235 | 550 | 0.1057 | - |
185
+ | 0.0256 | 600 | 0.1049 | - |
186
+ | 0.0277 | 650 | 0.1601 | - |
187
+ | 0.0299 | 700 | 0.151 | - |
188
+ | 0.0320 | 750 | 0.1034 | - |
189
+ | 0.0341 | 800 | 0.2356 | - |
190
+ | 0.0363 | 850 | 0.1335 | - |
191
+ | 0.0384 | 900 | 0.0559 | - |
192
+ | 0.0405 | 950 | 0.0028 | - |
193
+ | 0.0427 | 1000 | 0.1307 | - |
194
+ | 0.0448 | 1050 | 0.0049 | - |
195
+ | 0.0469 | 1100 | 0.1348 | - |
196
+ | 0.0491 | 1150 | 0.0392 | - |
197
+ | 0.0512 | 1200 | 0.054 | - |
198
+ | 0.0533 | 1250 | 0.0016 | - |
199
+ | 0.0555 | 1300 | 0.0012 | - |
200
+ | 0.0576 | 1350 | 0.0414 | - |
201
+ | 0.0597 | 1400 | 0.1087 | - |
202
+ | 0.0618 | 1450 | 0.0464 | - |
203
+ | 0.0640 | 1500 | 0.0095 | - |
204
+ | 0.0661 | 1550 | 0.0011 | - |
205
+ | 0.0682 | 1600 | 0.0002 | - |
206
+ | 0.0704 | 1650 | 0.1047 | - |
207
+ | 0.0725 | 1700 | 0.001 | - |
208
+ | 0.0746 | 1750 | 0.0965 | - |
209
+ | 0.0768 | 1800 | 0.0002 | - |
210
+ | 0.0789 | 1850 | 0.1436 | - |
211
+ | 0.0810 | 1900 | 0.0011 | - |
212
+ | 0.0832 | 1950 | 0.001 | - |
213
+ | 0.0853 | 2000 | 0.1765 | - |
214
+ | 0.0874 | 2050 | 0.1401 | - |
215
+ | 0.0896 | 2100 | 0.0199 | - |
216
+ | 0.0917 | 2150 | 0.0 | - |
217
+ | 0.0938 | 2200 | 0.0023 | - |
218
+ | 0.0960 | 2250 | 0.0034 | - |
219
+ | 0.0981 | 2300 | 0.0001 | - |
220
+ | 0.1002 | 2350 | 0.0948 | - |
221
+ | 0.1024 | 2400 | 0.1634 | - |
222
+ | 0.1045 | 2450 | 0.0 | - |
223
+ | 0.1066 | 2500 | 0.0005 | - |
224
+ | 0.1088 | 2550 | 0.0695 | - |
225
+ | 0.1109 | 2600 | 0.0 | - |
226
+ | 0.1130 | 2650 | 0.0067 | - |
227
+ | 0.1152 | 2700 | 0.0025 | - |
228
+ | 0.1173 | 2750 | 0.0013 | - |
229
+ | 0.1194 | 2800 | 0.1426 | - |
230
+ | 0.1216 | 2850 | 0.0001 | - |
231
+ | 0.1237 | 2900 | 0.0 | - |
232
+ | 0.1258 | 2950 | 0.0 | - |
233
+ | 0.1280 | 3000 | 0.0001 | - |
234
+ | 0.1301 | 3050 | 0.0001 | - |
235
+ | 0.1322 | 3100 | 0.0122 | - |
236
+ | 0.1344 | 3150 | 0.0 | - |
237
+ | 0.1365 | 3200 | 0.0001 | - |
238
+ | 0.1386 | 3250 | 0.0041 | - |
239
+ | 0.1408 | 3300 | 0.2549 | - |
240
+ | 0.1429 | 3350 | 0.0062 | - |
241
+ | 0.1450 | 3400 | 0.0154 | - |
242
+ | 0.1472 | 3450 | 0.1776 | - |
243
+ | 0.1493 | 3500 | 0.0039 | - |
244
+ | 0.1514 | 3550 | 0.0183 | - |
245
+ | 0.1536 | 3600 | 0.0045 | - |
246
+ | 0.1557 | 3650 | 0.1108 | - |
247
+ | 0.1578 | 3700 | 0.0002 | - |
248
+ | 0.1600 | 3750 | 0.01 | - |
249
+ | 0.1621 | 3800 | 0.0002 | - |
250
+ | 0.1642 | 3850 | 0.0001 | - |
251
+ | 0.1664 | 3900 | 0.1612 | - |
252
+ | 0.1685 | 3950 | 0.0107 | - |
253
+ | 0.1706 | 4000 | 0.0548 | - |
254
+ | 0.1728 | 4050 | 0.0001 | - |
255
+ | 0.1749 | 4100 | 0.0162 | - |
256
+ | 0.1770 | 4150 | 0.1294 | - |
257
+ | 0.1792 | 4200 | 0.0 | - |
258
+ | 0.1813 | 4250 | 0.0032 | - |
259
+ | 0.1834 | 4300 | 0.0051 | - |
260
+ | 0.1855 | 4350 | 0.0 | - |
261
+ | 0.1877 | 4400 | 0.0151 | - |
262
+ | 0.1898 | 4450 | 0.0097 | - |
263
+ | 0.1919 | 4500 | 0.0002 | - |
264
+ | 0.1941 | 4550 | 0.0045 | - |
265
+ | 0.1962 | 4600 | 0.0001 | - |
266
+ | 0.1983 | 4650 | 0.0001 | - |
267
+ | 0.2005 | 4700 | 0.0227 | - |
268
+ | 0.2026 | 4750 | 0.0018 | - |
269
+ | 0.2047 | 4800 | 0.0 | - |
270
+ | 0.2069 | 4850 | 0.0001 | - |
271
+ | 0.2090 | 4900 | 0.0 | - |
272
+ | 0.2111 | 4950 | 0.0 | - |
273
+ | 0.2133 | 5000 | 0.0 | - |
274
+ | 0.2154 | 5050 | 0.0002 | - |
275
+ | 0.2175 | 5100 | 0.0002 | - |
276
+ | 0.2197 | 5150 | 0.0038 | - |
277
+ | 0.2218 | 5200 | 0.0 | - |
278
+ | 0.2239 | 5250 | 0.0 | - |
279
+ | 0.2261 | 5300 | 0.0 | - |
280
+ | 0.2282 | 5350 | 0.0028 | - |
281
+ | 0.2303 | 5400 | 0.0 | - |
282
+ | 0.2325 | 5450 | 0.1146 | - |
283
+ | 0.2346 | 5500 | 0.0 | - |
284
+ | 0.2367 | 5550 | 0.0073 | - |
285
+ | 0.2389 | 5600 | 0.0467 | - |
286
+ | 0.2410 | 5650 | 0.0092 | - |
287
+ | 0.2431 | 5700 | 0.0196 | - |
288
+ | 0.2453 | 5750 | 0.0002 | - |
289
+ | 0.2474 | 5800 | 0.0043 | - |
290
+ | 0.2495 | 5850 | 0.0378 | - |
291
+ | 0.2517 | 5900 | 0.0049 | - |
292
+ | 0.2538 | 5950 | 0.0054 | - |
293
+ | 0.2559 | 6000 | 0.1757 | - |
294
+ | 0.2581 | 6050 | 0.0 | - |
295
+ | 0.2602 | 6100 | 0.0001 | - |
296
+ | 0.2623 | 6150 | 0.1327 | - |
297
+ | 0.2645 | 6200 | 0.0 | - |
298
+ | 0.2666 | 6250 | 0.0 | - |
299
+ | 0.2687 | 6300 | 0.0 | - |
300
+ | 0.2709 | 6350 | 0.0134 | - |
301
+ | 0.2730 | 6400 | 0.0001 | - |
302
+ | 0.2751 | 6450 | 0.0112 | - |
303
+ | 0.2773 | 6500 | 0.0864 | - |
304
+ | 0.2794 | 6550 | 0.0 | - |
305
+ | 0.2815 | 6600 | 0.0094 | - |
306
+ | 0.2837 | 6650 | 0.1358 | - |
307
+ | 0.2858 | 6700 | 0.0155 | - |
308
+ | 0.2879 | 6750 | 0.0025 | - |
309
+ | 0.2901 | 6800 | 0.0002 | - |
310
+ | 0.2922 | 6850 | 0.0001 | - |
311
+ | 0.2943 | 6900 | 0.2809 | - |
312
+ | 0.2965 | 6950 | 0.0 | - |
313
+ | 0.2986 | 7000 | 0.0242 | - |
314
+ | 0.3007 | 7050 | 0.0015 | - |
315
+ | 0.3028 | 7100 | 0.0 | - |
316
+ | 0.3050 | 7150 | 0.1064 | - |
317
+ | 0.3071 | 7200 | 0.1636 | - |
318
+ | 0.3092 | 7250 | 0.267 | - |
319
+ | 0.3114 | 7300 | 0.1656 | - |
320
+ | 0.3135 | 7350 | 0.0943 | - |
321
+ | 0.3156 | 7400 | 0.189 | - |
322
+ | 0.3178 | 7450 | 0.0055 | - |
323
+ | 0.3199 | 7500 | 0.1286 | - |
324
+ | 0.3220 | 7550 | 0.1062 | - |
325
+ | 0.3242 | 7600 | 0.1275 | - |
326
+ | 0.3263 | 7650 | 0.0101 | - |
327
+ | 0.3284 | 7700 | 0.0162 | - |
328
+ | 0.3306 | 7750 | 0.0001 | - |
329
+ | 0.3327 | 7800 | 0.0001 | - |
330
+ | 0.3348 | 7850 | 0.0003 | - |
331
+ | 0.3370 | 7900 | 0.0 | - |
332
+ | 0.3391 | 7950 | 0.135 | - |
333
+ | 0.3412 | 8000 | 0.0 | - |
334
+ | 0.3434 | 8050 | 0.0125 | - |
335
+ | 0.3455 | 8100 | 0.0004 | - |
336
+ | 0.3476 | 8150 | 0.0 | - |
337
+ | 0.3498 | 8200 | 0.2229 | - |
338
+ | 0.3519 | 8250 | 0.0 | - |
339
+ | 0.3540 | 8300 | 0.0051 | - |
340
+ | 0.3562 | 8350 | 0.0 | - |
341
+ | 0.3583 | 8400 | 0.0001 | - |
342
+ | 0.3604 | 8450 | 0.0 | - |
343
+ | 0.3626 | 8500 | 0.1261 | - |
344
+ | 0.3647 | 8550 | 0.0054 | - |
345
+ | 0.3668 | 8600 | 0.1636 | - |
346
+ | 0.3690 | 8650 | 0.0036 | - |
347
+ | 0.3711 | 8700 | 0.0 | - |
348
+ | 0.3732 | 8750 | 0.0027 | - |
349
+ | 0.3754 | 8800 | 0.0 | - |
350
+ | 0.3775 | 8850 | 0.1422 | - |
351
+ | 0.3796 | 8900 | 0.1314 | - |
352
+ | 0.3818 | 8950 | 0.003 | - |
353
+ | 0.3839 | 9000 | 0.0 | - |
354
+ | 0.3860 | 9050 | 0.0092 | - |
355
+ | 0.3882 | 9100 | 0.0129 | - |
356
+ | 0.3903 | 9150 | 0.0 | - |
357
+ | 0.3924 | 9200 | 0.0 | - |
358
+ | 0.3946 | 9250 | 0.1659 | - |
359
+ | 0.3967 | 9300 | 0.0 | - |
360
+ | 0.3988 | 9350 | 0.0 | - |
361
+ | 0.4010 | 9400 | 0.0085 | - |
362
+ | 0.4031 | 9450 | 0.0 | - |
363
+ | 0.4052 | 9500 | 0.0 | - |
364
+ | 0.4074 | 9550 | 0.0 | - |
365
+ | 0.4095 | 9600 | 0.0112 | - |
366
+ | 0.4116 | 9650 | 0.0 | - |
367
+ | 0.4138 | 9700 | 0.0154 | - |
368
+ | 0.4159 | 9750 | 0.0011 | - |
369
+ | 0.4180 | 9800 | 0.0077 | - |
370
+ | 0.4202 | 9850 | 0.0064 | - |
371
+ | 0.4223 | 9900 | 0.0 | - |
372
+ | 0.4244 | 9950 | 0.0 | - |
373
+ | 0.4265 | 10000 | 0.0121 | - |
374
+ | 0.4287 | 10050 | 0.0 | - |
375
+ | 0.4308 | 10100 | 0.0 | - |
376
+ | 0.4329 | 10150 | 0.0076 | - |
377
+ | 0.4351 | 10200 | 0.0039 | - |
378
+ | 0.4372 | 10250 | 0.2153 | - |
379
+ | 0.4393 | 10300 | 0.0 | - |
380
+ | 0.4415 | 10350 | 0.1218 | - |
381
+ | 0.4436 | 10400 | 0.0077 | - |
382
+ | 0.4457 | 10450 | 0.1311 | - |
383
+ | 0.4479 | 10500 | 0.0 | - |
384
+ | 0.4500 | 10550 | 0.0 | - |
385
+ | 0.4521 | 10600 | 0.0 | - |
386
+ | 0.4543 | 10650 | 0.0041 | - |
387
+ | 0.4564 | 10700 | 0.0073 | - |
388
+ | 0.4585 | 10750 | 0.0051 | - |
389
+ | 0.4607 | 10800 | 0.0 | - |
390
+ | 0.4628 | 10850 | 0.0 | - |
391
+ | 0.4649 | 10900 | 0.0 | - |
392
+ | 0.4671 | 10950 | 0.0001 | - |
393
+ | 0.4692 | 11000 | 0.0 | - |
394
+ | 0.4713 | 11050 | 0.1696 | - |
395
+ | 0.4735 | 11100 | 0.0 | - |
396
+ | 0.4756 | 11150 | 0.1243 | - |
397
+ | 0.4777 | 11200 | 0.0 | - |
398
+ | 0.4799 | 11250 | 0.0 | - |
399
+ | 0.4820 | 11300 | 0.0003 | - |
400
+ | 0.4841 | 11350 | 0.0707 | - |
401
+ | 0.4863 | 11400 | 0.166 | - |
402
+ | 0.4884 | 11450 | 0.4964 | - |
403
+ | 0.4905 | 11500 | 0.0023 | - |
404
+ | 0.4927 | 11550 | 0.0 | - |
405
+ | 0.4948 | 11600 | 0.0 | - |
406
+ | 0.4969 | 11650 | 0.173 | - |
407
+ | 0.4991 | 11700 | 0.0 | - |
408
+ | 0.5012 | 11750 | 0.0004 | - |
409
+ | 0.5033 | 11800 | 0.0 | - |
410
+ | 0.5055 | 11850 | 0.125 | - |
411
+ | 0.5076 | 11900 | 0.0042 | - |
412
+ | 0.5097 | 11950 | 0.012 | - |
413
+ | 0.5119 | 12000 | 0.0046 | - |
414
+ | 0.5140 | 12050 | 0.0001 | - |
415
+ | 0.5161 | 12100 | 0.0062 | - |
416
+ | 0.5183 | 12150 | 0.0 | - |
417
+ | 0.5204 | 12200 | 0.017 | - |
418
+ | 0.5225 | 12250 | 0.2668 | - |
419
+ | 0.5247 | 12300 | 0.0986 | - |
420
+ | 0.5268 | 12350 | 0.0071 | - |
421
+ | 0.5289 | 12400 | 0.0055 | - |
422
+ | 0.5311 | 12450 | 0.006 | - |
423
+ | 0.5332 | 12500 | 0.0057 | - |
424
+ | 0.5353 | 12550 | 0.0044 | - |
425
+ | 0.5375 | 12600 | 0.0039 | - |
426
+ | 0.5396 | 12650 | 0.1685 | - |
427
+ | 0.5417 | 12700 | 0.125 | - |
428
+ | 0.5438 | 12750 | 0.0026 | - |
429
+ | 0.5460 | 12800 | 0.0 | - |
430
+ | 0.5481 | 12850 | 0.0 | - |
431
+ | 0.5502 | 12900 | 0.1024 | - |
432
+ | 0.5524 | 12950 | 0.0 | - |
433
+ | 0.5545 | 13000 | 0.0 | - |
434
+ | 0.5566 | 13050 | 0.0083 | - |
435
+ | 0.5588 | 13100 | 0.0 | - |
436
+ | 0.5609 | 13150 | 0.0001 | - |
437
+ | 0.5630 | 13200 | 0.0 | - |
438
+ | 0.5652 | 13250 | 0.095 | - |
439
+ | 0.5673 | 13300 | 0.0001 | - |
440
+ | 0.5694 | 13350 | 0.0026 | - |
441
+ | 0.5716 | 13400 | 0.0 | - |
442
+ | 0.5737 | 13450 | 0.0041 | - |
443
+ | 0.5758 | 13500 | 0.1654 | - |
444
+ | 0.5780 | 13550 | 0.0003 | - |
445
+ | 0.5801 | 13600 | 0.0056 | - |
446
+ | 0.5822 | 13650 | 0.0 | - |
447
+ | 0.5844 | 13700 | 0.1012 | - |
448
+ | 0.5865 | 13750 | 0.0 | - |
449
+ | 0.5886 | 13800 | 0.0001 | - |
450
+ | 0.5908 | 13850 | 0.0042 | - |
451
+ | 0.5929 | 13900 | 0.0122 | - |
452
+ | 0.5950 | 13950 | 0.1047 | - |
453
+ | 0.5972 | 14000 | 0.0 | - |
454
+ | 0.5993 | 14050 | 0.0121 | - |
455
+ | 0.6014 | 14100 | 0.0 | - |
456
+ | 0.6036 | 14150 | 0.0 | - |
457
+ | 0.6057 | 14200 | 0.0 | - |
458
+ | 0.6078 | 14250 | 0.0105 | - |
459
+ | 0.6100 | 14300 | 0.0 | - |
460
+ | 0.6121 | 14350 | 0.011 | - |
461
+ | 0.6142 | 14400 | 0.0329 | - |
462
+ | 0.6164 | 14450 | 0.0942 | - |
463
+ | 0.6185 | 14500 | 0.0173 | - |
464
+ | 0.6206 | 14550 | 0.0 | - |
465
+ | 0.6228 | 14600 | 0.1032 | - |
466
+ | 0.6249 | 14650 | 0.016 | - |
467
+ | 0.6270 | 14700 | 0.0079 | - |
468
+ | 0.6292 | 14750 | 0.0 | - |
469
+ | 0.6313 | 14800 | 0.1088 | - |
470
+ | 0.6334 | 14850 | 0.0091 | - |
471
+ | 0.6356 | 14900 | 0.0039 | - |
472
+ | 0.6377 | 14950 | 0.0 | - |
473
+ | 0.6398 | 15000 | 0.0 | - |
474
+ | 0.6420 | 15050 | 0.0 | - |
475
+ | 0.6441 | 15100 | 0.1654 | - |
476
+ | 0.6462 | 15150 | 0.0 | - |
477
+ | 0.6484 | 15200 | 0.0002 | - |
478
+ | 0.6505 | 15250 | 0.0 | - |
479
+ | 0.6526 | 15300 | 0.1745 | - |
480
+ | 0.6548 | 15350 | 0.0 | - |
481
+ | 0.6569 | 15400 | 0.156 | - |
482
+ | 0.6590 | 15450 | 0.0 | - |
483
+ | 0.6611 | 15500 | 0.0 | - |
484
+ | 0.6633 | 15550 | 0.1755 | - |
485
+ | 0.6654 | 15600 | 0.008 | - |
486
+ | 0.6675 | 15650 | 0.0 | - |
487
+ | 0.6697 | 15700 | 0.0 | - |
488
+ | 0.6718 | 15750 | 0.0041 | - |
489
+ | 0.6739 | 15800 | 0.0037 | - |
490
+ | 0.6761 | 15850 | 0.0 | - |
491
+ | 0.6782 | 15900 | 0.0 | - |
492
+ | 0.6803 | 15950 | 0.0092 | - |
493
+ | 0.6825 | 16000 | 0.0071 | - |
494
+ | 0.6846 | 16050 | 0.0053 | - |
495
+ | 0.6867 | 16100 | 0.0 | - |
496
+ | 0.6889 | 16150 | 0.004 | - |
497
+ | 0.6910 | 16200 | 0.0036 | - |
498
+ | 0.6931 | 16250 | 0.0 | - |
499
+ | 0.6953 | 16300 | 0.0 | - |
500
+ | 0.6974 | 16350 | 0.184 | - |
501
+ | 0.6995 | 16400 | 0.0 | - |
502
+ | 0.7017 | 16450 | 0.0133 | - |
503
+ | 0.7038 | 16500 | 0.0 | - |
504
+ | 0.7059 | 16550 | 0.174 | - |
505
+ | 0.7081 | 16600 | 0.0 | - |
506
+ | 0.7102 | 16650 | 0.0233 | - |
507
+ | 0.7123 | 16700 | 0.0117 | - |
508
+ | 0.7145 | 16750 | 0.0272 | - |
509
+ | 0.7166 | 16800 | 0.0095 | - |
510
+ | 0.7187 | 16850 | 0.0 | - |
511
+ | 0.7209 | 16900 | 0.1656 | - |
512
+ | 0.7230 | 16950 | 0.0055 | - |
513
+ | 0.7251 | 17000 | 0.0 | - |
514
+ | 0.7273 | 17050 | 0.1716 | - |
515
+ | 0.7294 | 17100 | 0.0 | - |
516
+ | 0.7315 | 17150 | 0.0 | - |
517
+ | 0.7337 | 17200 | 0.1035 | - |
518
+ | 0.7358 | 17250 | 0.0694 | - |
519
+ | 0.7379 | 17300 | 0.1733 | - |
520
+ | 0.7401 | 17350 | 0.0092 | - |
521
+ | 0.7422 | 17400 | 0.1656 | - |
522
+ | 0.7443 | 17450 | 0.0 | - |
523
+ | 0.7465 | 17500 | 0.1655 | - |
524
+ | 0.7486 | 17550 | 0.0059 | - |
525
+ | 0.7507 | 17600 | 0.1116 | - |
526
+ | 0.7529 | 17650 | 0.0 | - |
527
+ | 0.7550 | 17700 | 0.0068 | - |
528
+ | 0.7571 | 17750 | 0.0053 | - |
529
+ | 0.7593 | 17800 | 0.0 | - |
530
+ | 0.7614 | 17850 | 0.0062 | - |
531
+ | 0.7635 | 17900 | 0.0104 | - |
532
+ | 0.7657 | 17950 | 0.1727 | - |
533
+ | 0.7678 | 18000 | 0.0 | - |
534
+ | 0.7699 | 18050 | 0.0 | - |
535
+ | 0.7721 | 18100 | 0.0 | - |
536
+ | 0.7742 | 18150 | 0.0714 | - |
537
+ | 0.7763 | 18200 | 0.0 | - |
538
+ | 0.7785 | 18250 | 0.0 | - |
539
+ | 0.7806 | 18300 | 0.0002 | - |
540
+ | 0.7827 | 18350 | 0.0 | - |
541
+ | 0.7848 | 18400 | 0.0 | - |
542
+ | 0.7870 | 18450 | 0.0996 | - |
543
+ | 0.7891 | 18500 | 0.0 | - |
544
+ | 0.7912 | 18550 | 0.0 | - |
545
+ | 0.7934 | 18600 | 0.0139 | - |
546
+ | 0.7955 | 18650 | 0.0 | - |
547
+ | 0.7976 | 18700 | 0.1701 | - |
548
+ | 0.7998 | 18750 | 0.0 | - |
549
+ | 0.8019 | 18800 | 0.0001 | - |
550
+ | 0.8040 | 18850 | 0.0 | - |
551
+ | 0.8062 | 18900 | 0.0 | - |
552
+ | 0.8083 | 18950 | 0.0 | - |
553
+ | 0.8104 | 19000 | 0.0 | - |
554
+ | 0.8126 | 19050 | 0.0 | - |
555
+ | 0.8147 | 19100 | 0.1093 | - |
556
+ | 0.8168 | 19150 | 0.0 | - |
557
+ | 0.8190 | 19200 | 0.0 | - |
558
+ | 0.8211 | 19250 | 0.0075 | - |
559
+ | 0.8232 | 19300 | 0.1079 | - |
560
+ | 0.8254 | 19350 | 0.0112 | - |
561
+ | 0.8275 | 19400 | 0.1655 | - |
562
+ | 0.8296 | 19450 | 0.0152 | - |
563
+ | 0.8318 | 19500 | 0.1152 | - |
564
+ | 0.8339 | 19550 | 0.0 | - |
565
+ | 0.8360 | 19600 | 0.0 | - |
566
+ | 0.8382 | 19650 | 0.0079 | - |
567
+ | 0.8403 | 19700 | 0.0 | - |
568
+ | 0.8424 | 19750 | 0.0 | - |
569
+ | 0.8446 | 19800 | 0.0 | - |
570
+ | 0.8467 | 19850 | 0.0 | - |
571
+ | 0.8488 | 19900 | 0.1161 | - |
572
+ | 0.8510 | 19950 | 0.0057 | - |
573
+ | 0.8531 | 20000 | 0.0 | - |
574
+ | 0.8552 | 20050 | 0.0046 | - |
575
+ | 0.8574 | 20100 | 0.0 | - |
576
+ | 0.8595 | 20150 | 0.0068 | - |
577
+ | 0.8616 | 20200 | 0.0 | - |
578
+ | 0.8638 | 20250 | 0.0 | - |
579
+ | 0.8659 | 20300 | 0.0 | - |
580
+ | 0.8680 | 20350 | 0.0 | - |
581
+ | 0.8702 | 20400 | 0.0141 | - |
582
+ | 0.8723 | 20450 | 0.0001 | - |
583
+ | 0.8744 | 20500 | 0.0 | - |
584
+ | 0.8766 | 20550 | 0.0 | - |
585
+ | 0.8787 | 20600 | 0.0171 | - |
586
+ | 0.8808 | 20650 | 0.0 | - |
587
+ | 0.8830 | 20700 | 0.0 | - |
588
+ | 0.8851 | 20750 | 0.0077 | - |
589
+ | 0.8872 | 20800 | 0.0 | - |
590
+ | 0.8894 | 20850 | 0.0 | - |
591
+ | 0.8915 | 20900 | 0.0 | - |
592
+ | 0.8936 | 20950 | 0.0 | - |
593
+ | 0.8958 | 21000 | 0.0 | - |
594
+ | 0.8979 | 21050 | 0.0 | - |
595
+ | 0.9000 | 21100 | 0.0 | - |
596
+ | 0.9021 | 21150 | 0.0 | - |
597
+ | 0.9043 | 21200 | 0.0 | - |
598
+ | 0.9064 | 21250 | 0.1048 | - |
599
+ | 0.9085 | 21300 | 0.006 | - |
600
+ | 0.9107 | 21350 | 0.0 | - |
601
+ | 0.9128 | 21400 | 0.0 | - |
602
+ | 0.9149 | 21450 | 0.005 | - |
603
+ | 0.9171 | 21500 | 0.0 | - |
604
+ | 0.9192 | 21550 | 0.0325 | - |
605
+ | 0.9213 | 21600 | 0.0136 | - |
606
+ | 0.9235 | 21650 | 0.0 | - |
607
+ | 0.9256 | 21700 | 0.0062 | - |
608
+ | 0.9277 | 21750 | 0.1656 | - |
609
+ | 0.9299 | 21800 | 0.1648 | - |
610
+ | 0.9320 | 21850 | 0.0 | - |
611
+ | 0.9341 | 21900 | 0.0 | - |
612
+ | 0.9363 | 21950 | 0.0 | - |
613
+ | 0.9384 | 22000 | 0.2844 | - |
614
+ | 0.9405 | 22050 | 0.0 | - |
615
+ | 0.9427 | 22100 | 0.0 | - |
616
+ | 0.9448 | 22150 | 0.0 | - |
617
+ | 0.9469 | 22200 | 0.0 | - |
618
+ | 0.9491 | 22250 | 0.0 | - |
619
+ | 0.9512 | 22300 | 0.2096 | - |
620
+ | 0.9533 | 22350 | 0.0073 | - |
621
+ | 0.9555 | 22400 | 0.006 | - |
622
+ | 0.9576 | 22450 | 0.0 | - |
623
+ | 0.9597 | 22500 | 0.0079 | - |
624
+ | 0.9619 | 22550 | 0.0071 | - |
625
+ | 0.9640 | 22600 | 0.0 | - |
626
+ | 0.9661 | 22650 | 0.006 | - |
627
+ | 0.9683 | 22700 | 0.1048 | - |
628
+ | 0.9704 | 22750 | 0.007 | - |
629
+ | 0.9725 | 22800 | 0.0 | - |
630
+ | 0.9747 | 22850 | 0.0 | - |
631
+ | 0.9768 | 22900 | 0.007 | - |
632
+ | 0.9789 | 22950 | 0.0 | - |
633
+ | 0.9811 | 23000 | 0.1049 | - |
634
+ | 0.9832 | 23050 | 0.0069 | - |
635
+ | 0.9853 | 23100 | 0.0 | - |
636
+ | 0.9875 | 23150 | 0.0 | - |
637
+ | 0.9896 | 23200 | 0.0 | - |
638
+ | 0.9917 | 23250 | 0.0 | - |
639
+ | 0.9939 | 23300 | 0.007 | - |
640
+ | 0.9960 | 23350 | 0.0147 | - |
641
+ | 0.9981 | 23400 | 0.0 | - |
642
+
643
+ ### Framework Versions
644
+ - Python: 3.10.13
645
+ - SetFit: 1.0.3
646
+ - Sentence Transformers: 2.7.0
647
+ - spaCy: 3.7.4
648
+ - Transformers: 4.36.2
649
+ - PyTorch: 2.1.2
650
+ - Datasets: 2.18.0
651
+ - Tokenizers: 0.15.2
652
+
653
+ ## Citation
654
+
655
+ ### BibTeX
656
+ ```bibtex
657
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
658
+ doi = {10.48550/ARXIV.2209.11055},
659
+ url = {https://arxiv.org/abs/2209.11055},
660
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
661
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
662
+ title = {Efficient Few-Shot Learning Without Prompts},
663
+ publisher = {arXiv},
664
+ year = {2022},
665
+ copyright = {Creative Commons Attribution 4.0 International}
666
+ }
667
+ ```
668
+
669
+ <!--
670
+ ## Glossary
671
+
672
+ *Clearly define terms in order to be accessible across audiences.*
673
+ -->
674
+
675
+ <!--
676
+ ## Model Card Authors
677
+
678
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
679
+ -->
680
+
681
+ <!--
682
+ ## Model Card Contact
683
+
684
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
685
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-aspect",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.36.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.20.1",
5
+ "pytorch": "1.11.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "id_core_news_trf",
3
+ "normalize_embeddings": false,
4
+ "labels": [
5
+ "no aspect",
6
+ "aspect"
7
+ ],
8
+ "span_context": 0
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d76329740c3ee73b309c6ba37d70785ba71c1d8e31059fcb23a1db19cd1b0ec2
3
+ size 497787752
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0b442521c86f62eb81b979efbff33f2e73ca24e654a11f9a7327e828b6a920
3
+ size 6991
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff